Реферат по физике на тему электричество основа современной цивилизации

Обновлено: 02.07.2024

Современную жизнь людей в настоящее время невозможно представить без использования электроэнергии. Электроэнергия нужна везде – в наших квартирах горит свет, работают электрические бытовые приборы, заводы и фабрики, только благодаря электричеству выпускают нужную человечеству продукцию. Пассажирский электротранспорт – это трамваи и троллейбусы каждый день перевозят тысячи людей. Благодаря электрическим медицинским аппаратам и приборам врачи выполняют операции и спасают жизнь людям.

В связи с развитием науки, технического прогресса в области робототехники и автоматизации производственных процессов у человечества на нашей земле появляется потребность в постоянном увеличении количества используемой электроэнергии. Получить дополнительную электроэнергию можно двумя способами: первый - строительство новых электростанций, второй способ – энергосбережение.

Первый способ требует огромных финансовых вложений, а также времени на строительство. К тому же электростанции (тепловые, атомные и гидроэлектростанции) наносят губительный вред нашей природе. Тепловые электростанции, работающие на угле, газе и нефти уничтожают запасы этих не возобновляемых природных ресурсов и выбрасывают в атмосферу ядовитые продукты своей работы. Гидроэлектростанции губят рыбу, установка плотины приводит к подтоплению прилегающих территорий, является источником больших вибраций и шума. Особо страшны последствия при авариях на атомных электростанциях. Выбросы радиации приводят к мутации и уничтожению всего живого на земле.

Развитие науки и современные технологии в настоящее время предлагают выбрать другой путь удовлетворить потребности человечества в использовании электроэнергии. В настоящее время основным примером энергосбережения является применение энергосберегающих светодиодных лампочек, которые экономят электроэнергию в десять раз по сравнению с лампочками накаливания. Кроме этого сэкономить электроэнергию можем, и мы сами, необходимо рационально тратить электроэнергию в бытовых нуждах. Уходя из помещения необходимо выключать свет и не нужные работающие бытовые приборы.

Сейчас рассматриваются и разрабатываются другие возможности повышения эффективности использования электроэнергии в быту и на производстве. Электродвигатели, электропечи, различные электрические агрегаты конструируют с учетом уменьшения габаритных размеров и потребления электроэнергии.

Одно из направлений получения дешевой и экологически чистой электроэнергии является развитие нетрадиционных электростанций, таких как солнечные и ветровые.

Электроэнергетика важная и еще не до конца изученная отрасль. Основным приоритетом ее развития остается новые энергосберегающие технологии. Берегите природу и экономьте электроэнергию!

Вариант 2

О том, где применяется электроэнергия, знает каждый школьник. Электричеством пользуются абсолютно все, как взрослые, так и дети. Невозможно представить, что в наше время, можно обойтись без электричества. В каждом доме, на каждой улице, во всех магазинах, школах и даже в космосе. Примеров множество, наибольшую часть электроэнергии потребляет, промышленность, городской автотранспорт. Электричество, считается главным условием комфортного существования человечества.

Настолько обширное использование электричества, объясняется её достоинствами пред иными типами энергии. В транспортной промышленности, электроэнергия играет очень важную роль, ведь электротранспорт не загрязняет атмосферу. Электроэнергия в бытовом обиходе, делает лучше, гигиеничные условия жизни и упрощает осуществление домашних хлопот. Сохранение в чистоте кухонь, обслуживаемых электричеством, стоит существенно дешевле — отсутствие копоти, золы, фрагментов не сгоревшего горючего, исключена вероятность попадания на кухню, вредоносных продуктов сгорания и светильного газа.

На предприятиях применяется трёхфазная электропередача, согласно тому фактору, что большая часть нагрузок, это асинхронные трёхфазные моторы. Непосредственно для них используется значительная доля электричества. Наравне с трёхфазным питанием в отдельных областях индустрии используют непрерывный ток, который производится путём выпрямления переменного. Употребление непрерывного электротока, преобладает на фирмах с применением электролиза (разноцветная гидрометаллургия и химическая индустрия).

Электроэнергия - весьма комфортная и регулируемая форма энергии. Её свободно можно транспортировать на немалые дистанции, что дает вероятность непосредственно обеспечивать энергией здания и фабрики с целью многочисленного практического использования. Оно дает тепло, освещение и механическую энергию - необходимо лишь клацнуть выключателем. Кроме того, возможно просто и четко определить употребление электроэнергии, что может помочь реализовывать контроль и взыскивать оплату за её употребление.

С ростом численности населения, необходимость в электричестве регулярно возрастает Электрическую энергию, возможно, получить за счет иных различных типов энергии (воды, ветра, солнца), свободно преобразовывать в прочие разновидности энергии.

Использование электроэнергии

Популярные сегодня темы

Все животные на планете разделяются на два вида: домашние и дикие. Каждый вид достаточно изучен, но не только домашние животные вызывает добрые и теплые чувства, но и местами недоступный мир

За всё время развития компьютерной техники и информатики, человек смог придумать огромнейшее количество различных вещей, которые сделали компьютеры такими, какими мы их знаем сегодня

Снежный барс – это очень красивое большое животное, принадлежащее к семейству кошачьих. Также его называют снежная пантера или ирбис.

Кузнечик входит в большое семейство прямокрылых насекомых, именуемое Кузнечиковые. Представителей этого семейства существует порядка 600, распространены они по всем континентам. Нет кузнечико

Кувырок вперед является одним из наиболее простых акробатических элементов. Он используется для самых разных целей, от разминки в секциях борьбы до развития вестибулярного аппарата на уроках

Песок – одно из самых распространенных ресурсов, имеющихся на нашей планете. Песок образовался из древних осадочных горных пород, которые прошли многомиллионый путь измельчения

Много веков назад люди открыли особые свойства янтаря: при трении в нем возникает электрический заряд. В наши дни с помощью электричества мы имеем возможность смотреть телевизор, переговариваться с людьми на другом конце света, а также получать свет и тепло, лишь повернув для этого выключатель. Опыты с янтарем, то есть смолой хвой­ных деревьев, окаменевшей естествен­ным образом, проводились еще древними греками. Они обнаружили, что если янтарь потереть, то он притягивает ворсинки шер­сти, перья и пыль. Если сильно потереть, к примеру, пластмассовую расческу о волосы, то к ней начнут прилипать кусочки бумаги. А если потереть о рукав воздушный шарик, то он прилипнет к стене. При трении янта­ря, пластмассы и ряда других материалов в них возникает электрический заряд. Само слово "электрический" происходит от ла­тинского слова electrum, означающего "янтарь".

Вспышка молнии - одно из самых зре­лищных проявлении электрического заряда, Молния возникает и результате большого скопления электрических зарядов и облаках, В середине XVIII века один из первых иссле­дователей атмосферного электричества аме­риканский ученый Бенджамин Франклин провел очень опасный эксперимент, запустив в грозовое небо воздушного змея. Он хотел доказать, что молния - результат того же электрического заряда, что возникает при тре­нии предметов друг о друга,

Если имеющие электрический заряд объ­екты притягивают и удерживают только очень легкие предметы, то магнит может удержать довольно тяжелые куски железа. По-этому издревле магниты применялись с поль­зой, например, в компасах.

Откуда берется электрический заряд?

Если натереть шерстяной тряпкой поли­этиленовую леску, то она получит отрица­тельный заряд, а если натереть органическое стекло, то оно получит положительный заряд. В любом случае тряпка получит заряд, проти­воположный заряду натертого материала.

Электрические заряды влияют друг на друга. Положительный и отрицательный за­ряды притягиваются друг к другу, а два отри­цательных или два положительных заряда от­талкиваются друг от друга. Если поднести к предмету отрицательно заряженную леску, отрицательные заряды предмета переместят­ся на другой его конец, а положительные за­ряды, наоборот, переместятся поближе к леске. Положительные и отрицательные заряды лески и предмета притянут друг друга, и предмет прилипнет к леске. Этот процесс на­зывается электростатической индукцией, и о предмете говорят, что он попадает в электро­статическое поле лески.

Майкл Фарадей доказал, что, электричест­во трения и электрический ток - одно и то же. Он также доказал, что электрическое поле не может существовать внутри металлической клетки (теперь называемой клеткой Фарадея).

Грозы обычно бывают летом в жаркую погоду; когда с поверхности земли горячие потоки воздуха насыщенные влагой, поднимаются вверх. Пока капли воды и кристаллы льда кру­жатся в воздушных потоках грозовых облаков, они заряжаются электричеством. Крошечные, положительно заряженные кристаллы льда движутся вверх, а отрицательно заряженные градинки собираются внизу облака.

Точно так же, как из-за электростатичес­кой индукции к заряженной леске притяги­ваются маленькие предметы, по той же при­чине и заряженное облако притягивается к земле. Отрицательный заряд на нижней сто­роне облака притягивается положительным зарядом на земле, и между ними возникает мощная искра (молния). Разряд молнии на­гревает воздух и заставляет его расширяться, что сопровождается грохотом грома. Звук переносится по воздуху гораздо медленнее, чем свет, поэтому вначале мы видим вспыш­ку, а потом слышим гром.

Если у вас подошва из резины или синтетиче­ского материала, и вы прошлись по ковру, то,прикоснувшись к металлической ручке двери, вы почувствуете легкий удар током. Эта означает, что ваше тело при трении подошв о ковер успело зарядиться электричеством,

Иногда человек испытывает удар током, выходя из машины и закрывая дверь. Вероят­ней всего, на нем шерстяная или хлопчатобу­мажная одежда, которая наэлектризовалась от синтетического сиденья машины. Если к тому же у него подошвы из резины или син­тетики, которые являются изоляторами, то заряд может выйти только в момент прикос­новения к металлической ручке. Чтобы избе­жать этого, можно попробовать дотронуться до чего-нибудь металлического еще внутри машины перед выходом. Тогда заряд умень­шится и неприятного удара не последует,

Настоящий удар током

Хотя описанные выше удары электричес­ким током и неприятны, они, тем не менее безопасны для человека. Но электрические заряды, возникающие в результате трения, в ряде случаев могут вызвать чрезвычайные ситуации. Были случаи, когда огромные су­пертанкеры взрывались в то время, когда их топливные цистерны промывались мощны­ми водометами.Электрический заряд возникает при тре­нии капель воды в струе водомета. Этот эф­фект сходен с эффектом от восходящего в грозовое облако воздушного потока с капель­ками воды. В подобных условиях, несмотря на влажную среду; могут вспыхнуть искры, что грозит возгоранием паров бензина, ос­тавшихся в цистерне.

Меры безопасности необходимы и при заправке топливом, потому что трение, воз­никающее в потоке бензина, вполне может вызвать сильный заряд. Поэтому бензонасо­сы делаются из железа.

Электричество, возникающее в результате трения, или статическое электричество, ис­пользуется человеком самым разным обра­зом. Частицы сажи, пепла и им подобных твердых веществ вместе с дымом выбрасыва­ются многочисленными предприятиями в воздух, а затем возвращаются в виде осадков. Благодаря применению электростатических фильтров, устанавливаемых в трубах, при­близительно 98% твердых веществ можно за­держать и удалить, пока они не попали в воз­дух. Этот процесс называется электростати­ческим пылеулавливанием. Ежегодно в США подобным образом предупреждается выброс в воздух 20 миллионов тонн сажи.При покраске автомобилей и воздушного транспортапользуются специальной систе­мой распыления. Однако при этом каждый раз испаряется до 25% краски. Этого можно избежать, сообщив распыляемым частицам электрический потенциал. Наэлектризован­ные частицы краски начинают притягиваться к поверхности машины или самолета и луч­ше держатся. Экономия при эффективном использовании системы распыления превы­шает затраты на зарядное оборудование.

Та же самая техника используется и при нанесении порошковых покрытий. Наэлектризованное покрытие словно прилипает к металлу, а при нагревании поверхности по­рошковое покрытие образует тонкий нераз­рывный слой.

Электрический заряд и порошок исполь­зуются также в ксероксах. На линзу отражает­ся изображение текста или рисунка, которое надо скопировать. Этот черно-белый рису­нок переносится на бумагу как рисунок из за­ряженных и нейтральных участков. Когда по бумаге рассеивается черный порошок, он притягивается исключительно к заряженным участкам. Затем под действием горячего воз­духа порошок закрепляется на бумаге. Такая техника копирования называется ксерографией. Она также используется в факсимиль­ных аппаратах.

При вспышке молнии образуется огромное количество энергии. Затем следует пауза, по­ка снова не накопится такой же сильный за­ряд и не вспыхнет новая молния. Представьте теперь, что можно накапливать и разряжать заряды без пауз. Получится постоянный по­ток зарядов, Таков, собственно, эффект бата­рейки - хотя при ее работе количество энер­гии несравнимо с молнией. На этом же прин­ципе построена работа генераторов на элек­тростанциях.

Если заряды движутся, их поток называ­ют электрическим током. Для производства электрического тока необходим приток энергии. Обычно энергию получают в ре­зультате химических реакций (как в бата­рейках) или движения (генераторы). Кроме того, энергию можно получать непосредст­венно от солнечного света или теплового излучения. Это делается с помощью солнеч­ных батарей, которые снабжают электро­энергией спутники и другое космическое оборудование.

У животных и человека все процессы жизне­деятельности регулирует мозг, который полу­чает и отсылает сигналы (нервные импульсы) по нервам. И для этого тоже требуется опре­деленный заряд, хотя и очень небольшой. Однако некоторые животные накапливают такое количество электричества, которое способно парализовать или даже убить свою добычу. Например, электрический угорь ге­нерирует разряд в 600 вольт, и этого вполне достаточно, чтобы убить рыбу или очень сильно ударить током человека,

Напряжение и ток

Приведенное ниже описание поможет вам лучше понять, что такое ток и электрическое напряжение.

Итак, есть две емкости, соединенные труб­кой, и в одну емкость наливается вода. Вода наливается до тех пор, пока ее уровень не станет одинаковым в обеих емкостях. Если одну емкость приподнять над другой, то вода из одной емкости будет перетекать в другую, пока уровни опять не станут одинаковыми.

Чем больше разница в уровнях воды в двух емкостях, тем быстрее будет литься вода. Скорость, с какой переливается вода, анало­гична скорости движения тока. С такой ско­ростью свободные электроны передвигаются в металлической проволоке.Разница в уровне воды сравнима с элект­рическим напряжением. Чем выше напряжение, тем сильнее поток электрического тока.

У батареек в фонариках и в портативных радиоприемниках напряжение колеблется от 1,5 до 9 вольт. Точная величина зависит от со­става и количества элементов в батарейке. В бытовой электросети напряжение составляет от 100 до 240 вольт, в зависимости от место­нахождения.

Первый химический источник тока был со­здан итальянским ученым Алессандро Вольта приблизительно в 1800 году. Во время одного из экспериментов он смочил лист промока­тельной бумаги в соленом растворе и помес­тил его между пластинами меди и цинка. Oн обнаружил, что при взаимодействии меди и цинка в соединяющей их проволоке образо­вывался электрический заряд. Это означало, что в ходе химической реакции электроны перемещались с пластинки меди на цинк. Единица электрического напряжения, спо­собствовавшего появлению тока, была назва­но в честь ученого вольтом.

Строго говоря, источником тока является конструкция из одной пластины каждого ме­талла. Вольтов столб, по сути, был первой электрической батареей, сделанной руками человека. Однако в повседневной жизни мы называем "батарейками" все химические ис­точники тока, независимо от того, состоят ли они из одного элемента или нескольких. Например, аккумулятор (12 вольт) составлен из 6 элементов по 2 вольта каждый. Батарейка в фонарике (1,5 вольта) является единым элементом.

Существует огромное количество разных электрических батареи, но в их устройстве всегда присутствуют два фактора. Они обяза­тельно состоят из двух разных химических элементов (например, цинка медь, уголь и медь, цинк и ртуть) и жидкости, их разделяю­щей (в элементе Вольты это был соляной раствор). Жидкость называется электроли­том. Иногда электролит присутствует в виде пасты, чтобы избежать протечек.

В батарейках, калькуляторах, портатив­ных приемниках и слуховых аппаратах роль электролита выполняет влажная паста. Бата­рейки вырабатывают электричество, пока в них идет химическая реакция.

В недорогих батарейках один химический элемент представляет собой цинковую емкость, второй - угольный электрод. Со временем цинковая емкость расплавляется, поэтому наружная оболочка таких батареек плотно за­печатывается, чтобы содержимое не вытекло и не испортило другие вещи, В долговечных щелочных батарейках те же химические эле­менты, но другой электролит. В маленьких круглых батарейках, используемых в часах, химические пластины сделаны из цинка и ртути или цинка и оксида серебра.

Некоторые батарейки можно перезаря­жать, пропуская ток в обратном направле­нии. Обычно такие батарейки работают на никеле и кадмии. Элементы должны заря­жаться только в специальном зарядном устройстве с правильным напряжением. Никогда не стоит пытаться зарядить обыкно­венную батарейку. В аккумуляторах автомобилей и электри­ческого транспорта содержится жидкость, по­этому они должны находиться только в вер­тикальном положении. Обычно они работают на свинце и свинцовом сурике и могут пере­заряжаться много раз. Электролит чаще всею представляет собой разбавленную серную кислоту; поэтому они обычно запечатаны.

Электрические автомобили бесшумны и не загрязняют воздух (тем не менее, воздух загрязняют электростанции, снабжающие электричеством зарядные устройства). В на­стоящее время проводятся эксперименты по производству перезаряжаемых автомобиль­ных аккумуляторов, которые по весу были бы легче существующих. Есть вероятность, что однажды появятся аккумуляторы с пластико­выми элементами.

Электричество и магнетизм

Заряженный предмет окружен электричес­ким полем, которое действует на окружаю­щие предметы, - вспомним расческу и притя­гивающиеся к ней кусочки бумаги и пылинки. Магнит тоже окружен магнитным полем, ко­торое можно увидеть, если поблизости есть металлические опилки. Некоторые характе­ристики электрического и магнитного полей похожи, другие отличаются. Вот несколько примеров.

Магнитные силы гораздо сильнее элект­рических. В то же время электрический заряд может перейти с одного тела или предмета на другой - явление, называемое индукцией, - и магнит распространяет свое действие на другой магнитный материал. Но зарядиться электричеством может все, маг­нитные же свойства передаются только телам, способным намагничиваться, таким как железо, сталь и некоторые сплавы.

Электрические заряды делятся па поло­жительные и отрицательные, магнитные полюсы делятся на южный и северный. Однородные заряды отталкиваются, противоположные притягиваются: одина­ковые магнитные полюсы тоже отталкива­ются, а противоположные притягиваются. Однако северный и южный полюсы никог­да не смогут существовать отдельно друг от друга. Если магнит сломать, то из слома образуется новый южный или новый север­ный полюс.

Электричество и магнетизм тесно связаны друг с другом. Если пропустить электричес­кий ток через скрученную проволоку, она приобретет свойства магнита. А если прово­локу обернуть вокруг магнитного материала, то он также намагнитится. Но этому принци­пу устроен электромагнит.

Если магнитное поле проходит через витки проволоки и при этом как-то меняется (становится сильнее или слабее или сдвига­ется), то в них возникает ток. В свою очередь, ток возвращает магнитное поле в прежнее состояние за счет создания своего магнитно­го поля.

В устройстве электромоторов и генерато­ров используется описанное выше явление - ток создаст магнитное поле, а изменения в магнитном поле производят ток.

Это явление, открытое Фарадеем, исполь­зуется также и в трансформаторах, которые служат для преобразования напряжения в энергоснабжающих системах и в электронном оборудовании - например, телевизо­рах и радиоприемниках. Трансформаторы работают на переменном токе, текущем в бы­товой электросети, В отличие от тока в бата­рее переменный ток движется в двух направ­лениях - вперед-назад, вперед-назад, меняя направление со скоростью 50 раз и секунду, (В США, соответственно, 60).

Железный сердечник трансформатора имеет две обмотки медного провода, бегу­щий по одной из них переменный ток созда­ет в сердечнике быстро меняющееся магнит­ное поле. Эго вызывает переменный ток во второй обмотке. Таким образом, энергия передается из одной обмотки в другую, хотя между ними и нет непосредственного кон­такта. Их связь исключительно магнитная.

Моторы и генераторы

В простом электрическом моторе ток намаг­ничивает обмотку, и ее витки притягиваются к полюсам магнита. Кроме того, в моторе ус­тановлен вращающийся переключатель, ко­торый автоматически меняет направление тока каждыепол-оборота.

Этот процесс действует и в обратном на­правлении: поворачивается проволока - и возникает напряжение. То есть мотор стано­вится генератором.

Известно, что электрическая энергия считается основой современной цивилизации. Можно без преувеличения сказать, что без электрической энергии невозможна нормальная жизнь современного общества. Электрическая энергия широко используется в промышленности для приведения в действие самых различных механизмов и непосредственно в технологических процессах, на транспорте, в быту. Работа современных средств связи — телеграфа, телефона, радио, телевидения — основана на применении электрической энергии. Без нее невозможно было бы развитие кибернетики, вычислительной и космической техники и т.д.

Основные отличительные свойства электрической энергии состоят в том, что она может легко передаваться на большие расстояния и относительно просто с малыми потерями преобразовываться в другие виды энергии.

Электроэнергия вырабатывается на специальных предприятиях -

электростанциях, преобразующих в электрическую другие виды энергии: химическую энергию топлива, энергию воды и ветра, атомную энергию и др. Выработанная электростанцией электроэнергия передается по воздушным или кабельным линиям электросетей различным потребителям — промышленным, коммунальным, сельскохозяйственным, бытовым и т.д. В зависимости от используемого вида энергии различают электростанции тепловые, гидравлические, ветровые, атомные и др.На тепловых электростанциях используется твердое, жидкое и газообразное топливо. В зависимости от рода первичного двигателя, приводящего во вращение электрический генератор, тепловые электростанции можно подразделить на станции с паровыми турбинами, с двигателями внутреннего сгорания и с газовыми турбинами. Станции с паровыми турбинами, кроме того, подразделяются на конденсационные (КЭС) и теплофикационные (ТЭЦ). Конденсационные электростанции снабжают потребителей только электрической энергией, а теплофикационные электростанции — электрической и тепловой энергией.

Под энергоресурсами понимаются материальные объекты, в которых сосредоточена возможная для использования энергия. Энергия -количественная оценка различных форм движения материи, которые могут превращаться друг в друга, условно подразделяется по видам: химическая, механическая, электрическая, ядерная и т.д. Из большого разнообразия ресурсов, встречающихся в природе, выделяют основные, используемые в больших количествах для практических нужд.

К основным энергоресурсам относят энергию рек, водопадов, различные органические топлива, такие как уголь, нефть, газ; ядерное топли-

во — тяжелые элементы урана и тория, а в перспективе — легкие эле-

Энергоресурсы разделяют на возобновляемые и невозобновляемые. К первым относятся те, которые природа непрерывно восстанавливает (вода, ветер и т.д.), а ко вторым — ранее накопленные в природе, но в новых геологических условиях практически не образующиеся (например, каменный уголь, нефть, газ и др.). Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепла Земли, ядерная), называется первичной. Энергия, получаемая человеком после преобразования первичной энергии на специальных установках — станциях, называется вторичной (энергия электрическая, пара, горячей воды и т.д.).

Оценить запасы источников первичной энергии довольно сложно из-за различной оценки экономической целесообразности извлечения их из недр Земли и вод Мирового океана. В таблице 1 приведено ориентировочное количество ресурсов энергии на Земле, МВт·ч.

Таблица 1 – Ресурсы энергии на земле

Пока человечество широко использует только энергию химических горючих, притом органического происхождения, запасы которых составляют всего доли процента всех ресурсов энергии на Земле (таблица 2).

Таблица 2 – Ориентировочные мировые запасы основных органических горючих

Большое отличие в цифрах между геологическими и извлекаемыми запасами объясняется тем, что при подсчете последних не учитывались тонкие пласты (до 0,5 м) и глубокие залегания (свыше 1,5 км).

Электрическая энергия широко известна человеку из повседневной жизни. Переход от индустриального общества к "информационной цивилизации"
стал возможен во многом благодаря развитию энергетики и обеспечению удобной передаче и применении видом энергии - электрической энергией.

Файлы: 1 файл

Документ Microsoft Word (2).doc

Использование электрической энергии

Электрическая энергия широко известна человеку из повседневной жизни. Переход от индустриального общества к "информационной цивилизации"

стал возможен во многом благодаря развитию энергетики и обеспечению удобной передаче и применении видом энергии - электрической энергией.

Электрическая энергия — это способность электромагнитного поля производить работу, наиболее совершенный и универсальный вид, сравнительно легко преобразующийся в другие виды энергии.

На сегодняшний день электрическая энергия остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать.

Электрическая энергия обладает неоспоримыми преимуществами перед всеми другими видами энергии:

В наше время уровень производства и потребления энергии - один из важнейших показателей развития производственных сил общества. Ведущую при этом роль играет электроэнергия – самая универсальная и удобная для использования форма энергии. Она производится на больших и малых электрических станциях в основном с помощью электромеханических индукционных генераторов.

Существует два основных типа электростанций: тепловые и гидроэлектрические. Различаются эти электростанции двигателями, вращающими роторы генераторов.

Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую

энергию в результате преобразования тепловой энергии, выделяющейся при

сжигании органического топлива.

На тепловых электростанциях химическая энергия топлива преобразуется

сначала в механическую, а затем в электрическую. Топливом для такой

электростанции могут служить уголь, торф, газ, горючие сланцы, мазут. Сооружать КЭС выгодно в непосредственной близости от мест добычи топлива. При этом потребители электроэнергии

могут находиться на значительном расстоянии от станции.

Гидроэлектрическая станция (ГЭС), комплекс сооружений и оборудования,

посредством которых энергия потока воды преобразуется в электрическую

энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений,

обеспечивающих необходимую концентрацию потока воды и создание напора, и

энергетического оборудования, преобразующего энергию движущейся под

напором воды в механическую энергию вращения, которая, в свою очередь,

преобразуется в электрическую энергию.

Особое место среди ГЭС занимают гидроаккумулирующие электростанции (ГАЭС) и

приливные электростанции (ПЭС).

ПЭС преобразуют энергию морских приливов в электрическую. Электроэнергия

приливных ГЭС в силу некоторых особенностей, связанных с периодичным

характером приливов и отливов, может быть использована в энергосистемах

лишь совместно с энергией регулирующих электростанций, которые восполняют

провалы мощности приливных электростанций в течение суток или месяцев.

Атомная электростанция (АЭС), электростанция, в которой атомная (ядерная)

энергия преобразуется в электрическую. Генератором энергии на АЭС является

атомный реактор. Тепло, которое выделяется в реакторе в результате цепной

реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на

обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию.

Альтернативные источники энергии:

В последнее время интерес к проблеме использования солнечной энергии резко

возрос, ведь потенциальные возможности энергетики, основанной на

использование непосредственного солнечного излучения, чрезвычайно велики.

Пока еще электрическая энергия, рожденная солнечными лучами, обходится

намного дороже, чем получаемая традиционными способами.

Огромная энергия движущихся воздушных масс. Климатические условия позволяют развивать ветроэнергетику на огромной территории.

Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

Издавна люди знают о стихийных проявлениях гигантской энергии,

таящейся в недрах земного шара. Энергия Земли пригодна не только для отопления помещений,но и для получения электроэнергии. Уже давно

работают электростанции, использующие горячие подземные источники. Первая

такая электростанция, совсем еще маломощная, была построена в 1904 году в

небольшом итальянском городке Лардерелло.

Электрический ток вырабатывается в генераторах - устройствах, преобразующих энергию того или иного вида в электрическую энергию. К таким устройствам относятся гальванические элементы, электростатические машины, термобатареи.

Электрический ток никогда не получил бы такого широкого применения, если бы его нельзя было преобразовать почти без потерь энергии. Преобразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется с помощью трансформаторов.

Трансформатор — очень простое устройство, которое позволяет, как повышать,

повышении напряжения уменьшается сила тока, и наоборот. Для сварочных аппаратов требуются понижающие трансформаторы. Для сварки нужны очень сильные токи, и трансформатор сварочного аппарата имеет всего лишь один выходной виток. Вы, наверное, обращали внимание, что сердечник трансформатора изготовляют из тонких листиков стали. Это сделано для того, чтобы не терять энергии при преобразовании напряжения. В листовом материале вихревые токи будут играть меньшую роль, чем в сплошном.

Потребители электроэнергии имеются повсюду. Производится же она в

сравнительно немногих местах, близких к источникам топливных и

гидроресурсов. Поэтому возникает необходимость передачи электроэнергии на

расстояния, достигающие иногда сотен километров.

Но передача электроэнергии на большие расстояния связана с заметными

потерями. Дело в том, что, протекая по линиям электропередачи, ток

нагревает их. При большой длине линии передача энергии может

стать вообще экономически невыгодной. Для уменьшения потерь можно, конечно,

идти по пути уменьшения сопротивления R линии посредством увеличения

площади поперечного сечения проводов. Но для уменьшения R, к примеру, в 100

раз нужно увеличить массу провода также в 100 раз. Ясно, что нельзя

допустить такого большого расходования дорогостоящего цветного металла, не

говоря уже о трудностях закрепления тяжелых проводов на высоких мачтах и т.

п. Поэтому потери энергии в линии снижают другим путем: уменьшением тока в

линии. Например, уменьшение тока в 10 раз уменьшает количество

выделившегося в проводниках тепла в 100 раз, т. е. достигается тот же

эффект, что и от стократного утяжеления провода.

Так как мощность тока пропорциональна произведению силы тока на напряжение,

то для сохранения передаваемой мощности нужно повысить напряжение в линии

передачи. Причем, чем длиннее линия передачи, тем выгоднее использовать

более высокое напряжение. Так, например, в высоковольтной линии передачи

Волжская ГЭС — Москва используют напряжение в 500 кв. Между тем генераторы

переменного тока строят на напряжения, не превышающие 16—20 кв., так как

более высокое напряжение потребовало бы принятия более сложных специальных

мер для изоляции обмоток и других частей генераторов.

Поэтому на крупных электростанциях ставят повышающие трансформаторы.

Трансформатор увеличивает напряжение в линии во столько же раз, во сколько

уменьшает силу тока. Потери мощности при этом невелики.

Для непосредственного использования электроэнергии в двигателях

электропривода станков, в осветительной сети и для других целей напряжение

на концах линии нужно понизить. Это достигается с помощью понижающих

трансформаторов. Причем обычно понижение напряжения и соответственно

увеличение силы тока происходит в несколько этапов. На каждом этапе

напряжение становится все меньше, а территория, охватываемая электрической

сетью, - все шире. Схема передачи и распределения электроэнергии приведена

Электрические станции ряда областей страны соединены высоковольтными

линиями передач, образуя общую электросеть, к которой присоединены

потребители. Такое объединение называется энергосистемой. Энергосистема

обеспечивает бесперебойность подачи энергии потребителям не зависимо от их

Использование электроэнергетики в различных областях науки.

Главным потребителем электроэнергии является промышленность, на долю которой приходится около 70 % производимой энергии. Крупным потребителем является транспорт. Все большее количество железнодорожных линий переводится на электрическую тягу. Почти все деревни и села получают электроэнергию от электростанций для производственных и бытовых нужд. О применении электроэнергии для освещения жилищ и в бытовых электроприборах знает каждый.

Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей( электросварка, электрический нагрев, плавление металлов, электролиз). Современная цивилизация немыслима без широкого использования электроэнергии. Нарушение снабжения электроэнергией большого города при аварии парализует его жизнь.

ХХ век стал веком, когда наука вторгается во все сферы жизни общества: экономику, политику, культуру, образование и т.д. Естественно, что наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. С одной стороны наука способствует расширению сферы применения электрической энергии и тем самым увеличивает ее потребление, нос другой стороны в эпоху, когда неограниченное использование невозобновляемых энергетических ресурсов несет опасность для будущих поколений, актуальными задачами науки становятся задачи разработки энергосберегающих технологий и внедрение их в жизнь.Около 80% прироста ВВП развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Все новое в промышленность, сельское хозяйство и быт приходит к нам благодаря новым разработкам в различных отраслях науки. Большая часть научных разработок начинается с теоретических расчетов. Но если в ХIХ веке эти расчеты производились с помощью пера и бумаги, то в век НТР все теоретические расчеты, отбор анализ научных данных и даже лингвистический разбор литературных произведений делаются с помощью ЭВМ , которые работают на электрической энергии, наиболее удобной для передачи ее на расстояние и использования. Но если первоначально ЭВМ использовались для научных расчетов, то теперь из науки компьютеры пришли в жизнь. Сейчас они используются во всех сферах деятельности человека: для записи их ранения информации, создания архивов, подготовки и редактирования текстов,выполнения чертежных и графических работ, автоматизации производства исельского хозяйства. Электронизация и автоматизация производства - важнейшие последствия "второй промышленной" или "микроэлектронной"революции в экономике развитых стран. Все новые теоретические разработки после расчетов на ЭВМ проверяются экспериментально. И, как правило, на этом этапе исследования проводятся с помощью физических измерений, химических анализов и т.д. Здесь инструменты научных исследований многообразны - многочисленные измерительные приборы, ускорители, электронные микроскопы ,магниторезонансные томографы и т.д. Основная часть этих инструментов экспериментальной науки работают на электрической энергии. Очень бурно развивается наука в области средств связи и коммуникаций. Спутниковая связь используется уже не только как средство международной связи, но и в быту - спутниковые антенны не редкость и в нашем городе. Новые средства связи, например волоконная техника, позволяют значительно снизить потери электроэнергии в процессе передачи сигналов на большие расстояния. Не обошла наука и сферу управления. По мере развития НТР, расширения производственной и непроизводственной сфер деятельности человека, все более важную роль в повышении их эффективности начинает играть управление. До начала "кибернетической" революции существовала только бумажная Информатика, основным средством восприятия которой оставался человеческий мозг, и которая не использовала электроэнергию. "Кибернетическая" революция породила принципиально иную - машинную информатику, соответствующую гигантски возросшим потокам информации, источником энергии для которой служит электроэнергия. Созданы совершенно новые средства получения информации, ее накопления, обработки и передачи, в совокупности образующие сложную информационную структуру. Она включает АСУ (автоматизированные системы управления), информационные банки данных, автоматизированные информационные базы, вычислительные центры, видеотерминалы, копировальные и фото телеграфные аппараты, общегосударственные информационные системы, системы спутниковой и скоростной волокнисто-оптической связи - все это неограниченно расширило сферу использования электроэнергии.

После того как вы поделитесь материалом внизу появится ссылка для скачивания.

Подписи к слайдам:

Благодаря этому явлению осуществляется работа нервной системы Электрическая энергия-основа современного технического прогресса

В 1791 году Гальвани говорит о существовании физиологического электричества, которое присутствует в мышцах животных

В 1809 году физик Деларю изобретает лампу накаливания.

За направление электрического тока принимают направление движения положительных зарядов.

Условия существования тока Виды источников тока

Проводники и диэлектрики

В 1729 году английский учёный Стивен Грей, проводя опыты по передачи электрического тока на расстояние, случайно обнаружил, что не все материалы обладают свойством одинаково передавать электричество.

Вещества, пропускающие электрический ток

есть свободные носители электрических зарядов

Вещества , не пропускающие электрический ток

Нет свободных зарядов

Когда усики прикасаются к проводнику , от проводника ток течет по проводу к батарейке, затем от батарейки по проводу к проводнику, Так образуется замкнутая электрическая цепь. Если усики дотрагиваются до изолятора, то замкнутой цепи не получается, ток не течёт и лампочка не загорается.

Основная часть энергии (80%) вырабатывается электрогенераторами-машинами, которые преобразуют механическую энергию в электрическую

Ротор электрогенератора приводится в движение потоком падающей воды-на гидростанциях, паром-на тепловых электростанциях

Атомная станция (АЭС) — ядерная установка, использующая для производства энергии ядерный реактор. В качестве топлива используется обогащенная руда урана или плутония

Продукты сгорания, сточные воды с примесями тяжелых металлов загрязняют окружающую среду.

Работает на невосполнимых ресурсах

Вызывает затопление больших территорий под водохранилища

Приводит к изменению климата, наносит вред фауне и флоре

Тяжелые последствия аварий

Единственный выход – альтернативные источники энергии

В принципе, преобразовать энергию ветра в электрический ток нетрудно — для этого достаточно было заменить мельничный жернов электрогенератором.

Ветры дуют везде, они могут дуть и летом, и зимой, и днем, и ночью — в этом их существенное преимущество перед солнечным излучением. Поэтому вполне понятны многочисленные попытки "запрячь ветер в упряжку" и заставить его вырабатывать электрический ток.

Непостоянство воздушных масс

Необходима большая территория

Дорогое строительство станций

В процессе эксплуатации не потребляют ископаемого топлива

Неисчерпаемый источник энергии

Не выделяются радиоактивные отходы

Ветрогенератор мощностью 1мВт сокращает выбросы в атмосферу 1800 тонн углекислого газа,4тонн оксидов азота,

Цель исследования:: 1. Изучить возможности преобразования энергии ветра 2.Изучить перспективы ветроэнергетики в энергетической системе Ростовской области. 3.Постараться получить альтернативную энергию опытным путем, изготовив макет садового участка, оснащенного роторным ветродвигателем

Первая в нашей стране ветровая электростанция мощностью 8 кВт была сооружена в 1929-1930 гг. под Курском по проекту инженеров А.Г.Уфимцева и В.П.Ветчинкина. Через год в Крыму была построена более крупная ВЭС мощностью 100 кВт, которая была по тем временам самой крупной ВЭС в мире. Она успешно проработала до 1942 г., но во время войны была разрушена.

Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, на 2015 год в Дании с помощью ветрогенераторов производится 42 % всего электричества; 2014 год в Португалии — 27 %; в Никарагуа — 21 %; в Испании — 20 %;Ирландии — 19 %; в Германии — 8 %

Ротор – важнейшая часть ветряка. При прохождении ветра через турбину, лопасти за счет кинетической энергии ветра начинают вращаться. Это приводит во вращение внутренний вал, который соединен с редуктором, увеличивающим скорость вращения и подключенным к генератору, который осуществляет выработку

Технический потенциал ветровой энергии России оценивается свыше миллиардов кВт·ч/год. то есть около 30 процентов производства электроэнергии всеми электростанциями России.

Среднегодовая скорость ветра в Ростовской области

Средняя Зима Весна Лето Осень

Ростов-на-Дону 3,9 4,6 3,9 3,4 3,8

Белая Калитва 4,0 4,8 3,9 3,3 3,8

Боковская 2,2 2,7 2,4 1,8 2,1

Гигант (Сальский район) 3,2 3,7 3,2 2,8

Зерноград 2,2 2,8 2,5 1,8 1,9

Зимовники 2,4 3,0 2,4 1,8 2,4

Казанская 2,0 2,3 2,0 1,6 2,0

Каменск-Шахтинский 3,0 3,5 3,3 2,6

Константиновск 2,7 2,9 2,7 2,6 2,7

Матвеев-Курган 1,9 2,3 2,1 1,5 1,7

Миллерово 3,3 4,2 3,0 2,8 3,4

Морозовск 3,5 4,2 3,6 2,9 3,3

Ремонтное 3,2 3,7 3,3 2,8 3,1

Семикаракорск 2,9 3,3 3,2 2,4 2,6

Таганрог 4,0 3,2 4,1 3,7 2,7

Цимлянск 2,8 3,3 2,7 2,3 2,7

Чертково 2,4 3,1 2,4 2,0 2,1

Шахты 2,6 3,4 2,6 2,1 2,3 2,7

  • Средние годовые скорости изменяются от 2.5 до 4.5 м/с. Минимальные скорости ветра отмечаются в закрытых долинах рек, в основном в северной части Ростовской области, наибольшие – на водоразделах и побережьях моря.
  • При скорости менее 7 м/с - обычная ветрогенераторная установка становится нерентабельной. Лишь современные ортогональные электростанции не нуждаются в сильном ветре, их работа возможна даже при небольшой скорости воздушного потока
  • Поэтому для наших районов с неустойчивой погодой целесообразно комбинировать альтернативные источники энергии

Земля ежедневно получает от Солнца энергии по количеству в тысячу раз больше, чем ее генерируют все электростанции мира. Альтернативные источники энергии практически неиссякаемы, но используются человечеством на 0,0001%.

Изучив разные источники меня заинтересовало возможность использования в быту солнечной энергии.

Цели и задачи проекта.

Цель проекта: изучение перспективы использую

вания солнечной энергии в жилых домах.

  • Изучить возможности преобразования солнечной энергии.
  • Изготовить макет усадьбы будущего с гелиоустановкой и солнечной батареей

Солнечная батарея, это контейнер, состоящий из солнечных элементов. Первые прототипы солнечных батарей были созданы на основе кремния

итальянским фотохимиком армянского происхождения Джакомо Луиджи Чамичаном

Солнечные элементы, делают всю работу по преобразованию солнечной энергии в электричество.

Энергия может использоваться как напрямую различными нагрузками постоянного тока, так и запасаться в аккумуляторных батареях для последующего использования при необходимости. Если необходимо получить 220В переменного тока, то необходимо использовать преобразователи постоянного тока в переменный ток - инверторы.

Макет выполнен из листа ДВП размером 50х50 см. На ней расположен дом с подключенной гелиоустановкой. В роли солнца будем использовать настольную лампу. Лучи света проходят через стекло и нагревают трубку в виде змеевика , превращая солнечное излучение в тепловую энергию.

Она нагревает воду, циркулирующую в коллекторе. Нагретая вода подается в емкость для воды, расположенную на чердаке дома. Здесь используется закон физики: теплая вода поднимается вверх, холодная опускается вниз. Бочка играет роль аккумулятора тепла.

Экспериментальным путем мы выяснили, что за 6 часов работы температура воды в нашем баке поднимается на 18 градусов. Для солнечной батареи мы взяли фотоэлементы от испорченных уличных ламп. Приклеили их к корпусу гелиоустановки . В данном случае энергия солнца используется для выработки электрической энергии для освещения помещений. В солнечной батарее энергия солнца преобразуется в электрическую. К сожалению, наш макет не имеет аккумулятора электричества. Над этим вопросом продолжается работа.

Вывод: Для России характерна переменная облачность . Солнышко, периодически появляющееся на небе и скрывающееся за тучками, не может обеспечить стабильную работу гелиоустановки. Поэтому для наших районов с неустойчивой погодой целесообразно комбинировать гелиосистему с традиционными отопительно-нагревательными установками и другими альтернативными источниками энергии. Таким образом, строя коттедж или дачный домик, целесообразно продумать, как можно использовать солнечную энергию. Как видно, для этой цели не требуется необычайно сложных устройств и агрегатов. Спасибо за внимание!

Солнечный город будущего

В 21 веке не существует проблем с источниками электричества. Розетки, батареи, аккумуляторы стали неотъемлемой частью нашей жизни, и мы не задумываемся об их устройстве и принципе работы. Между тем, батарейки являются химическими устройствами

Поэтому перед человечеством стоит задача освоения экологически чистых, возобновляемых, источников энергии

В данной работе мною была осуществлена попытка поиска источников электрического тока в овощах и фруктах .

  • Являются ли фрукты источником электрического тока? Можно ли сделать батарейку из фруктов?

Опыты Гальвани стали основой исследований другого итальянского ученого – Алессандро Вольта Изобретенная 200 лет назад самая первая батарейка работала именно на основе фруктового сока.

Алессандро Вольта в 1800 году сделал открытие, собрав нехитрое устройство из двух пластин металла (цинк и медь) и кожаной прокладки между ними, пропитанной лимонным соком.

Алессандро Вольта выявил, что между пластинами возникает разность потенциалаами.

Фруктовый источник энергии стал прародителем всех нынешних батареек, которые в честь Луиджи Гальвани называют теперь гальваническими элемент.

Читайте также: