Реферат переменный электрический ток и его применение

Обновлено: 04.07.2024

Раздельные частицы накапливаются на полюсах источника тока, - так называют места, к которым с помощью клемм или зажимов подсоединяют проводники. Один полюс источника тока заряжается положительно, другой - отрицательно. Если полюсы соединить проводником, то под действием поля свободные заряженные частицы в проводнике будут двигаться, возникнет электрический ток.

Содержание работы
Файлы: 1 файл

1 Постоянный и перемнный ток.docx

Электропитание систем автоматизации

"Постоянный и переменный ток"

  1. Введение………………………………………………………… ………..….…3
  2. Основные определения………………………………………………… …. 4
  3. Постоянный ток………………………………………………….……….……4
  4. Переменный ток……………………………………………………………. .5
  5. Получение переменного тока…………………………………………….…. 5
  6. Действующее значение силы тока и напряжения……………………….….6
  7. Достоинства и недостатки……………………………………………….… …6
  8. Список литературы…………………………………………………… .……. 8

постоянный переменный ток

Что же такое электрический ток и что необходимо для его возникновения и существования в течение нужного нам времени?

Электрический ток широко используется в энергетике для передачи энергии на расстоянии.

Электрический ток — упорядоченное нескомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах - ионы и электроны, в вакууме при определенных условиях - электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость). Различают переменный и постоянный токи.

Постоянный ток — ток, направление и величина которого слабо меняется во времени.

Переменный ток — это ток, направление и величина которого меняется во времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы. В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.

Время, за которое происходит один такой цикл (время, включающее изменение тока в обе стороны), называется периодом переменного тока. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц соответствует одному периоду в секунду.

Постоянный ток, электрический ток, не изменяющийся с течением времени ни по силе, ни по направлению. Постоянный ток возникает под действием постоянного напряжения и может существовать лишь в замкнутой цепи; во всех сечениях неразветвлённой цепи сила постоянный тока одинакова.

Основные законы постоянный ток: закон Ома, устанавливающий зависимость силы тока от напряжения, закон Джоуля — Ленца, определяющий количество тепла, выделяемого током в проводнике. Расчёт разветвленных цепей производится с помощью правил Кирхгофа.

Источниками постоянного тока большой мощности являются электромашинные генераторы. Так же его получают выпрямлением переменного. Источниками тока небольшой мощности служат гальванические элементы, термоэлементы, фотоэлементы, которые могут быть сгруппированы в батареи (в т. ч. солнечные батареи), и электромашины малой мощности. Новыми источниками с высоким кпд являются магнитогидродинамические генераторы. Вторичными, предварительно заряжаемыми источниками постоянного тока служат аккумуляторы.

Постоянный ток низкого напряжения используется в различных отраслях промышленности, например в электрометаллургии для расплава и электролиза руд, в первую очередь алюминиевых, и т.п. Он применяется в тяговых электродвигателях на транспорте, а также в электроприводах, когда необходимы двигатели, обладающие большой перегрузочной способностью, скорость которых можно плавно и экономично менять в широких пределах. Питание устройств связи, автоматики, сигнализации и телемеханики производится постоянным током. Разрабатывается проблема передачи энергии такого тока практически без потерь по сверхпроводящим линиям.

Как мы уже знаем, электрический ток бывает постоянным и переменным. Но широко применяется только переменный ток. Это обусловлено тем, что напряжение и силу переменного тока можно преобразовывать практически без потерь энергии.

Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени. характеризуется двумя параметрами — периодом и амплитудой, зная которые мы можем судить, какой это переменный ток, и построить график тока.

Получение переменного тока

Переменный ток получают при помощи генераторов переменного тока с использованием явлений электромагнитной индукции. На рисунке изображена примитивная установка для выработки переменного тока.

Принцип действия установки прост. Проволочная рамка вращается в однородном магнитном поле с постоянной скоростью. Своими концами рамка закреплена на кольцах, вращающихся вместе с ней. К кольцам плотно прилегают пружины, выполняющие роль контактов. Через поверхность рамки непрерывно будет протекать изменяющийся магнитный поток, но поток, создаваемый электромагнитом, останется постоянным. В связи с этим в рамке возникнет ЭДС индукции. Для того чтобы определить, изменяется ли магнитный поток, проходящий по поверхности рамки, нужно всего лишь сравнить положение рамки в определенные периоды времени. Для этого нужно внимательно посмотреть на рисунке.

Действующие значения силы тока и напряжения

Как известно, переменная ЭДС индукции вызывает в цепи переменный ток. При наибольшем значении ЭДС сила тока будет иметь максимальное значение и наоборот. Это явление называется совпадением по фазе. Несмотря на то что значения силы тока могут колебаться от нуля и до определенного максимального значения, имеются приборы, с помощью которых можно замерить силу переменного тока.

Характеристикой переменного тока могут быть действия, которые не зависят от направления тока и могут быть такими же, как и при постоянном токе. К таким действиям можно отнести тепловое. К примеру, переменный ток протекает через проводник с заданным сопротивлением. Через определенный промежуток времени в этом проводнике выделится какое-то количество тепла. Можно подобрать такое значение силы постоянного тока, чтобы на этом же проводнике за то же время выделялось этим током такое же количество тепла, что и при переменном токе. Такое значение постоянного тока называется действующим значением силы переменного тока.

Амперметры и вольтметры магнитоэлектрической системы не позволяют производить замеры в цепях переменного тока. Это происходит потому, что при каждом изменении тока в катушке меняется направление вращающего момента, которое воздействует на стрелку прибора. Из-за того что катушка и стрелка обладают большой инерцией, прибор не реагирует на переменный ток. Для этих целей применяются приборы, не зависящие от направления тока. Например, это могут быть приборы, основанные на тепловом действии тока. В таких приборах стрелка поворачивается за счет удлинения нити, нагреваемой током.

Можно также применять приборы с электромагнитной системой действия. Подвижной частью в данных приспособлениях является железный диск небольшого диаметра.

Он перемагничивается и втягивается внутрь катушки, через которую пропущен переменный ток. Такие приборы измеряют действующие значения силы тока и напряжения.

Достоинства и недостатки

Электрические станции вырабатывают электрическую энергию трехфазного переменного тока, который передается на большие расстояния по трем проводам. Частота переменного тока, питающего промышленные установки, в разных странах различна. Она колеблется от 25 до 60 периодов в секунду (герц). В России, как и в большинстве стран, промышленная частота принята равной 50 Гц.

Одно из отрицательных свойств переменного тока в том, что провода, по которым протекает ток, необходимо рассчитывать на максимальное значение силы тока, а практически используется немногим более 2/3 этого значения. Есть и другие отрицательные следствия. Явление электромагнитной индукции приводит, например, к тому, что переменный ток в проводах распределяется не равномерно по всему сечению, а главным образом вблизи поверхности. Благодаря тому, что используется не все сечения проводов, их сопротивление реально возрастает. Далее, переменный ток, как и ток постоянный, окружен магнитным полем, но полем переменным. А такое поле, согласно закону электромагнитной индукции, вызывает в соседних проводах и в других проводящих материалах электрические токи, что приводит к бесполезной потере энергии.

Все эти недостатки полностью отсутствуют у постоянного тока. Почему же все-таки переменный ток практически безраздельно господствует в технике и в быту?

Необходимость высокого напряжения видна из следующего простого расчета. Допустим, что электрическая мощность Р = 66 кВт передается от электростанции в город под напряжением 220 В (именно такое напряжение обычно используется потребителями). Пусть сопротивление ЛЭП равно 0,4 Ом. Тогда сила тока в ЛЭП составит I = 66 000 Вт / 220 В = 300 А, а выделившееся в линии количество теплоты — Q = I2R =(300 A)2·0,4 Ом = 36 000 Вт. Больше половины передаваемой мощности (54,5 %) будет потеряно в виде тепла в ЛЭП! А теперь представим себе, что та же мощность по той же ЛЭП передается при напряжении 22 000 В. Теперь ток в цепи будет равен I = 66 000 Вт / 22 000 В = 3 А, а выделившееся количество теплоты — Q = (3 A)2·0,4 Ом = 3,6 Вт. Потеряно будет всего около 0,005 %! Вот почему электрическая энергия по ЛЭП всегда передается при очень высоком напряжении — 110, 220, 330, 400, 500 и даже 750 киловольт.

Однако те недостатки переменного тока, которые были изложены выше, заставляют думать о том, нельзя ли все-таки для передачи электрической энергии использовать постоянный ток, конечно, тоже высокого напряжения? Это сделать непросто. Действительно, сначала нужно переменное напряжение, после его повышения, преобразовать в постоянное (для этого служат выпрямители), а затем на другом конце ЛЭП — превратить переданное постоянное напряжение в переменное (это можно сделать с помощью устройств, называемых инверторами), чтобы напряжение можно было понизить до значения, нужного потребителю.

Для техники в равной мере нужны и полезны оба тока. В некоторых случаях незаменим постоянный ток, например там, где используется электролиз. Но без переменных токов не было бы радиосвязи, телевидения и т. д.

Переменный ток – это такой ток, направление и числовое значение которого меняются с течением времени (знакопеременный ток).

Примечание: не оговаривается форма кривой тока, периодичность, длительность его изменения.

На практике под переменным током чаще всего подразумевают периодический переменный ток.

Физическая сущность переменного тока сводиться к колебаниям электрических зарядов в среде (проводнике или диэлектрике).

Ток проводимости – это такой ток, который обусловлен колебаниями электронов и ионов в среде.

Ток смещения связан с изменением во времени электрического поля на границе проводник – диэлектрик и имеет особенности:

· Амплитуда тока смещения и его направления совпадают по фазе с таковыми тока проводимости.

· По значению он всегда равен току проводимости.

Частным случаем тока смещения является ток поляризации. Ток поляризации – это ток смещению не в вакууме, а в материальной диэлектрической среде.

Сумма токов смещения и поляризации составляет полный ток смещения.

В медицинской практике применяются следующие виды токов по форме кривой тока:

· Синусоидальный













· Прямоугольный



· Треугольный

· Трапециевидный


Самым простым является периодический синусоидальный ток. Он легко описывается математически и графически, форма его не искажается в электрических цепях с R, C, L элементами.

Основные характеристики переменного тока.

1.Период – время одного цикла изменения тока по направлению и числовому значению (T, c).

2.Частота – это число циклов изменения тока в единицу времени.

n =1/Т (величина обратная периоду с -1 , Гц)

3.Круговая частота (w, 2p/Т радиан/с)

4.Фаза (j) – это величина, определяющая во времени взаимоотношение тока и напряжения в электрической цепи.

5.Мгновенное значение тока и напряжения - значение этих величин в данный момент времени (i, u).

6.Амплитудное значение тока и напряжения – это максимальное за полупериод значение этих величин (Im , Um ).

7.Среднеквадратическое (действующее, эффективное) значение тока и напряжения - вычисляется как положительный квадратный корень из среднего значению квадрата напряжения или тока по формулам.


I = ÖI 2 cp


U = ÖU 2 cp

Среднее значение ( Uср ) за период (постоянная составляющая) – это среднее арифметическое мгновенных значений ток или напряжения за период.

На практике среднеквадратическое значение определяется по эффективному (действующему) значению. (Icp , Ucp ), которое для синусоидального тока вычисляется по формулам:

В отдельных случаях медицинского применения электрического тока приходиться учитывать и другие характеристики (например, коэффициент амплитуды Ка , и коэффициент формы Кф ).

Для практики имеют значения следующие формулы связи характеристик:


Iэф = I = Im /Ö2=0,707 Im Im = 1,41 Iэф


Uэф = U= Um /Ö2=0,707 Um Um = 1,41 Uэф

2. Цепи переменного тока с активным сопротивлением, индуктивностью, емкостью и их особенности.

Электрическая цепь - это реальная или мыслимая совокупность физических элементов, передающих электрическую энергию от одной точки пространства к другой.

Физическими элементами электрических цепей являются проводники, резисторы, конденсаторы, катушки индуктивности. Элементы цепи являются и элементами её связи, и, кроме того, реализуют соответствующие свойства сопротивления, емкости и индуктивности.

Виды электрических цепей:

Простые цепи содержат только единичные R, C, L – элементы, а сложные имеют их в различных количествах и сочетаниях.

Общей особенностью элементов электрической цепи является то, что при прохождении переменного тока они оказывают сопротивление, которое называется активным (R), индуктивным (Xl ), емкостным (Xc ).

Особенности простых идеальных цепей.

Цепь, состоящая из генератора тока и идеального резистора, называется простой цепью с активным сопротивлением.

Условию идеальности цепи :

· Активное сопротивление не равно нулю,

· индуктивность и ёмкость его равны нулю.

Cr = 0 ~ R

Особенности:

1.Соблюдается закон Ома для мгновенных, амплитудных и среднеквадратичных значений тока и напряжения.


3.Нет сдвига фаз (Dj) между током и напряжением.

Это значит, что ток и напряжение одновременно проходят свои максимальные (амплитудные) и нулевые значения.


4.На R – элементе происходят потери энергии в виде выделения тепла.

Цепь с индуктивностью – это электрическая цепь, состоящая из генератора переменного тока и идеального L – элемента- катушки индуктивности.


Условия идеальности цепи:

· Индуктивность катушки не равна нулю

· Её ёмкость и сопротивление равны нулю.


Особенности цепи:

1.Соблюдается закон Ома.


2.L- элемент оказывает переменному току сопротивление, которое называется индуктивным. Оно обозначается XL и возрастает с увеличением частоты линейно, соответственно формуле:

3.В цепи есть сдвиг фаз между напряжением и током: V опережает I по фазе на угол p/2


4.Индуктивное сопротивление не потребляет энергии, т.к. она запасается в магнитном поле катушки, а затем отдается в электрическую цепь. Поэтому индуктивное сопротивление называется кажущимся или мнимым.


Цепь с ёмкостью – это электрическая цепь, состоящая из генератора переменного тока и идеального C – элемента - конденсатора.

Условия идеальности цепи:

· Ёмкость конденсатора не равна нулю, а его активное сопротивление и индуктивность равны нулю. С ¹ 0, RС = 0, LC = 0.

Особенности цепи с ёмкостью:


1. Соблюдается закон Ома.

2. Ёмкость оказывает переменному току сопротивление, которое называется ёмкостным. Оно обозначается Xс и уменьшается с увеличением частоты не линейно.

3.В цепи есть сдвиг фаз между напряжением и током: V отстает от I по фазе на угол p/2



4.Ёмкостное сопротивление не потребляет энергии, т.к. она запасается в электрическом поле конденсатора, а затем отдается в электрическую цепь. Поэтому ёмкостное сопротивление называется кажущимся или мнимым.

3. Полная цепь переменного тока и её виды. Импеданс и его формула. Особенности импеданса живой ткани.

Полная цепь переменного тока - это цепь из генератора, а также R, C, и L элементов, взятых в разных сочетаниях и количествах.

Для разбора проходящих в электрических цепях процессов используют полные последовательные и параллельные цепи.

Последовательная цепь - это такая цепь, где все элементы могут быть соединены последовательно, один за другим.


В параллельной цепи R, C, L элементы соединены параллельно.


Особенности полной цепи:

1.Соблюдается закон Ома

2.Полная цепь оказывает переменному току сопротивление. Это сопротивление называется полным (мнимым, кажущимся) или импедансом.

3.Импеданс зависит от сопротивления всех элементов цепи, обозначается Z и вычисляется не простым, а геометрическим (векторным) суммированием. Для последовательно соединенных элементов формула импеданса имеет следующее значение:


Z - импеданс последовательной цепи,

R - активное сопротивление,

XL – индуктивное и XC – ёмкостное сопротивление,

L - индуктивность катушки (генри),

C - ёмкость конденсатора (фарад).

Так как ёмкостное и индуктивное сопротивления дают для напряжения сдвиг фаз в противоположном направлении, возможен случай, когда XL = XC . При этом алгебраическая сумма модулей будет равна нулю, а импеданс – наименьшим.


Состояние, при котором в цепи переменного тока ёмкостное сопротивление равно индуктивному, называется резонансом напряжения. Частота, при которой XL = XC , называется резонансной частотой. Эту частоту np можно определить по формуле Томсона:


4. Особенности импеданса живой ткани и её эквивалентная электрическая схема.

При пропускании тока через живую ткань, её можно рассматривать как электрическую цепь, состоящую из определенных элементов.

Экспериментально установлено, что это цепь обладает свойствами активного сопротивления и ёмкости. Это доказывается выделением тепла и уменьшением полного сопротивления ткани с возрастанием частоты. Свойств индуктивности у живой ткани практически не обнаруживается. Таким образом, живая ткань представляет собой сложную, но не полную электрическую цепь.

Импеданс живой ткани можно рассматривать как для последовательного, так и для параллельного соединения её элементов.

При последовательном соединении токи через элементы равны, общее приложенное напряжение будет векторной суммой напряжений на R и C элементах и формула импеданса последовательной цепи будет иметь вид:


Z_ - импеданс последовательной цепи,

R - её активное сопротивление,

XC - ёмкостное сопротивление.

При параллельном соединении напряжения на R и C элементах равны, общий ток будет векторной суммой токов каждого элемента, а фомула импеданса будет следующей:


Теоретические формулы импеданса живой ткани при параллельном и последовательном соединении её элементов от экспериментальных отличаются следующим:

1.При последовательной схеме соединения практические данные дают большие отклонения на низких частотах.

2.При параллельной схеме эти измерения показывают конечное значение Z, хотя теоретически оно должно стремиться к нулю.

Эквивалентная электрическая схема живой ткани – э то условная модель, приближенно характеризующаяживую ткань, как проводник переменного тока.

Схема позволяет судить:

1.Какими электрическими элементами обладает ткань

2.Как соединены эти элементы.

3.Как будут меняться свойства ткани при изменении частоты тока.

В основе схемы лежат три положения:

1.Внеклеточная среда и содержимое клетки есть ионные проводники с активным сопротивлением среды Rср и клетки Rк.

2.Клеточная мембрана есть диэлектрик, но не идеальный, а с небольшой ионной проводимостью, а, следовательно, и сопротивлением мембраны Rм.

3.Внеклеточная среда и содержимое клетки, разделённые мембраной, являются конденсаторами См определенной ёмкости (0,1 – 3,0 мкФ/см 2 ).

Если в качестве модели живой ткани взять жидкую тканевую среду – кровь, содержащую только эритроциты, то при составлении эквивалентной схемы нужно учитывать пути электрического тока.

1.В обход клетки, через внеклеточную среду.

Путь в обход клетки представлен только сопротивлением средыRср.

Путь через клетку сопротивлением содержимого клетки Rк, а также сопротивлением и ёмкостью мембраны.Rм, См.


Если заменить электрические характеристики соответствующими обозначениями, то получим эквивалентные схемы разной степени точности:



Схема Фрике (ионная проводимость не

Схема Швана (ионная проводимость учитывается в виде сопротивления мембраны)

Обозначения на схеме:

Rcp - активное сопротивление клеточной среды

Rk - Сопротивление клеточного содержимого

Cm - ёмкость мембраны

Rm - сопротивление мембраны.

Анализ схемы показывает, что при увеличении частоты тока проводимость клеточных мембран увеличивается, а полное сопротивление тканевой среды уменьшается, что соответствует практически проведенным измерениям.

5. Живая ткань как проводник переменного электрического тока. Дисперсия электропроводности и её количественная оценка.

Экспериментально установлены следующие особенности живой ткани как проводника переменного ток:

1. Сопротивление живой ткани переменном току меньше, чем постоянному.

2. Электрические характеристики ткани зависят как от её вида, так и от частоты тока.

3. С увеличением частоты полное сопротивление живой ткани нелинейно уменьшается до определенного значения, а затем остаётся практически постоянным (в большинстве на частотах свыше 10 6 Гц)

4. На определенной частоте полное сопротивление зависит также от физиологического состояния (кровенаполнения), что используется на практике. Исследование периферического кровообращения на основе измерения электрического сопротивления называются реография (импедансплетизмография).

5. При умирании живой ткани её сопротивление уменьшается и от частоты не зависит.

6. При прохождении переменного тока через живые ткани наблюдается явление, которое называется дисперсией электропроводности.


Дисперсия электропроводности - это явление зависимости полного (удельного) сопротивления живой ткани от частоты переменного тока.

Графики такой зависимости называют дисперсионными кривыми. Дисперсионные кривые строят в прямоугольной системе координат, где по вертикали откладывают значения полного (Z) или удельного сопротивления, а по горизонтали - частоту в логарифмическом масштабе (Lgn).

Частотные зависимости по форме кривой для разных тканей сходный, но отличается значением сопротивления.

Имеется несколько диапазонов частот, на которых дисперсия особенно выражена. Один из них соответствует интервалу 10 2 -10 6 Гц

Особенности дисперсии:

1. Присуща только живым тканям.

2. Более выражена на частотах до 1 МГц.

3. На практике используется для оценки физиологического состояния и жизнеспособности тканей.

Количественно оценка дисперсии проводиться по коэффициенту дисперсии (К).

Коэффициент дисперсии это безразмерная величина, равная отношению низкочастотного (10 2 ) полного (или удельного) сопротивления к высокочастотному (10 6 Гц).


Z1 – полное сопротивление на частоте 10 2 Гц

Z2 – полное сопротивление на частоте 10 6 Гц

r1 , r2 - удельное сопротивление на этих частотах

Значение коэффициента дисперсии зависит от вида ткани, её физиологического состояния, эволюционной стадии развития животного. Например, для печени животного К = 9 -10 единиц, а для печени лягушки 2 -3 единицы. При умирании ткани коэффициент дисперсии стремиться к единице.

Явление дисперсии связывают с наличием в живых тканях поляризации, которая с увеличением частоты меньше влияет на полное сопротивление. Поэтому коэффициент дисперсии часто называют коэффициентом поляризации.

Кроме частотных зависимостей в живых тканях отмечаются фазовые сдвиги между током и напряжением, которые тоже, но в меньшей степени, зависят от частоты.

Фазовые сдвиги тоже уменьшаются при умирании тканей и, в перспективе, могут быть использованы для практических целей.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Переменный электрический ток и его применение в медицине.

Переменный ток, его виды и основные характеристики.

Переменный ток – это такой ток, направление и числовое значение которого меняются с течением времени (знакопеременный ток).

Примечание: не оговаривается форма кривой тока, периодичность, длительность его изменения.

На практике под переменным током чаще всего подразумевают периодический переменный ток.

Физическая сущность переменного тока сводиться к колебаниям электрических зарядов в среде (проводнике или диэлектрике).

Ток проводимости.Ток смещения.

Ток проводимости – это такой ток, который обусловлен колебаниями электронов и ионов в среде.

Ток смещения связан с изменением во времени электрического поля на границе проводник – диэлектрик и имеет особенности:

Амплитуда тока смещения и его направления совпадают по фазе с таковыми тока проводимости.По значению он всегда равен току проводимости.

Частным случаем тока смещения является ток поляризации. Ток поляризации – это ток смещению не в вакууме, а в материальной диэлектрической среде.

Сумма токов смещения и поляризации составляет полный ток смещения.

В медицинской практике применяются следующие виды токов по форме кривой тока:

Самым простым является периодический синусоидальный ток. Он легко описывается математически и графически, форма его не искажается в электрических цепях с R, C, L элементами.

Основные характеристики переменного тока.

Период – время одного цикла изменения тока по направлению и числовому значению (T, c). Частота – это число циклов изменения тока в единицу времени.

 =1/Т (величина обратная периоду с-1, Гц)

Круговая частота (, 2/Т радиан/с)Фаза () – это величина, определяющая во времени взаимоотношение тока и напряжения в электрической цепи. Мгновенное значение тока и напряжения - значение этих величин в данный момент времени (i, u).Амплитудное значение тока и напряжения – это максимальное за полупериод значение этих величин (Im, Um).Среднеквадратическое (действующее, эффективное) значение тока и напряжения - вычисляется как положительный квадратный корень из среднего значению квадрата напряжения или тока по формулам.

Среднее значение (Uср) за период (постоянная составляющая) – это среднее арифметическое мгновенных значений ток или напряжения за период.

На практике среднеквадратическое значение определяется по эффективному (действующему) значению. (Icp,Ucp), которое для синусоидального тока вычисляется по формулам:

Iэф = I = 0,707 Im

Uэф = U = 0,707 Um

В отдельных случаях медицинского применения электрического тока приходиться учитывать и другие характеристики (например, коэффициент амплитуды Ка,

Переменный ток – это такой ток, направление и числовое значение которого меняются с течением времени (знакопеременный ток).

Примечание: не оговаривается форма кривой тока, периодичность, длительность его изменения.

На практике под переменным током чаще всего подразумевают периодический переменный ток.

Физическая сущность переменного тока сводиться к колебаниям электрических зарядов в среде (проводнике или диэлектрике).

Ток проводимости – это такой ток, который обусловлен колебаниями электронов и ионов в среде.

Ток смещения связан с изменением во времени электрического поля на границе проводник – диэлектрик и имеет особенности:

· Амплитуда тока смещения и его направления совпадают по фазе с таковыми тока проводимости.

· По значению он всегда равен току проводимости.

Частным случаем тока смещения является ток поляризации. Ток поляризации – это ток смещению не в вакууме, а в материальной диэлектрической среде.

Сумма токов смещения и поляризации составляет полный ток смещения.

В медицинской практике применяются следующие виды токов по форме кривой тока:

· Синусоидальный













· Прямоугольный



· Треугольный

· Трапециевидный


Самым простым является периодический синусоидальный ток. Он легко описывается математически и графически, форма его не искажается в электрических цепях с R, C, L элементами.

Основные характеристики переменного тока.

1.Период – время одного цикла изменения тока по направлению и числовому значению (T, c).

Раздельные частицы накапливаются на полюсах источника тока, - так называют места, к которым с помощью клемм или зажимов подсоединяют проводники. Один полюс источника тока заряжается положительно, другой - отрицательно. Если полюсы соединить проводником, то под действием поля свободные заряженные частицы в проводнике будут двигаться, возникнет электрический ток.

Содержание работы
Файлы: 1 файл

1 Постоянный и перемнный ток.docx

Электропитание систем автоматизации

"Постоянный и переменный ток"

  1. Введение………………………………………………………… ………..….…3
  2. Основные определения………………………………………………… …. 4
  3. Постоянный ток………………………………………………….……….……4
  4. Переменный ток……………………………………………………………. .5
  5. Получение переменного тока…………………………………………….…. 5
  6. Действующее значение силы тока и напряжения……………………….….6
  7. Достоинства и недостатки……………………………………………….… …6
  8. Список литературы…………………………………………………… .……. 8

постоянный переменный ток

Что же такое электрический ток и что необходимо для его возникновения и существования в течение нужного нам времени?

Электрический ток широко используется в энергетике для передачи энергии на расстоянии.

Электрический ток — упорядоченное нескомпенсированное движение свободных электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах - ионы и электроны, в вакууме при определенных условиях - электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость). Различают переменный и постоянный токи.

Постоянный ток — ток, направление и величина которого слабо меняется во времени.

Переменный ток — это ток, направление и величина которого меняется во времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы. В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.

Время, за которое происходит один такой цикл (время, включающее изменение тока в обе стороны), называется периодом переменного тока. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц соответствует одному периоду в секунду.

Постоянный ток, электрический ток, не изменяющийся с течением времени ни по силе, ни по направлению. Постоянный ток возникает под действием постоянного напряжения и может существовать лишь в замкнутой цепи; во всех сечениях неразветвлённой цепи сила постоянный тока одинакова.

Основные законы постоянный ток: закон Ома, устанавливающий зависимость силы тока от напряжения, закон Джоуля — Ленца, определяющий количество тепла, выделяемого током в проводнике. Расчёт разветвленных цепей производится с помощью правил Кирхгофа.

Источниками постоянного тока большой мощности являются электромашинные генераторы. Так же его получают выпрямлением переменного. Источниками тока небольшой мощности служат гальванические элементы, термоэлементы, фотоэлементы, которые могут быть сгруппированы в батареи (в т. ч. солнечные батареи), и электромашины малой мощности. Новыми источниками с высоким кпд являются магнитогидродинамические генераторы. Вторичными, предварительно заряжаемыми источниками постоянного тока служат аккумуляторы.

Постоянный ток низкого напряжения используется в различных отраслях промышленности, например в электрометаллургии для расплава и электролиза руд, в первую очередь алюминиевых, и т.п. Он применяется в тяговых электродвигателях на транспорте, а также в электроприводах, когда необходимы двигатели, обладающие большой перегрузочной способностью, скорость которых можно плавно и экономично менять в широких пределах. Питание устройств связи, автоматики, сигнализации и телемеханики производится постоянным током. Разрабатывается проблема передачи энергии такого тока практически без потерь по сверхпроводящим линиям.

Как мы уже знаем, электрический ток бывает постоянным и переменным. Но широко применяется только переменный ток. Это обусловлено тем, что напряжение и силу переменного тока можно преобразовывать практически без потерь энергии.

Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени. характеризуется двумя параметрами — периодом и амплитудой, зная которые мы можем судить, какой это переменный ток, и построить график тока.

Получение переменного тока

Переменный ток получают при помощи генераторов переменного тока с использованием явлений электромагнитной индукции. На рисунке изображена примитивная установка для выработки переменного тока.

Принцип действия установки прост. Проволочная рамка вращается в однородном магнитном поле с постоянной скоростью. Своими концами рамка закреплена на кольцах, вращающихся вместе с ней. К кольцам плотно прилегают пружины, выполняющие роль контактов. Через поверхность рамки непрерывно будет протекать изменяющийся магнитный поток, но поток, создаваемый электромагнитом, останется постоянным. В связи с этим в рамке возникнет ЭДС индукции. Для того чтобы определить, изменяется ли магнитный поток, проходящий по поверхности рамки, нужно всего лишь сравнить положение рамки в определенные периоды времени. Для этого нужно внимательно посмотреть на рисунке.

Действующие значения силы тока и напряжения

Как известно, переменная ЭДС индукции вызывает в цепи переменный ток. При наибольшем значении ЭДС сила тока будет иметь максимальное значение и наоборот. Это явление называется совпадением по фазе. Несмотря на то что значения силы тока могут колебаться от нуля и до определенного максимального значения, имеются приборы, с помощью которых можно замерить силу переменного тока.

Характеристикой переменного тока могут быть действия, которые не зависят от направления тока и могут быть такими же, как и при постоянном токе. К таким действиям можно отнести тепловое. К примеру, переменный ток протекает через проводник с заданным сопротивлением. Через определенный промежуток времени в этом проводнике выделится какое-то количество тепла. Можно подобрать такое значение силы постоянного тока, чтобы на этом же проводнике за то же время выделялось этим током такое же количество тепла, что и при переменном токе. Такое значение постоянного тока называется действующим значением силы переменного тока.

Амперметры и вольтметры магнитоэлектрической системы не позволяют производить замеры в цепях переменного тока. Это происходит потому, что при каждом изменении тока в катушке меняется направление вращающего момента, которое воздействует на стрелку прибора. Из-за того что катушка и стрелка обладают большой инерцией, прибор не реагирует на переменный ток. Для этих целей применяются приборы, не зависящие от направления тока. Например, это могут быть приборы, основанные на тепловом действии тока. В таких приборах стрелка поворачивается за счет удлинения нити, нагреваемой током.

Можно также применять приборы с электромагнитной системой действия. Подвижной частью в данных приспособлениях является железный диск небольшого диаметра.

Он перемагничивается и втягивается внутрь катушки, через которую пропущен переменный ток. Такие приборы измеряют действующие значения силы тока и напряжения.

Достоинства и недостатки

Электрические станции вырабатывают электрическую энергию трехфазного переменного тока, который передается на большие расстояния по трем проводам. Частота переменного тока, питающего промышленные установки, в разных странах различна. Она колеблется от 25 до 60 периодов в секунду (герц). В России, как и в большинстве стран, промышленная частота принята равной 50 Гц.

Одно из отрицательных свойств переменного тока в том, что провода, по которым протекает ток, необходимо рассчитывать на максимальное значение силы тока, а практически используется немногим более 2/3 этого значения. Есть и другие отрицательные следствия. Явление электромагнитной индукции приводит, например, к тому, что переменный ток в проводах распределяется не равномерно по всему сечению, а главным образом вблизи поверхности. Благодаря тому, что используется не все сечения проводов, их сопротивление реально возрастает. Далее, переменный ток, как и ток постоянный, окружен магнитным полем, но полем переменным. А такое поле, согласно закону электромагнитной индукции, вызывает в соседних проводах и в других проводящих материалах электрические токи, что приводит к бесполезной потере энергии.

Все эти недостатки полностью отсутствуют у постоянного тока. Почему же все-таки переменный ток практически безраздельно господствует в технике и в быту?

Необходимость высокого напряжения видна из следующего простого расчета. Допустим, что электрическая мощность Р = 66 кВт передается от электростанции в город под напряжением 220 В (именно такое напряжение обычно используется потребителями). Пусть сопротивление ЛЭП равно 0,4 Ом. Тогда сила тока в ЛЭП составит I = 66 000 Вт / 220 В = 300 А, а выделившееся в линии количество теплоты — Q = I2R =(300 A)2·0,4 Ом = 36 000 Вт. Больше половины передаваемой мощности (54,5 %) будет потеряно в виде тепла в ЛЭП! А теперь представим себе, что та же мощность по той же ЛЭП передается при напряжении 22 000 В. Теперь ток в цепи будет равен I = 66 000 Вт / 22 000 В = 3 А, а выделившееся количество теплоты — Q = (3 A)2·0,4 Ом = 3,6 Вт. Потеряно будет всего около 0,005 %! Вот почему электрическая энергия по ЛЭП всегда передается при очень высоком напряжении — 110, 220, 330, 400, 500 и даже 750 киловольт.

Однако те недостатки переменного тока, которые были изложены выше, заставляют думать о том, нельзя ли все-таки для передачи электрической энергии использовать постоянный ток, конечно, тоже высокого напряжения? Это сделать непросто. Действительно, сначала нужно переменное напряжение, после его повышения, преобразовать в постоянное (для этого служат выпрямители), а затем на другом конце ЛЭП — превратить переданное постоянное напряжение в переменное (это можно сделать с помощью устройств, называемых инверторами), чтобы напряжение можно было понизить до значения, нужного потребителю.

Для техники в равной мере нужны и полезны оба тока. В некоторых случаях незаменим постоянный ток, например там, где используется электролиз. Но без переменных токов не было бы радиосвязи, телевидения и т. д.

Читайте также: