Реферат по механике материалов

Обновлено: 17.05.2024

Механизмы, входящие в состав любой машины или прибора, весьма разнообразны. С точки зрения их функционального назначения они делятся на следующие виды: механизмы двигателей и преобразователей; передаточные механизмы; исполнительные механизмы; механизмы настройки, подачи, транспортирования; механизмы управления, контроля и регулирования.

Механизмы решают задачи преобразования одних видов движений в другие, например, вращательного в поступательное, и задачи изменения скорости при сохранении вида движения, например, уменьшение числа оборотов двигателя до числа оборотов основного ведомого (рабочего) звена. В последнем случае одним из основных параметров механизма является передаточное отношение i, которое определяется как отношение угловых скоростей ведущего и ведомого k-го звеньев механизма, т.е. i1,k = n1 / nk, или i1,k = ω1 / ω k, где угловая скорость звеньев задается в оборотах за минуту (n) или в радианах за секунду (ω = 2πn / 60). Если механизм служит для понижения угловой скорости, его называют редуктором, если для повышения – мультипликатором.

Механизмы, служащие для передачи вращательного движения с преобразованием скорости (фрикционные, зубчатые), называют также передачами.

В зависимости от конструктивных особенностей и способа передачи движения между подвижными звеньями механизмы делят на шарнирно-рычажные; фрикционные; зубчатые; кулачковые; винтовые; с гибкими звеньями. Рассмотрим подробнее зубчатые и фрикционные виды механизмов, учитывая их конструктивные особенности.

1.Зубчатые механизмы
1.1 Возможности по преобразованию вида движения, изменению скорости, достоинства, недостатки зубчатых механизмов.

Зубчатые механизмы служат для преобразования вращательного движения ведущего звена и передачи моментов сил.

Достоинства: постоянство заданного передаточного отношения, компактность, высокий КПД (0,92 … 0,98); наличие небольших сил давления на валы и опоры; высокая надежность; удобство эксплуатации.

Недостатки: сложность и высокую точность изготовления и сборки, наличие шума при работе (особенно при больших окружных скоростях), невозможность плавного бесступенчатого регулирования скорости вращения ведомого звена.
1.2Классификация зубчатых передач; возможности, достоинства, недостатки разных видов зубчатых передач.

Зацепление зубчатых колес можно кинематически представить как качение без скольжения друг по другу двух поверхностей, называемых начальными. Для цилиндрических передач это цилиндры, для конических – конусы. Точку качения начальных поверхностей определяют как полюс зацепления.

По числу пар зацепляющихся колес зубчатые передачи бывают одно-, двух- и многоступенчатыми.

По профилю зубьев: очертания зуба в плоскости поперечного сечения  профиль зуба; эвольвентные, циклоидальные, круговые (зацепление Новикова).

По взаимному расположению осей их делят на цилиндрические – с параллельными осями (а), конические – с пересекающимися осями (д), на червячные (з), винтовые (и) – со скрещивающимися в пространстве осями.

Зацепление зубчатых колес может быть внешним и внутренним (г).

Реечные зубчатые передачи (к) преобразуют вращательное движение в поступательное или наоборот.

По расположению зубьев относительно образующих начальной поверхности колеса зубчатые передачи делят на прямозубые (а) и косозубые (б, в), шевронные (в) и с круговым зубом (ж).



а


к

з и
Прямозубыми называются колеса (передачи), направление каждого зуба которых совпадает с образующей начальной поверхности (цилиндра или конуса).

Косозубыми называются зубчатые колеса, направление каждого зуба которых составляет некоторый постоянный угол с образующей начальной поверхности.

Обладают рядом достоинств по сравнению с прямозубыми: благодаря наличию угла наклона зубья вступают в зацепление по своей длине постепенно, что обеспечивает более равномерную и плавную работу, и, естественно, снижение шума механизма вследствие большего коэффициента перекрытия. У косозубых колес минимальное число зубьев при котором не происходит подрезания, меньше, чем у прямозубых. Косозубые передачи позволяют подобрать при заданном межосевом расстоянии за счет изменения угла наклона пару колес со стандартным модулем.

К недостаткам косозубых передач следует отнести более сложное изготовление колес по сравнению с прямозубыми и появление дополнительного осевого усилия, передаваемого на опоры. Для устранения осевого усилия можно применять шевронные зубчатые колеса. Венец шевронного колеса состоит из участков с правым и левым направлением зубьев. Зубья такого колеса могут быть нарезаны на одном ободе или венец состоит из жесткого соединения двух косозубых колес с разным направлением наклона зубьев. Шевронные колеса сложнее в изготовлении косозубых.

Шевронными называются колеса (в), зубчатый венец которых образуется из двух рядов косых зубьев противоположного направления.

Для устранения осевого усилия можно применять шевронные зубчатые колеса. Венец шевронного колеса состоит из участков с правым и левым направлением зубьев. Зубья такого колеса могут быть нарезаны на одном ободе или венец состоит из жесткого соединения двух косозубых колес с разным направлением наклона зубьев. Шевронные колеса сложнее в изготовлении косозубых.

Конические колеса могут быть прямозубыми, косозубыми и с круговым зубом (д, е, ж).

Конические зубчатые колеса применяют для передачи вращательного движения между валами, оси которых пересекаются под некоторым углом.

Преимущественно применяют прямозубые конические колеса и только тогда, когда нельзя использовать цилиндрические. Это объясняется большей сложностью изготовления и сборки конических передач. Одно из колес конических передач из-за пересечения осей валов располагается консольно, что создает дополнительные трудности при конструировании опор. Кроме того, валы и опоры нагружаются не только радиальными, но и осевыми силами. Применение более сложных опор приводит к снижению КПД и к большему шуму, чем при применении цилиндрических передач.

Наибольшее распространение получили передачи с эвольвентным профилем зубьев. Во-первых, эвольвентное зацепление мало чувствительно к отклонениям межосевого расстояния, не нарушается правильность зацепления. Во-вторых, профиль зубьев инструмента для нарезания эвольвентных зубчатых колес может быть прямолинейным, сравнительно простое изготовление и контроль инструмента и колес, одним инструментом можно нарезать колеса с разным числом зубьев. Траекторией точки контакта эвольвентных профилей зубьев является прямая линия.

По характеру своей работы передачи могут быть реверсивные и нереверсивные. По конструктивному выполнению корпуса зубчатые передачи бывают открытыми и закрытыми. Открытые не имеют защиты от попадания пыли и грязи, закрытые передачи имеют жесткий корпус и работают в масляной ванне.

По величине окружной скорости различают передачи – тихоходные (до 3 м/с), средних скоростей (3 … 15 м/с) и быстроходные (свыше 15 м/с).

Червячные передачи применяют, когда оси ведущего и ведомого валов перекрещиваются под углом 90°.

Достоинством червячных передач по сравнению с зубчатыми является возможность получить большие передаточные отношения (числа) в одной ступени, до 80 в силовых передачах и до нескольких сотен в кинематических. Червячным редукторам присущи также бесшумность в работе; высокая плавность зацепления; компактность; свойство самоторможения, заключающееся в невозможности передачи вращения от колеса к червяку, что позволяет исключать из привода тормозные устройства; надежность и простота эксплуатации.

Недостатками червячных передач являются большое относительное скольжение сопряженных поверхностей в зацеплении; большие потери на трение; малый КПД; значительный нагрев зацепляющихся элементов в силовых передачах, что требует специальных мер для дополнительного охлаждения; высокая сложность и точность изготовления и сборки.

Планетарными называют многозвенные механизмы, в которых обязательно есть зубчатые колеса с движущимися геометрическими осями.

Планетарные передачи позволяют получать большие передаточные отношения при малых габаритах и массе механизма, снимать с одной (центральной) оси движения с разными угловыми скоростями. Планетарные механизмы широко используются в шкальных отсчетных устройствах ,где подвижное центральное колесо связывают со шкалой грубого отсчета, а водило – со шкалой точного отсчета; в механизмах настройки. Недостатками планетарных передач являются повышенное требование к точности изготовления, относительно большой мертвый ход, уменьшение КПД с ростом передаточного отношения.

Волновые зубчатые механизмы имеют ряд достоинств: большие передаточные отношения (50 … 250 в одноступенчатой передаче) при малых габаритах и массе; высокие точность и плавность вследствие уменьшения общей ошибки при большом числе зацепляющихся зубьев и минимальный мертвый ход; высокий КПД (0,7 … 0,9) благодаря малым скоростям скольжения в зацеплении; возможность передачи вращательного движения в герметически закрытое пространство или через непроницаемую перегородку. Двухступенчатая схема волновой передачи позволяет получать передаточные отношения до нескольких тысяч.

По сравнению с планетарными передачами волновые имеют большие КПД, точность и меньший мертвый ход.

К недостаткам волновых передач относятся сложность изготовления и невозможность получения малых передаточных отношений (меньше 50).

Применяются волновые передачи в кинематических и силовых приводах с большим передаточным отношением; в отсчетных устройствах повышенной точности; как привод для передачи движения в герметизированное пространство.
1.3Геометрические параметры цилиндрических прямозубых колес и передач. Передаточное отношение (число) зубчатых передач.


Рассмотрим элементы зубчатых колес (рис.2), находящихся в зацеплении, в плоскости, перпендикулярной к оси вращения. По высоте снаружи зубья ограничены окружностью выступов диаметром da, изнутри – окружностью впадин диаметром df. Боковые поверхности полного профиля зуба очерчены эвольвентами противоположных ветвей. Эвольвента представляет собой траекторию произвольной точки прямой, перекатывающейся без скольжения по окружности, называемой основной. Положительная ветвь эвольвенты получается при перекатывании производящей прямой против хода часовой стрелки, отрицательная – по ходу часовой стрелки. С увеличением радиуса основной окружности до бесконечности (зубчатая рейка) эвольвента превратится в прямую. Часть бокового профиля зуба очерчивается по переходной кривой, служащей плавным переходом от эвольвенты к окружности впадин. Наличие переходной кривой делает зуб более прочным у основания. При зацеплении одного колеса с другим появляется начальная окружность радиусом rw. Это окружность одного зубчатого колеса, перекатывающаяся без скольжения по окружности (поверхности) второго из зацепляющихся колес. Расстояние между одноименными профилями соседних зубьев по дуге окружности называется окружным шагом и обозначается pt. Значение этого параметра по начальным окружностям должно быть одинаковым у находящихся в зацеплении колес. Пользуясь шагом зацепления, можно выразить длину любой окружности колеса, умножив шаг на число зубьев z:

где t – индекс соответствующей окружности, например, pa, da или pf, df.

Величина pt выражается несоизмеримым числом, так как в правую часть условия (17) входит число π. Это затрудняет выбор размеров колес при их проектировании и изготовлении. Поэтому основным параметром принят не шаг, а отношение его к числу π. Эта величина называется модулем зацепления mt:

Шаг и модуль имеют индекс той окружности, по которой они измерены. Величины модулей для снижения номенклатуры и унификации режущего и контролирующего инструмента стандартизированы. Чаще всего согласно стандартам ограничиваются следующими значениями модуля (в миллиметрах): 0,05; 0,06; 0,08; 0,1; 0,12; 0,15; 0,20; 0,25; 0,3; 0,5; 0,6; 0,8; 1,0; 1,25; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0. Окружность, по которой модуль имеет расчетное стандартное значение, называется делительной. Диаметр ее обозначается d, она является базовой для определения элементов зубьев и их размеров. Шаг и модуль по делительной окружности обозначают соответственно р и m.

Диаметр делительной окружности

Для наиболее распространенных неисправленных по высоте (нулевых) колес начальная и делительные окружности совпадают и передаточное отношение для пары таких колес будет равно

Помимо шага по дуге окружности различают и угловой шаг (центральный угол, соответствующий шагу по дуге). За время контакта одной пары зубьев колесо повернется на угол перекрытия. Для обеспечения непрерывности передачи движения от ведущего к ведомому колесу необходимо, чтобы до выхода из контакта данной пары зубьев в зацепление вступила очередная пара зубьев. Это условие будет соблюдаться, если угловой шаг колеса меньше угла перекрытия. Отношение угла перекрытия к угловому шагу, называют коэффициентом перекрытия зубчатой передачи εγ. Допустимым считается значение εγ ≥ 1,2.

Часть зуба высотой ha, заключенную между окружностью выступов и делительной окружностью, называют головкой зуба, а часть зуба высотой hf, заключенную между делительной окружностью и окружностью впадин, – ножкой зуба. Основные геометрические параметры зубчатого колеса – диаметры выступов da и впадин df, общая высота зуба h, высота головки ha и ножки hf, толщина зуба s и ширина впадин е между зубьями – выражаются через основной параметр зубчатой передачи – модуль m, по ГОСТ 9587-68.

Зубчатые передачи в приборостроении обычно используют не как силовые для передачи значительных моментов сил, а как кинематические для получения требуемых скоростей вращения. Зубчатую передачу в этом случае не рассчитывают на прочность, модуль выбирают из стандартного ряда по конструктивным соображениям. Применение малых модулей позволяет уменьшить габариты колес и увеличить плавность передачи при сохранении габаритов за счет увеличения числа зубьев. При заданном диаметре стоимость колес с уменьшением модуля возрастает, но повышается точность работы зубчатой пары, КПД таких передач 0,94 . 0,98.

Высота головки зуба ha = ha*∙m, где ha* – коэффициент высоты головки, который в соответствии со стандартом равен единице (ha* = 1), а высота головки равна модулю (ha = m). Высота ножки зуба hf = (ha* + c*)m, где с = с*m – величина радиального зазора (см. рис. 3.7) между зубьями колес, находящихся в зацеплении; с* – коэффициент радиального зазора, который зависит от величины модуля: с* = 0,5 при m ≤ 0,5 мм, с* = 0,35 при 0,5 3 ), к уменьшению массы конструкции в 4 . 5 раз.
Недстатки - пластмассы значительно хуже, чем металлы, сопротивляются переменным нагрузкам; они подвержены тепловому, световому и атмосферному старению – процессу самопроизвольного необратимого изменения свойств; многие из пластмасс гигроскопичны.

Из пластмасс изготавливают зубчатые и червячные колеса, шкивы, подшипники, ролики, корпуса, зубчатые ремни, ручки управления и другие детали. Производство пластмасс развивается интенсивнее, чем таких традиционных материалов, как металлы. Это объясняется удешевлением изготовления, улучшением ряда основных параметров механизмов: уменьшением веса и инерционности звеньев, потерь на трение, повышением быстродействия.

Описание разделов механики, видов и признаков механических систем. Рассмотрение предмета изучения классической, релятивистской и квантовой механики, дифференциального и интегрального исчисления как основы математического аппарата классической механики.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 14.09.2015
Размер файла 17,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат по физике

на тему "Механика"

Механика - раздел физики, наука, изучающая движение материальных тел и взаимодействие между ними; при этом движением в механике называют изменение во времени взаимного положения тел или их частей в пространстве.

Предмет механики и её разделы

Таким образом, по предмету изучения механика подразделяется на:

механику сплошных сред;

специальные механические дисциплины: теорию механизмов и машин, сопротивление материалов, гидравлику, механику грунтов и др.

Теоретическая механика (в обиходе -- теормех) -- наука об общих законах механического движения и взаимодействия материальных тел.

Механика сплошных сред -- раздел механики, физики сплошных сред и физики конденсированного состояния, посвящённый движению газообразных, жидких и деформируемых твёрдых тел, а также силовым взаимодействиям в таких телах.

Другой важнейший признак, используемый при подразделении механики на отдельные разделы, основан на тех представлениях о свойствах пространства, времени и материи, на которые опирается та или иная конкретная механическая теория. По данному признаку в рамках механики выделяют такие разделы:

Релятивистская механика -- раздел физики, рассматривающий законы механики (законы движения тел и частиц) при скоростях, сравнимых со скоростью света. При скоростях значительно меньших скорости света переходит в классическую (ньютоновскую) механику.

Квантовая механика -- раздел теоретической физики, описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка.

Механика занимается изучением так называемых механических систем.

Механическая система обладает определённым числом k\,\! степеней свободы, а её состояние описывается с помощью обобщённых координат q_1,\dots q_k\,\! и соответствующих им обобщённых импульсов p_1,\dots p_k\,\!. Задача механики состоит в изучении свойств механических систем, и, в частности, в выяснении их эволюции во времени.

Являясь одним из классов физических систем, механические системы по характеру взаимодействия с окружением разделяются на изолированные (замкнутые), закрытые и открытые, по принципу изменения свойств во времени -- на статические и динамические.

Наиболее важными механическими системами являются:

абсолютно твёрдое тело

абсолютно упругое тело

Неголономная система -- механическая система, на которую, кроме геометрических, накладываются и кинематические связи, которые нельзя свести к геометрическим (их называют неголономными).

Гармонический осциллятор (в классической механике) -- система, которая при смещении из положения равновесия испытывает действие возвращающей силы F, пропорциональной смещению x (согласно закону Гука).

Сплошная среда -- механическая система, обладающая бесконечным числом внутренних степеней свободы.

механика классический дифференциальный квантовый

Важнейшие механические дисциплины

Кинематика (греч. кйнейн -- двигаться) в физике -- раздел механики, изучающий математическое описание (средствами геометрии, алгебры, математического анализа…) движения идеализированных тел (материальная точка, абсолютно твердое тело, идеальная жидкость), без рассмотрения причин движения (массы, сил и т. д.). Исходные понятия кинематики -- пространство и время.

Динамика (греч. дэнбмйт -- сила) -- раздел механики, в котором изучаются причины возникновения механического движения. Динамика оперирует такими понятиями, как масса, сила, импульс, момент импульса, энергия.

теория устойчивости и катастроф

механика сплошных сред

Специальные механические дисциплины

теория механизмов и машин

Некоторые курсы механики ограничиваются только твёрдыми телами. Изучением деформируемых тел занимаются теория упругости (сопротивление материалов -- её первое приближение) и теория пластичности. В случае, когда речь идёт не о жёстких телах, а о жидкостях и газах, необходимо прибегнуть к механике жидкостей и газов, основными разделами которой являются гидростатика и гидрогазодинамика. Общей теорией, изучающей движение и равновесия жидкостей, газов и деформируемых тел, является механика сплошных сред.

Основной математический аппарат классической механики: дифференциальное и интегральное исчисление, разработанное специально для этого Ньютоном и Лейбницем. К современному математическому аппарату классической механики относятся, прежде всего, теория дифференциальных уравнений, дифференциальная геометрия (симплектическая геометрия, контактная геометрия, тензорный анализ, векторные расслоения, теория дифференциальных форм), функциональный анализ и теория операторных алгебр, теория катастроф и бифуркаций. В современной классической механике используются и другие разделы математики. В классической формулировке, механика базируется на трёх законах Ньютона. Решение многих задач механики упрощается, если уравнения движения допускают возможность формулировки законов сохранения (импульса, энергии, момента импульса и других динамических переменных).

Различные формулировки механики

Все три закона Ньютона для широкого класса механических систем (консервативных систем, лагранжевых систем, гамильтоновых систем) связаны с различными вариационными принципами. В этой формулировке классическая механика таких систем строится на основе принципа стационарности действия: системы движутся так, чтобы обеспечить стационарность функционала действия. Такая формулировка используется, например, в лагранжевой механике и в гамильтоновой механике. Уравнениями движения в лагранжевой механике являются уравнения Эйлера -- Лагранжа, а в гамильтоновой -- уравнения Гамильтона.

Независимыми переменными, описывающими состояние системы в гамильтоновой механике, являются обобщённые координаты и импульсы, а в механике Лагранжа -- обобщённые координаты и их производные по времени.

Гамильтонова механика является одной из формулировок классической механики.

Если использовать функционал действия, определённый на реальной траектории системы, соединяющей некую начальную точку с произвольной конечной, то аналогом уравнений движения будут уравнения Гамильтона -- Якоби.

Следует отметить, что все формулировки классической механики, основанные на голономных вариационных принципах, являются менее общими, чем формулировка механики, основанная на уравнениях движения. Не все механические системы имеют уравнения движения, представимые в виде уравнения Эйлера -- Лагранжа, уравнения Гамильтона или уравнения Гамильтона -- Якоби. Тем не менее, все формулировки являются как полезными с практической точки зрения, так и плодотворными с теоретической. Лагранжева формулировка оказалась особенно полезной в теории поля и релятивистской физике, а гамильтонова и Гамильтона -- Якоби -- в квантовой механике.

В настоящее время известно три типа ситуаций, в которых классическая механика перестаёт отражать реальность.

Свойства микромира не могут быть поняты в рамках классической механики. В частности, в сочетании с термодинамикой она порождает ряд противоречий (см. Классическая механика). Адекватным языком для описания свойств атомов и субатомных частиц является квантовая механика. Подчеркнём, что переход от классической к квантовой механике -- это не просто замена уравнений движения, а полная перестройка всей совокупности понятий (что такое физическая величина, наблюдаемое, процесс измерения и т. д.)

При скоростях, близких к скорости света, классическая механика также перестаёт работать, и необходимо переходить к специальной теории относительности. Опять же, этот переход подразумевает полный пересмотр парадигмы, а не простое видоизменение уравнений движения. Если же, пренебрегая новым взглядом на реальность, попытаться всё же привести уравнение движения к виду F = ma\,\!, то придётся вводить тензор масс, компоненты которого растут с ростом скорости. Эта конструкция уже долгое время служит источником многочисленных заблуждений, поэтому пользоваться ей не рекомендуется.

Классическая механика становится неэффективной при рассмотрении систем с очень большим числом частиц (или же большим числом степеней свободы). В этом случае практически целесообразно переходить к статистической физике.

Голубев Ю. Ф. Основы теоретической механики. 2-е изд. -- М.: Изд-во МГУ, 2000. -- 720 с. -- ISBN 5-211-04244-1.

Киттель Ч., Найт У., Рудерман М. Механика. Берклеевский курс физики. -- М.: Лань, 2005. -- 480 с. -- ISBN 5-8114-0644-4.

Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. 1. Механика. 5-е изд. -- М.: Физматлит, 2004. -- 224 с. -- ISBN 5-9221-0055-6.

Матвеев А. Н. Механика и теория относительности. 3-е изд.. -- М.: ОНИКС 21 век: Мир и Образование, 2003. -- 432 с. -- ISBN 5-329-00742-9.

Седов Л. И. Механика сплошной среды. Том 1.. -- М.: Наука, 1970. -- 492 с.

Седов Л. И. Механика сплошной среды. Том 2.. -- М.: Наука, 1970. -- 568 с.

Сивухин Д. В. Общий курс физики. Т. 1. Механика. 5-е изд. -- М.: Физматлит, 2006. -- 560 с. -- ISBN 5-9221-0715-1.

Подобные документы

Основные концепции классической механики Ньютона: принципы относительности и инерции, законы всемирного тяготения и сохранения, законы термодинамики. Прикладное значение классической механики: применение в пожарной экспертизе, баллистике и биомеханике.

контрольная работа [29,8 K], добавлен 16.08.2009

Определение механики, ее место среди других наук, подразделения механики. Развитие методов механики с XVIII в. до нашего времени. Механика в России и СССР. Современные проблемы теории колебаний, динамики твердого тела и теории устойчивости движения.

реферат [47,3 K], добавлен 19.06.2019

Предмет и задачи механики – раздела физики, изучающего простейшую форму движения материи. Механическое движение - изменение с течением времени положения тела в пространстве относительно других тел. Основные законы классической механики, открытые Ньютоном.

презентация [303,7 K], добавлен 08.04.2012

"Планетарная модель" атома Бора в основе квантовой механики, ее основные принципы, идеи и значение. Попытки объяснить корпускулярные и волновые свойства вещества в квантовой (волновой) механике. Анализ волновой функции и ее вероятностного смысла.

реферат [90,7 K], добавлен 21.11.2011

Диссипативная модификация квантовой механики. Суперструнные модели; дилатонное скалярное поле и инфляция. Микроскопический струнный подход к описанию диссипативного варианта квантовой механики. Сравнение теории с наблюдениями, построение графиков.


Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

computer

Требуются доработки?
Они включены в стоимость работы


Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar

avatar

avatar

avatar

Последние размещённые задания


Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решение задач, Высшая математика

Срок сдачи к 1 мар.

Влияние ценовой эластичности спроса и предложения на устойчивость.

Срок сдачи к 1 мар.

Реферат, национальная экономика

Срок сдачи к 28 февр.

Совершенствование деятельности государственных служащих в сфере социальной защиты населения (на примере. ) гбу тцсо "мещанский"

Курсовая, Принятие и исполнение государственных решений

Срок сдачи к 15 мар.

Контрольная, Web-технологии, информатика, программирование

Срок сдачи к 20 мар.

Решение задач, Высшая математика

Срок сдачи к 27 февр.

Решить два задания

Решение задач, Математический анализ

Срок сдачи к 28 февр.

решить задачи срочно

Решение задач, Административное судопроизводство прокурорский надзор

Срок сдачи к 27 февр.

Курсовая, право социального обеспечения

Срок сдачи к 3 мар.

Решение задач, Химия

Срок сдачи к 2 мар.

решить все задания с пояснением

Решение задач, финансы

Срок сдачи к 5 мар.

Тема: договор аренды и его видв

Курсовая, Гражданское право

Срок сдачи к 28 февр.

Экспертиза и контроль безопасности оборудования и технологических процессов

Срок сдачи к 28 февр.

Для мед университета

Срок сдачи к 18 мар.

Решить 5 задач по электрическим измерениям

Решение задач, Электрические измерения

Срок сдачи к 7 мар.

3 задачи по маркетингу

Решение задач, Маркетинг

Срок сдачи к 1 мар.

Необходимо решить задания по криволинейным интегралам до вечера.

Решение задач, Высшая математика

Срок сдачи к 27 февр.

анализ и оценка эффективности использования внеоборотных активов.

Курсовая, Основы анализа бухгалтерской отчетности

Срок сдачи к 4 мар.

planes
planes

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

Нажмите, чтобы узнать подробности

Механика представляет собой науку, являющуюся разделом физики, целью которой является изучение принципов движения и взаимодействие отдельных материальных тел. А вот движением в науке механике будет изменение положения как во времени, так и в пространстве. Механикой принято считать науку, задачей которой является решение любых задач на движение, равновесие и взаимодействие тел. И движение планеты Земля вокруг Солнца также подчиняется законам механики. С другой стороны, в понятие механики входит и создание проектов на основании расчетов для двигателей, машин, их деталей. В данному случае можно говорить не только о механике, но и о механике сплошной среды. Механика также призвана решать проблемы движения твердых, газообразных, жидких тел, имеющих способность к деформации. Т.е. речь идет о материальных телах, заполняющих все пространство сплошным непрерывным потоком с меняющимся расстоянием между точками в процессе движения.

Механика подразделяется на: механику сплошных сред, теоретическую и специальную (о механизмах и машинах, механика грунта, сопротивление и др.) - по предмету изучения; классическая, квантовая и релятивистская - по отношению в понятиям времени, материи и пространства. Предметом изучение механики являются механические системы. Каждая механическая система существует при наличии определенных степеней свободы. Состояние механической системы описывается системой обобщенных координат и импульсов. Соответственно, задача механики - узнать и исследовать свойства систем и определить наличие эволюции во времени.

Механические системы бывают замкнутыми, открытыми и закрытыми - по взаимодействию с окружающим пространством; статические и динамические - по наличию возможности видоизменяться во времени. Основными и значимыми механическими системами признаны: тело абсолютной упругости, физический маятник, тело со способностью к деформации, математический маятник, материальная точка. Школьный раздел механики изучает кинематику, динамику, статику и законы сохранения. В то время как теоретическая механика состоит из небесной, неголономной, нелинейной динамики, теории устойчивости, теории катастроф, и гироскопов.

Механика сплошных тел - это, прежде всего гидростатика, аэромеханика, гидродинамика, реология, а также теории упругости и пластичности, газовая динамика и механика разрушения и композитов. Большинство курсов по теории механики ограничивается теорией твердых тел. Деформируемые тела изучаются в теории упругости и теории пластичности. А жидкости и газы изучаются в механике жидкостей и газов. Дифференциальное и интегральное исчисления - основа классической механики. Исчисления разработаны Ньютоном и Лейбницем. Все 3 закона Ньютона относятся к разным вариационным принципам. Таким образом, классическая механика основывается на законах Ньютона. Но на сегодняшний день известно 3 варианта развития событий, при которых классическая механика не соответствует реальности. К примеру, свойства микромира, здесь для объяснения законов необходим переход от классической к квантовой механике. Другой пример, это скорости близкие к скорости света - здесь требуется специальная теория относительности. И третий вариант - системы с большим числом частиц, когда требуется переход к статической физике.

Читайте также: