Реферат по химии теория бутлерова

Обновлено: 08.07.2024

Органические соединения (углеводороды и их производные) можно разделить на два типа: ациклические (или алифатические, т.е. с открытой углеродной цепью) и циклические; последние в свою очередь подразделяются на алициклические, в молекулах которых содержатся углеродные кольца неароматического характера; ароматические, проявляющие свойства, характерные для бензола; гетероциклические, в которых один или несколько атомов в кольце представляют собой атомы неметаллов, отличные от углерода.

Прикрепленные файлы: 1 файл

Органические соединения.doc

1 Лекция.Введение.Теория органических соединений Бутлерова. Химическая теория строения органических веществ.

Органические соединения (углеводороды и их производные) можно разделить на два типа: ациклические (или алифатические, т.е. с открытой углеродной цепью) и циклические; последние в свою очередь подразделяются на алициклические, в молекулах которых содержатся углеродные кольца неароматического характера; ароматические, проявляющие свойства, характерные для бензола; гетероциклические, в которых один или несколько атомов в кольце представляют собой атомы неметаллов, отличные от углерода. Внутри каждого из этих типов возможна дальнейшая дифференциация на классы по присутствующим в них реакционным центрам - функциональным группам. Например, органические соединения, имеющие карбоксильную группу -СООН, являются кислотами и вступают в реакции, характерные для кислот (нейтрализация оснований, образование эфиров со спиртами и т.д.). Реакции таких групп несколько изменяются при изменении структуры молекулы, в которой они находятся; на них могут влиять и другие группы в молекуле, хотя это влияние обычно мало. Ниже перечислены типичные функциональные группы с примерами наиболее значимых и интересных представителей каждого класса, затем рассматриваются реакции функциональных групп (разд. IV. "Реакции органических соединений").

УГЛЕВОДОРОДЫ
Углеводороды являются соединениями углерода и водорода. (Простейший углеводород - метан СН4.) Алифатические и алициклические углеводороды могут содержать прямые (неразветвленные), разветвленные или замкнутые в кольца цепи углеродных атомов. Если четыре углеродных атома соединены один с другим только простыми (одинарными) связями, образуется углеводород бутан C4H10 с открытой (неразветвленной) цепью:


Здесь черточки изображают ковалентные связи между углеродными атомами в плоскости страницы, пунктирные линии - связи с атомами водорода ниже, а жирные клинообразные линии - с атомами водорода выше этой плоскости. Углы между углерод-углеродными связями 109°. Эта молекула может свободно вращаться вокруг простых связей (что вообще справедливо для простых связей). Структурную формулу бутана можно написать как


либо проще, CH3-CH2-CH2-CH3 или CH3CH2CH2CH3. Для четырех углеродных атомов, связанных простыми связями, возможна также структура с разветвленной цепью:


Эта формула изображает другое соединение - изобутан, у которого иные свойства, чем у бутана (например, более низкие температуры кипения и замерзания). Заметим, что и бутан, и изобутан имеют один и тот же состав: C4H10. Такие соединения, с одинаковыми брутто-формулами, называются "изомерами". Изомерия - обычное явление в органической химии, для сложных формул возможны миллиарды изомеров. Существуют два циклических четырехуглеродных (C4) углеводорода, содержащих только простые связи: циклобутан и метилциклопропан, оба имеют брутто-формулу C4H8:


Насыщенные и ненасыщенные углеводороды. Насыщенные (предельные) углеводороды - алканы (парафины) - содержат только простые (одинарные) связи между атомами углерода (например, метан, бутан, изобутан и циклобутан). Если в молекуле присутствует кратная (двойная, тройная) связь, соединение называют ненасыщенным (или непредельным) - это алкены (олефины) и алкины (ацетилены). Алканы обычно химически инертны, поскольку все валентные электроны углерода и водорода прочно связаны в сильных ковалентных связях. Метан, бутан и изобутан представляют собой алканы. Циклоалканы, представителями которых являются циклобутан и метилциклопропан, - алканы, содержащие кольцо из углеродных атомов. У ненасыщенных углеводородов реакционный центр находится по месту кратной связи. Они вступают в разнообразные химические реакции гораздо легче, чем насыщенные углеводороды. Простейший из алкенов - этилен:


Все атомы этой молекулы лежат в одной плоскости. Вращение вокруг двойных связей невозможно, поэтому если два олефина одинакового состава различаются расположением групп относительно двойной связи, то они не идентичны и называются цис-транс-изомерами. У цис-изомеров одинаковые группы, соседние с двойной связью, расположены по одну сторону двойной связи, тогда как в транс-изомерах - по разные стороны.


Ацетилен H-CєC-H является простейшим алкином. Все его атомы лежат на прямой линии, поэтому цис-транс-изомерия невозможна, хотя атомы, связанные тройной связью, не могут вращаться друг относительно друга. Молекула бутина-2 H3C-CєC-CH3 также линейна. Ароматические углеводороды содержат шестичленные кольца условно с тремя двойными связями, чередующимися с тремя простыми. Простейшим соединением этого типа является бензол, имеющий структуру


Свойства. Углеводороды представляют собой наименее полярные из органических молекул, поскольку связи C-H почти полностью ковалентны. В результате они имеют относительно низкие температуры кипения (т. кип.) и плавления (т. пл.) по сравнению с другими органическими соединениями. Углеводороды, содержащие в цепи до четырех атомов углерода включительно, при атмосферном давлении и комнатной температуре газообразны; к ним относятся топливные газы метан CH4, этан C2H6, пропан C3H8 и бутан C4H10 (последние два обычно продают в баллонах под давлением). Насыщенные неразветвленные углеводороды становятся твердыми при комнатной температуре, начиная с углеводорода C16. Разветвленные и ненасыщенные углеводороды являются более низкоплавкими соединениями; например, углеводород с прямой цепью гексадекан CH3(CH2)14CH3, или C16H34, плавится при 20° С, а разветвленный углеводород тетрамер 2-метилпропена (C4H8)4, или C16H32, затвердевает при -139° С, тогда как ненасыщенный углеводород гексадецин-2 CH3(CH2)12CєCCH3, или C16H30, имеет т. пл. -25° С. Циклическим соединениям свойственны более высокие температуры плавления, чем алифатическим (с открытой углеродной цепью) соединениям той же молекулярной массы; например, у 1,3-диметилциклогексана C6H10(CH3)2 т. пл. -85° С, т.е. на 19° С выше, чем у неразветвленного углеводорода октена C8H16, который имеет ту же брутто-формулу (и поэтому ту же молекулярную массу), но плавится при -104° С. Все углеводороды горят, образуя углекислый газ и воду. Химические реакции насыщенных, ненасыщенных и ароматических соединений совершенно отличны друг от друга.
Практически важные углеводороды. Ниже перечислены некоторые имеющие большое практическое значение углеводороды, их свойства и применения. Метан CH4 - бесцветный, не имеющий запаха газ с т. кип. -162° С. Он является главным компонентом природного газа, широко используемого как топливо. Сырая нефть - сложная смесь углеводородов (и некоторых следовых соединений) вплоть до С40. Перегонка и химическая переработка нефти дают множество промышленных углеводородов и очищенных смесей углеводородов. К продуктам, получаемым перегонкой нефти, относятся (в порядке повышения т. кип.) разбавители для красок, бензин, керосин, минеральные масла, смазочные масла и асфальт.
Циклопропан - бесцветный горючий газ с т. кип. -33° С. Его используют в органическом синтезе и медицине (как анестетик). Этилен H2C=CH2, бесцветный газ с т. кип. -102° С. Исходный материал для синтеза ряда химических продуктов, в том числе этилового спирта и полиэтилена. Пропилен H3C-CH=CH2, бесцветный газ с т. кип. -48° С. Мономер полипропилена.
Бутадиен и стирол. Бутадиен H2C=CH-CH=CH2, бесцветный горючий газ без запаха с т. кип. -4,5° С. Стирол C6H5CH=CH2, бесцветная жидкость со специфическим запахом ароматических соединений, т. кип. 146° С. Эти углеводороды служат исходными мономерами для получения ряда пластмасс и каучуков. Бензол C6H6, прозрачная, бесцветная, горючая жидкость с характерным запахом, т. кип. 80° С. Бензол широко используется как растворитель и исходный материал для синтеза многих органических соединений, включая взрывчатые вещества, красители и медицинские препараты. Нафталин C10H8 с молекулярной структурой в виде двух конденсированных колец.Это белые кристаллические пластинки с т. пл. 80° С, вещество летуче. Общеизвестно его применение в виде шариков для отпугивания моли; сырье в производстве красителей. Ацетилен HCєCH, бесцветный газ с т. кип. -83° С. Его применяют как горючее в ацетиленовых горелках для резки и сварки металлов, а также для синтеза многих других органических соединений.

Теория Бутлерова. Занимаясь изучением угл еводородов, Бутлеров понял, что они представляют собой совершенно особый класс химических веществ. Анализируя их строение и свойства, ученый заметил, что здесь существует строгая закономерность. Она и легла в основу созданной им теории химического строения.

В 1862—1865 годах Бутлеров высказал основное положение теории о братимой изомеризации — таутомерии, механизм которой, по Бутлерову, заключается в расщеплении молекул одного строения и соединении их остатков с образованием молекул другого строения. Успех принес ученому уверенность, но в то же время поставил перед ним новую, более трудную задачу. Необходимо было применить структурную теорию ко всем реакциям и соединениям органической химии, а главное, написать новый учебник по органической химии, где все явления рассматривались бы с точки зрения новой теории строения.

В с воих исследованиях Бутлеров продолжал развивать структурную теорию. Он задался целью доказать, что разветвленную и прямую углеродные цепи могут иметь все типы органических соединений. Это вытекало непосредственно из теории, но теоретические положения надо было доказать на практике. Разве нельзя получить углеводород — например, бутан, — четыре углеродных атома которого были бы связаны друг с другом не последовательно, а так, как они связаны в триметил-карбиноле? Но чтобы найти правильный метод его синтеза, требовалось множество опытов
И вот, наконец, усилия Бутлерова увенчались успехом. В большой колбе был долгожданный изобутилен. Доказано существование разветвленной цепи углеводородов!

Химическая связь - это совокупность сил электростатического притяжения и отталкивания, создающее динамически устойчивую систему из двух и более атомов. Основной принцип образования молекул из атомов – это стремление к минимальной энергии и к максимальной устойчивости (пример: H (г) +H (г) =H 2(г) + 435 кДж/моль энергии).

Формулы строения и понятие о изомерии. Различие в строении молекул, состоящих из одинакового набора атомов. Электронные представления в органической химии. Свойства электрона и орбитали. Заполнение атомных орбиталей электронами, электронные конфигурации.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 29.10.2013
Размер файла 816,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Основные положения теории химического строения А.М. Бутлерова

1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

3. Свойства веществ зависят от их химического строения.

4. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.

5. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии, предсказал существование различных изомеров и впервые получил некоторые из них.

Развитию теории строения способствовали работы Кекуле, Кольбе, Купера и Вант-Гоффа. Однако их теоретические положения не носили общего характера и служили, главным образом, целям объяснения экспериментального материала.

2. Формулы строения

Формула строения (структурная формула) описывает порядок соединения атомов в молекуле, т.е. ее химическое строение. Химические связи в структурной формуле изображают черточками. Связь между водородом и другими атомами обычно не указывается (такие формулы называются сокращенными структурными формулами).

Например, полная (развернутая) и сокращенная структурные формулы н-бутана C4H10имеют вид:

Другой пример - формулы изобутана.

Часто используется еще более краткая запись формулы, когда не изображают не только связи с атомом водорода, но и символы атомов углерода и водорода. Например, строение бензола C6H6 отражают формулы:

Структурные формулы отличаются от молекулярных (брутто) формул, которые показывают только, какие элементы и в каком соотношении входят в состав вещества (т.е. качественный и количественный элементный состав), но не отражают порядка связывания атомов.

Например, н-бутан и изобутан имеют одну молекулярную формулу C4H10, но разную последовательность связей.

Таким образом, различие веществ обусловлено не только разным качественным и количественным элементным составом, но и разным химическим строением, которое можно отразить лишь структурными формулами.

3. Понятие о изомерии

Еще до создания теории строения были известны вещества одинакового элементного состава, но c разными свойствами. Такие вещества были названы изомерами, а само это явление - изомерией.

В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов. Таким образом,

изомерия - это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Например, при содержании в молекуле 4-х атомов углерода и 10-ти атомов водорода возможно существование 2-х изомерных соединений:

В зависимости от характера отличий в строении изомеров различают структурную и пространственную изомерию.

4. Структурные изомеры

Структурные изомеры - соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением.

Например, составу C5H12 соответствует 3 структурных изомера:

5. Стереоизомеры

Пространственные изомеры (стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.

Пространственными изомерами являются оптические и цис-транс изомеры (шарики разного цвета обозначают разные атомы или атомные группы):

Молекулы таких изомеров несовместимы в пространстве.

Стереоизомерия играет важную роль в органической химии. Подробнее эти вопросы будут рассматриваться при изучении соединений отдельных классов.

6. Электронные представления в органической химии

Применение электронной теории строения атома и химической связи в органической химии явилось одним из важнейших этапов развития теории строения органических соединений. Понятие о химическом строении как последовательности связей между атомами (А.М. Бутлеров) электронная теория дополнила представлениями обэлектронном и пространственном строении и их влиянии на свойства органических соединений. Именно эти представления дают возможность понять способы передачи взаимного влияния атомов в молекулах (электронные и пространственные эффекты) и поведение молекул в химических реакциях.

Согласно современным представлениям свойства органических соединений определяются:

природой и электронным строением атомов;

типом атомных орбиталей и характером их взаимодействия;

типом химических связей;

химическим, электронным и пространственным строением молекул.

7. Свойства электрона

Электрон имеет двойственную природу. В разных экспериментах он может проявлять свойства как частицы, так и волны. Движение электрона подчиняется законам квантовой механики. Связь между волновыми и корпускулярными свойствами электрона отражает соотношение де Бройля.

Энергию и координаты электрона, как и других элементарных частиц, невозможно одновременно измерить с одинаковой точностью (принцип неопределенностиГейзенберга). Поэтому движение электрона в атоме или в молекуле нельзя описать с помощью траектории. Электрон может находиться в любой точке пространства, но с разной вероятностью.

Часть пространства, в котором велика вероятность нахождения электрона, называют орбиталью или электронным облаком.

8. Атомные орбитали

Атомная орбиталь (АО) - область наиболее вероятного пребывания электрона (электронное облако) в электрическом поле ядра атома.

Положение элемента в Периодической системе определяет тип орбиталей его атомов (s-, p-, d-, f-АО и т.д.), различающихся энергией, формой, размерами и пространственной направленностью.

Для элементов 1-го периода (Н, He) характерна одна АО - 1s.

В элементах 2-го периода электроны занимают пять АО на двух энергетических уровнях: первый уровень 1s; второй уровень - 2s, 2px, 2py, 2pz. (цифры обозначают номер энергетического уровня, буквы - форму орбитали).

Состояние электрона в атоме полностью описывают квантовые числа.

9. Форма и энергия атомных орбиталей

Атомные орбитали (АО) разных типов отличаются друг от друга формой и энергией и обозначаются символами: s, p, d, f и т.д.

Органические вещества состоят в основном из элементов 2-го и 3-го периодов, валентные электроны которых находятся на s- и р-АО. Атомные орбитали s-типа имеют форму сферы:

р-АО имеют форму объемной восьмерки (гантели), направленной по оси x, y или z.

Энергия орбитали возрастает по мере удаления электрона от ядра атома (т.е. с увеличением номера электронного уровня).

С органическими веществами человек знаком с давних времен . Наши далекие предки применяли природные красители для окраски тканей, использовали в качестве продуктов питания растительные масла, животные жиры, тростниковый сахар, получали брожением спиртовых жидкостей уксус…

Но наука о соединениях углерода возникла лишь в первой половине Х I Х века.

В 1828 году ученик Я. Берцелиуса – немецкий ученый Ф.Велер из неорганических веществ синтезирует органическое вещество -–мочевину. В 1845 году немецкий химик А.Кольбе искусственным путем получает уксусную кислоту. В 1854 году французский химик М.Бертло синтезирует жиры. Русский ученый А.М. Бутлеров в 1861 году впервые синтезом получает сахаристое вещество.

Известно, что развивающаяся промышленность, практика ставят новые задачи перед наукой. Как только у общества появляется техническая потребность, она продвигает

науку вперед больше, чем десяток университетов.

Для подтверждения этих слов можно привести такой пример. Текстильная промышленность в 40-х годах девятнадцатого века уже не могла себя

обеспечить натуральными красителями – их не хватало. Перед наукой встала задача получения красителей синтетическим путем. Начались поиски, в результате которых были синтезированы различные анилиновые красители и ализарин, добываемый ранее из корней растения марены. Полученные красители в свою очередь способствовали бурному росту текстильной промышленности.

В настоящее время синтезированы многие органические вещества, не только имеющиеся в природе, но и не встречающиеся в ней, например, многочисленные пластмассы, различные виды каучуков, всевозможные красители, взрывчатые вещества, лекарственные препараты.

Синтетически полученных веществ сейчас известно больше, чем найденных в природе, и их число быстро растет. Начинают осуществляться синтезы самых сложных органических веществ – белков .

2. Состояние органической химии в середине Х I Х века.

Между тем существовали доструктурные теории – теория радикалов и теория типов.

Теория радикалов ( ее создатели Ж. Дюма, И. Берцелиус) утверждала, что в состав органических веще ств входят радикалы , переходящие из одной молекулы в другую: радикалы постоянны по составу и могут существовать в свободном виде. В дальнейшем было установлено, что радикалы могут подвергаться изменениям в результате реакции замещения (замещение атомов водорода атомами хлора). Так ,была получена трихлоруксусная кислота. Теория радикалов была постепенно отвергнута , однако она оставила глубокий след в науке: понятие о радикале прочно вошло в химию. Верными оказались утверждения о возможности существования радикалов в свободном виде, о переходе в огромном числе реакций определенных групп из одного соединения в другое.

Наиболее распространенной в 40-е г.г. ХIХ века была теория типов. Согласно этой теории все органические вещества считали производными простейших неорганических веществ – типа водорода, хлоро-водорода, воды, аммиака и др. Например, тип водорода

Согласно этой теории формулы выражают не внутреннее строение молекул, а только способы образования и реакции вещества. Создатель этой теории Ш.Жерар и его последователи считали, что строение вещества не может быть познано, так как молекулы в процессе реакции изменяются. Для каждого вещества можно написать столько формул, сколько различных видов превращений может испытывать вещество.

Теория типов в свое время была прогрессивной, так как она позволила провести классификацию органических веществ, предсказать и открыть ряд несложных веществ, если удавалось отнести их по составу и некоторым свойствам к определенному типу. Однако далеко не все синтезируемые вещества укладывались в тот или иной тип соединений. Теория типов обратила основное внимание на изучение химических превращений органических соединений, что важно было для познания свойств веществ. В дальнейшем теория типов стала тормозом развития органической химии, так как она не в состоянии была объяснить факты, накопившиеся в науке, указать пути синтеза новых веществ, необходимых для техники, медицины, ряда отраслей промышленности и др. Нужна была новая теория, которая смогла бы не только объяснить факты, наблюдения, но и прогнозировать, указывать пути синтеза новых веществ.

Фактов, требовавших объяснений много –

- вопрос валентности

- написание формул.

Предпосылки теории химического строения.

К моменту появления теории химического строения А.М. Бутлерова многое уже было известно о валентности элементов : Э. Франкланд установил валентность для ряда металлов, для органических соединений А.Кекуле предложил четырехвалентность атома углерода ( 1858) , было высказано предположение об углерод-углеродной связи, о возможности соединения атомов углерода в цепи ( 1859, А.С. Купер, А.Кекуле ). Эта идея сыграла большую роль в развитии органической химии.

Важным событием в химии был Международный конгресс химиков ( 1860, г.Карлсруэ), где были четко определены понятия об атоме, молекуле, атомном весе, молекулярном весе. До этого не было общепризнанных критериев для определения этих понятий, поэтому была путаница в написании формул веществ. А.М. Бутлеров считал самым существенным успехом химии за период с 1840 по 1880г. установление понятий об атоме и молекуле, что дало толчок развитию учения о валентности и позволило перейти к созданию теории химического строения.

Таким образом, теория химического строения возникла не на пустом месте. Объективными предпосылками ее появления явились : а). Введение в химию понятий о валентности и особенно , о четырехвалентности атома углерода, б). Введение понятия об углерод-углеродной связи. в). Выработка правильного представления об атомах и молекулах.

Взгляды А.М. Бутлерова на строение вещества.

А.М. Бутлеров утверждал, что каждому веществу соответствует одна химическая формула : она характеризует все химические свойства вещества, реально отражает порядок химической связи атомов в молекулах. В последующие годы А.М. Бутлеров и его ученики осуществили ряд экспериментальных работ с целью проверки правильности предсказаний, сделанных на основе теории химического строения. Так, были синтезированы изобутан, изобутилен, изомеры пентана, ряд спиртов и др. По значимости для науки эти работы можно сравнить с открытием предсказанных Д.И. Менднлеевым элементов ( экабор,экасилиций, экаалюминий).

А.М. Бутлеров считал, что с помощью химических методов анализа и синтеза вещества можно установить химическое строение соединения и, наоборот, зная химическое строение вещества , можно предсказать его химические свойства.

Основные положения теории А.М. Бутлерова .

Основываясь на приведенных выше высказываниях А.М. Бутлерова, сущность теории химического строения можно выразить в следующих положениях :

- атомы в молекулах располагаются не беспорядочно, они соединены друг с другом в определенной последовательности согласно их валентности

А) последовательность соединения атомов в молекуле

Б) углерод четырехвалентен

В) структурные формулы (полные)

Последовательность соединения атомов в молекуле

Г) сокращенные формулы

Д) виды цепей

Рассматривая возможное строение пентана А.М. Бутлеров пришел к выводу, что должны существовать три углеводорода такого состава :

Все эти вещества были получены.

С увеличением числа атомов углерода в молекуле число веществ одного и того же состава сильно возрастает. Так, согласно теории может существовать 75 углеводородов состава , 1858 веществ с формулой и т.д. Явление изомерии, то есть существование разных веществ одного и того же состава, известно давно. Но только теория химического строения дала ему убедительное объяснение. Теперь мы можем сформулировать более точно, какие вещества называются изомерами.

- вещества, имеющие одинаковый состав молекул ( одну и ту же молекулярную формулу), но различное химическое строение и обладающие поэтому разными свойствами, называются ИЗОМЕРАМИ.

Взаимное влияние атомов в молекулах.

При образовании химических связей электроны от одних атомов переходят к другим или же образуют общие электронные пары. При этом наибольшая электронная плотность спаренных электронов может быть сдвинута в сторону того или иного из атомов в зависимости от их электроотрицательности. В этом взаимодействии электронов, их перераспределении при химических реакциях и заключается взаимное влияние атомов. Результаты его сказываются на свойствах вещества, поскольку частично изменяются сами атомы. Например. В молекуле хлороводорода хлор сильно оттянул в свою сторону электронную плотность связи с водородом, поэтому вещество легко распадается в водном растворе на ионы. В молекуле воды сдвиг электронной плотности к кислороду меньше, чем к хлору в хлороводороде, поэтому молекулы воды распадаются на ионы в малой степени. В молекулах аммиака азот еще в меньшей степени оттягивает к себе электроны связей с атомами водорода, и молекула в водном растворе не подвергается диссоциации.

Химические свойства молекулы определяются свойствами составляющих ее атомов, их числом и химическим строением.

Значение теории.

Теория химического строения позволила объяснить многие факты, накопившиеся в органической химии в начале второй половины Х I Х в., доказала, что с помощью химических методов ( синтеза, разложения и других реакций) можно установить порядок соединения атомов в молекулах ( этим самым была доказана возможность познания строения вещества) ;

Внесла новое в атомно-молекулярное учение ( порядок расположения атомов в молекулах, взаимное влияние атомов, зависимость свойств от строения молекул вещества). Теория рассматривала молекулы вещества как упорядоченную систему, наделенную динамикой взаимодействующих атомов. В связи с этим атомно-молекулярное учение получило свое дальнейшее развитие, что имело большое значение для науки химии ;

Дала возможность предвидеть свойства органических соединений на основании строения, синтезировать новые вещества, придерживаясь плана ;

Позволила объяснить многообразие органических соединений ;

Дала мощный толчок синтезу органических соединений, развитию промышленности органического синтеза ( синтез спиртов, эфиров, красителей, лекарственных веществ и др.).

Отметим некоторые аспекты мировоззренческого значения теории химического строения, важное для диалектико-материалистического воспитания учащихся.

По своему содержанию теория химического строения – материалистическая. В ней утверждаются материальность мира и возможность его познания, которые проявляются в признании реально существующих атомов и молекул, в возможности познания их строения ( химического и пространственного) и свойств. Химическая формула молекулы вещества, следовательно, отражает реально существующую молекулу, связь в ней атомов.

Разработав теорию и подтвердив правильность ее синтезом новых соединений А.М. Бутлеров не считал теорию абсолютной и неизменной. Он утверждал, что она должна развиваться, и предвидел, что это развитие пойдет путем разрешения противоречий между теоретическими знаниями и возникающими новыми фактами.

Теория химического строения, как и предвидел А.М. Бутлеров, не осталась неизменной. Дальнейшее ее развитие шло главным образом в двух взаимосвязанных направлениях

Первое из них было предсказано самим А . М . Бутлеровым

Второе направление связано с применением в органической химии учения об электронном строении атомов, развитого в физике ХХ века. Это учение позволило понять природу химической связи атомов, выяснить сущность их взаимного влияния, объяснить причину проявления веществом тех или иных химических свойств.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

РАБОТА ПО ХИМИИ

ТЕОРИЯ ХИМИЧКСКОГО СТРОЕНИЯ

ОРГАНИЧЕСКИХ

СОЕДЕНЕНИЙ А.М. БУТЛЕРОВА

Лебедев Евгений

1. РАЗВИТИЕ ПРОМЫШЛЕННОСТИ, СВЯЗАННОЙ С ПРОИЗВОДСТВОМ ОРГАНИЧЕСКИХ ВЕЩЕСТВ, В ПЕРВОЙ ПОЛОВИНЕ XIX ВЕКА .СВЯЗЬ НАУКИ И ПРАКТИКИ.

2.СОСТОЯНИЕ ОРГАНИЧЕСКОЙ ХИМИИ В СЕРЕДИНЕ XIX ВЕКА.

3.ПРЕДПОСЫЛКИ ТЕОРИИ ХИМИЧЕСКОГО СТРОЕНИЯ.

4.ВЗГЛЯДЫ А.М. БУТЛЕРОВАНА СТРОЕНИЕ ВЕЩЕСТВА.

5.ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ.

6.ЗНАЧЕНИЕ ТЕОРИИ ХИМИЧЕСКОГО СТРОЕНИЯ И О НАПРАВЛЕНИЯХ ЕЕ РАЗВИТИЯ.

С органическими веществами человек знаком с давних времен. Наши далекие предки применяли природные красители для окраски тканей, использовали в качестве продуктов питания растительные масла, животные жиры, тростниковый сахар, получали брожением спиртовых жидкостей уксус…

Но наука о соединениях углерода возникла лишь в первой половине ХIХ века.

В 1828 году ученик Я. Берцелиуса – немецкий ученый Ф.Велер из неорганических веществ синтезирует органическое вещество -–мочевину. В 1845 году немецкий химик А.Кольбе искусственным путем получает уксусную кислоту. В 1854 году французский химик М.Бертло синтезирует жиры. Русский ученый А.М. Бутлеров в 1861 году впервые синтезом получает сахаристое вещество.

Известно, что развивающаяся промышленность, практика ставят новые задачи перед наукой. Как только у общества появляется техническая потребность, она продвигает

науку вперед больше, чем десяток университетов.

Для подтверждения этих слов можно привести такой пример. Текстильная промышленность в 40-х годах девятнадцатого века уже не могла себя

обеспечить натуральными красителями – их не хватало. Перед наукой встала задача получения красителей синтетическим путем. Начались поиски, в результате которых были синтезированы различные анилиновые красители и ализарин, добываемый ранее из корней растения марены. Полученные красители в свою очередь способствовали бурному росту текстильной промышленности.

В настоящее время синтезированы многие органические вещества, не только имеющиеся в природе, но и не встречающиеся в ней, например, многочисленные пластмассы, различные виды каучуков, всевозможные красители, взрывчатые вещества, лекарственные препараты.

Синтетически полученных веществ сейчас известно больше, чем найденных в природе, и их число быстро растет. Начинают осуществляться синтезы самых сложных органических веществ – белков.

2. Состояние органической химии в середине ХIХ века.

Между тем существовали доструктурные теории – теория радикалов и теория типов.

Теория радикалов ( ее создатели Ж. Дюма, И. Берцелиус) утверждала, что в состав органических веществ входят радикалы , переходящие из одной молекулы в другую: радикалы постоянны по составу и могут существовать в свободном виде. В

Цель исследования – раскрыть основные положения теории химического строения Александра Михайловича Бутлерова.
Поставленная цель предполагает решение следующих задач:
Определить предпосылки возникновения теории А.М. Бутлерова
Рассмотреть биографию Александра Михайловича Бутлерова.
Изучить основные положения теории строения А.М. Бутлерова.
Выявить значение теории А.М. Бутлерова.

Содержание

Введение…………………………………………………………………………3
1. Предпосылки возникновения теории А.М. Бутлерова……………….5
2. Александр Михайлович Бутлеров…………………………………. …7
3. Основные положения теории строения А.М. Бутлерова…………..11
3.1. Формулы строения……………………………………………………….11
3.2. Понятие об изомерии……………………………………………. …….12
3.3. Структурные изомеры………………………………………………. 13
3.4. Стереоизомеры…………………………………………………………. 14
3.5. Электронные представления в органической химии………………14
3.6. Свойства электрона……………………………………………………. 15
3.7. Атомные орбитали……………………………………………………….16
3.8. Форма и энергия атомных орбиталей………………………………. 17
3.9. Заполнение атомных орбиталей электронами……………………. 18
4. Значение теории А.М. Бутлерова…………………………….……….20
Заключение…………………………………………………………. …. 22
Список использованной литературы………

Работа содержит 1 файл

реферат по КСЕ - Основные положения теории строения Бутлерова.docx

Федеральное государственное образовательное учреждение высшего профессионального образования

" государственный технический университет"

Реферат по дисциплине:

1. Предпосылки возникновения теории А.М. Бутлерова……………….5

2. Александр Михайлович Бутлеров…………………………………. …7

3. Основные положения теории строения А.М. Бутлерова…………..11

3.5. Электронные представления в органической химии………………14

3.8. Форма и энергия атомных орбиталей………………………………. 17

3.9. Заполнение атомных орбиталей электронами……………………. 18

4. Значение теории А.М. Бутлерова…………………………….……….20

Список использованной литературы………………………………….25

Теория химического строения — теория, описывающая строение органических соединений, т. е. последовательность (порядок) расположения атомов и связей в молекуле, взаимное влияние атомов, а также связь строения с физическими и химическими свойствами веществ.

Впервые основные положения Х. с. т. были высказаны А. М. Бутлеровым в докладе "О химическом строении веществ" (съезд немецких естествоиспытателей, г. Шпейер, 1861); он писал: "Исходя от мысли, что каждый химический атом, входящий в состав тела, принимает участие в образовании этого последнего и действует здесь определенным количеством принадлежащей ему химической силы (сродства), я называю химическим строением распределение действия этой силы, вследствие которого химические атомы, посредственно или непосредственно влияя друг на друга, соединяются в химическую частицу" (Избранные работы по органической химии, 1951, с. 71—72). Впоследствии эти положения были развиты им в ряде статей и книге "Введение к полному изучению органической химии" — первом руководстве по органической химии, в котором весь материал систематизирован с позиций теории химического строения.

Созданию теории химического строения предшествовали установление таких важных понятий, как атом и молекула (1-й Международный конгресс химиков, Карлсруэ, 1860), а также постулирование Ф. А. Кекуле и А. С. Купером четырёхвалентности углерода (1857—58). Графические формулы органических соединений, близкие формулам, вытекающим из теории химического строения, были предложены в 1858 Купером.

Правильность своей теории Бутлеров подтвердил синтезом ряда органических соединений. Теория химического строения обладала огромной предсказательной способностью в направлении синтеза органических соединений и установлении строения уже известных веществ. Поэтому теория Бутлерова способствовала бурному развитию химической науки, в том числе синтетической органической химии и химической промышленности.

Объектом исследования является теория строения А. М. Бутлерова.

Цель исследования – раскрыть основные положения теории химического строения Александра Михайловича Бутлерова.

Поставленная цель предполагает решение следующих задач:

  1. Определить предпосылки возникновения теории А.М. Бутлерова
  2. Рассмотреть биографию Александра Михайловича Бутлерова.
  3. Изучить основные положения теории строения А.М. Бутлерова.
  4. Выявить значение теории А.М. Бутлерова.

1. Предпосылки появления теории строения Бутлерова

В начале девятнадцатого века среди западных химиков безраздельно господствовала электрохимическая теория Дэви — Берцелиуса. Согласно теории Йенса Берцелиуса (1779—1848), в каждом химическом соединении отличали две его части: одну часть, заряженную электроположительно, другую — электроотрицательно. Соответственно сказанному все элементы Берцелиус располагал в ряд, причем кислород самым электроотрицательным элементом, калий самым электроположительным. Наиболее электроотрицательные элементы Берцелиус назвал металлоидами, наиболее электроположительные — металлами.

В тридцатых годах своими работами французский химик Ж. Б. Дюма нанес удар по теории Дэви — Берцелиуса, выдвинув для органических соединений свою, так называемую, теорию типов. Дюма утверждал, что не столько природа сложного тела, сколько расположение в нем атомов, одинаковость типа, обуславливают химические свойства соединения. Однако эти воззрения Дюма скоро в свою очередь натолкнулись на целый ряд затруднений и противоречий.

В дальнейшем огромным шагом вперед в проблеме развития основных химических понятий явилась так называемая унитарная система, или теория французских химиков, Ш. Жерара и О. Лорана. Наиболее существенной чертой этой теории было последовательное приложение к химическим соединениям нового учения. Лорану и Жерару принадлежит заслуга разграничения понятий о частице, атоме и эквиваленте. Однако наиболее принципиальным вопросом, вызвавшим бурные споры между ведущими химиками Запада, был вопрос о возможности выражать формулами строение химических соединений.

Великий реформатор химии, как иногда называли Шарля Фредерика Жерара (1816—1856), пришел к убеждению, что химические явления начинаются лишь тогда, когда вещество изменяется, т. е. перестает существовать как таковое. Поэтому мы можем знать, как выражался Жерар, только прошедшее и будущее вещества, и, следовательно, химические формулы могут выражать не расположение атомов, а лишь известные аналоги веществ. В соответствии с только что сказанным, по Жерару, для каждого вещества можно написать столько рациональных формул, сколько данное вещество может испытывать различных видов превращений.

В 1858 году известный химик Август Кекуле (1829—1896) делает чрезвычайно важный шаг и распространяет положение о четырехатомности углерода на соединения, заключающие в своем составе несколько углеродных атомов, и таким образом приходит к выводу о возможности целесообразного сцепления углеродных атомов во многоуглеродистых соединениях. В дальнейшем это правило сцепления Кекуле распространяет и на случаи соединения углеродных атомов с другими многоатомными элементами, такими, например, как кислород, азот и другие.

И хотя чувствовалось приближение нового периода в развитии химии, но нужен был гений Бутлерова, чтобы совершить прорыв.

2. Александр Михайлович Бутлеров

Бутлеров А. М. - знаменитый русский химик и видный общественный деятель (1828 - 86). Первоначальное воспитание Бутлеров получил в Казани. В 1844 г. он поступил в Казанский университет на естественный разряд физико-математического факультета, где в 1849 г. и окончил курс со степенью кандидата; в следующем году Бутлерову было поручено чтение университетских лекций по физике и физической географии для медиков и неорганической химии для натуралистов и математиков; в 1851 г. он получил степень магистра химии.

Докторскую степень Бутлеров получил в начале 1854 г. в Московском университете, и по возвращении в Казань был избран экстраординарным, а в 1858 г. утвержден в звании ординарного профессора. В начале 1868 г. Бутлерова пригласили, по инициативе профессора Д.И. Менделеева, в Петербургский университет, где с февраля 1869 г. он начал чтение лекций, а в 1870 г. устроил в университете отделение химической лаборатории для специальных работ по органической химии.

Вскоре по переходе в Петербург Бутлеров (в начале 1870 г.) был избран членом Императорской Академии Наук и заведывал сначала вместе с Зининым, а затем один академической химической лабораторией. Бутлеров умер в звании заслуженного профессора Петербургского университета, ординарного академика Императорской Академии Наук и профессора химии Высших женских курсов, состоя почетным членом университетов казанского, киевского и московского, медицинской академии, различных ученых обществ в России и за границей.

Бутлеров, как химик и основатель целой химической школы, пользовался громкою известностью не только у нас, но еще большею за границей. Кроме того, Бутлеров, интересуясь и занимаясь некоторыми отделами прикладного естествознания, немало потрудился в этой области, и многого достиг, в особенности на поприще пчеловодства, где настойчивой деятельностью на практике и в печати заново призвал к жизни русское пчеловодство. Известен также в сфере популяризации и разбора явлений так называемого медиумизма.

Бутлеров образовал и оставил после себя в России целую школу исследователей по органической химии, разрабатывавших эту науку в духе идей и приемов своего учителя. Бутлеров и в лаборатории, и у себя в кабинете был всегда доступен и практикантам-химикам, и любителям-пчеловодам, и сторонним посетителям (превосходная речь Г.Г. Густавсона в "Журнале Русского Химического Общества" 1887). Укрепившиеся еще с середины 60-х годов выражения в химии: "Бутлеровское направление", "Бутлеровская школа" сохранились во всей их силе и до сего времени. Зовется это направление Бутлеровским потому, что Бутлеров был одним из творцов как нового научного принципа - "химического строения", так в особенности всестороннего применения и развития этого последнего, положенного им в основу и преподавания, и всех научных работ, произведенных им лично и его учениками.

Первые пионеры школы Бутлерова учились у первоисточника не только работе лабораторной со своеобразными приемами и методами исследования веществ, но и особым приемам трактования предмета исследования, по которому частности подчинялись и ярко освещались единым общим принципом. С конца 50-х годов начинают появляться исследования наипростейших органических соединений с одним паем углерода в составе, начатые Бутлеровым в лаборатории Вюрца в Париже, продолженные в Казани и давшие науке способы образования, свойства и превращения веществ, важность которых для науки и практики все более и более увеличивается. Так, упомянем о приготовленном Бутлеровым иодистом метилене, CH2J2 (из иодоформа действием C2H5ОNa). Исходя из иодистого метилена и щавелево-кислого серебра, Бутлеров получил так называемый оксиметилен, (CH2O)n, превращающийся при нагревании в простейший алдегид (муравьиный) и снова при охлаждении переходящий в твердое, полимерное состояние. Интерес и значение последнего соединения высоки потому, что еще в 1861 г. Бутлерову удалось действием на оксиметилен известковой воды доказать впервые возможность искусственного получения сахаристого начала, названного им метиленитаном. Лишь позднее, когда создались совершенно новые методы исследования и выделения сахаристых начал, авторитет в этой области - Эмиль Фишер - вновь возбудил интерес в первой синтетической глюкозе, в которой по ее свойствам очень не легко было угадать в начале 60-х годов синтетическую глюкозу.

После 1861 г. Бутлеров выступает с рядом теоретических и критических статей, в которых излагаются им главнейшие основания учения о "Химическом строении веществ". Назовем здесь: "О химическом строении вещества" (1861); "О различных способах объяснения некоторых случаев изомерии" (1863, в Эрленмейеровском "Kritische Zeitschrift f. Chemie", и в "Ученых записках Казанского университета"). Это учение имело и имеет конечною целью определить взаимное химическое отношение и связь отдельных элементарных атомов, составляющих частицу данного тела.

Читайте также: