Реферат обратные связи в усилителях

Обновлено: 05.07.2024

Ключевые слова: ток, напряжение, усилитель, обратная связь, база, эмиттер, коллектор, коэффициент усиления, коэффициент передачи обратной связи, конденсатор, резистор, транзистор.

Целью работы являлось исследование влияния обратной связи на работу усилителя и изготовление лабораторного модуля для исследования обратной связи.

В курсовой работе были изучены различные виды обратных связей, проведено теоретическое и практическое исследование влияния отрицательной обратной связи по току на работу усилителя.

Разработана схема лабораторного модуля для проверки влияния обратной связи, выполнено ее моделирование и изготовление. Проведена экспериментальная проверка и по полученным результатам сделаны выводы.

1 Теоретическая часть

1.1 Теоретические сведения. …………………………….……………….…. 5

1.2 Структурные схемы различных видов обратной связи……………. …..…8

1.3 Использование обратной связи в различных функциональных устройствах на операционных усилителях………………………………………………. …11

2 Экспериментальная часть ……………………………………….……………13

2.1 Расчет элементов усилителя …………………………………..……………13

2.3 Разработка и проверка схемы усилителя с обратной связью…. …14

1.Теоретические сведения

Обратная связь представляет передачу выходного сигнала усилителя на его вход. Обратные связи позволяют изменять характеристики, как отдельных каскадов усилителей, так и усилителей в целом.

Наиболее часто используется отрицательная обратная связь, при которой полярность подводимого ко входу напряжения обратной связи противоположна полярности напряжения входного сигнала. Отрицательная обратная связь уменьшает коэффициент усиления, но при этом уменьшаются также частотные и нелинейные искажения, и стабилизируется характеристики усилителя.

При положительной обратной связи полярность напряжения входного сигнала и полярность напряжения обратной связи одинаковы. Это приводит к возрастанию коэффициента усиления при снижении стабильности работы схемы. При некотором уровне положительной обратной связи усилитель вообще не имеет устойчивого состояния и превращается в генератор электрических колебаний.

Структурная схема усилителя с обратной связью показана на рис.1.

Цепь обратной связи

Пассивная электрическая цепь, через которую сигнал с выхода усилителя подается на его вход, называется цепью обратной связи. Усилитель вместе с цепью обратной связи образует замкнутый контур, именуемый петлей обратной связи. Ту часть схемы, которая из напряжения генератора (Uг) и напряжения обратной связи вырабатывает управляющее выходным током активного элемента усилителя напряжение (Uвх), называют суммирующим узлом.

Коэффициенты усиления усилителя без обратной связи (К) и с обратной связью (Ко.с.) определяются соответственно:

, (1)

Коэффициент передачи цепи обратной связи, называемый чаще коэффициентом обратной связи:


(2)

Напряжение на выходе усилителя на рис.1:


, (3)

Ключевые слова: ток, напряжение, усилитель, обратная связь, база, эмиттер, коллектор, коэффициент усиления, коэффициент передачи обратной связи, конденсатор, резистор, транзистор.

Целью работы являлось исследование влияния обратной связи на работу усилителя и изготовление лабораторного модуля для исследования обратной связи.

В курсовой работе были изучены различные виды обратных связей, проведено теоретическое и практическое исследование влияния отрицательной обратной связи по току на работу усилителя.

Разработана схема лабораторного модуля для проверки влияния обратной связи, выполнено ее моделирование и изготовление. Проведена экспериментальная проверка и по полученным результатам сделаны выводы.

1 Теоретическая часть

1.1 Теоретические сведения. …………………………….……………….…. 5

1.2 Структурные схемы различных видов обратной связи……………. …..…8

1.3 Использование обратной связи в различных функциональных устройствах на операционных усилителях………………………………………………. …11

2 Экспериментальная часть ……………………………………….……………13

2.1 Расчет элементов усилителя …………………………………..……………13

2.3 Разработка и проверка схемы усилителя с обратной связью…. …14

1.Теоретические сведения

Обратная связь представляет передачу выходного сигнала усилителя на его вход. Обратные связи позволяют изменять характеристики, как отдельных каскадов усилителей, так и усилителей в целом.

Наиболее часто используется отрицательная обратная связь, при которой полярность подводимого ко входу напряжения обратной связи противоположна полярности напряжения входного сигнала. Отрицательная обратная связь уменьшает коэффициент усиления, но при этом уменьшаются также частотные и нелинейные искажения, и стабилизируется характеристики усилителя.

При положительной обратной связи полярность напряжения входного сигнала и полярность напряжения обратной связи одинаковы. Это приводит к возрастанию коэффициента усиления при снижении стабильности работы схемы. При некотором уровне положительной обратной связи усилитель вообще не имеет устойчивого состояния и превращается в генератор электрических колебаний.

Структурная схема усилителя с обратной связью показана на рис.1.

Цепь обратной связи

Пассивная электрическая цепь, через которую сигнал с выхода усилителя подается на его вход, называется цепью обратной связи. Усилитель вместе с цепью обратной связи образует замкнутый контур, именуемый петлей обратной связи. Ту часть схемы, которая из напряжения генератора (Uг) и напряжения обратной связи вырабатывает управляющее выходным током активного элемента усилителя напряжение (Uвх), называют суммирующим узлом.

Коэффициенты усиления усилителя без обратной связи (К) и с обратной связью (Ко.с.) определяются соответственно:

, (1)

Коэффициент передачи цепи обратной связи, называемый чаще коэффициентом обратной связи:


(2)

Напряжение на выходе усилителя на рис.1:


, (3)


(4)

Т.е. коэффициент усиления усилителя, охваченного обратной связью, изменяется в (1- β К) раз по сравнению с исходным. Если модуль Ко.с. больше модуля К, то обратная связь называется положительной, если модуль Ко.сменьше модуля К, - отрицательной.

Величину (1- β К) называют глубиной обратной связи, произведение β К-петлевым усилением.

Коэффициент усиления усилителя возрастает при положительной обратной связи и уменьшается при отрицательной. Особый интерес представляет случай, когда усилитель с большим исходным коэффициентом усиления охвачен глубокой отрицательной обратной связью. Тогда из (.4) имеем


(5)

Таким образом, усиление подобного рода устройств почти не зависит от характеристик активных элементов, а полностью определяется параметрами цепи обратной связи. Так как цепь обратной связи состоит только из пассивных элементов, которые сравнительно легко сделать высокостабильными, то коэффициент усиления при этом будет стабильным.

В общем случае, считая β=const и дифференцируя (4) по К, получаем



(6)

т.е. введение в усилитель отрицательной обратной связи уменьшает относительную нестабильность коэффициента усиления на глубину обратной связи в (1- β К) раз.

Отрицательная обратная связь расширяет полосу пропускания исходного усилителя, т.е. в (1- β К) раз снижает нижнюю граничную частоту и повышает верхнюю (рисунок 1.2).


Рисунок 1.2- Графики частотной характеристики RC-каскада без обратной связи (1) и того же каскада после введения отрицательной обратной связи (2).

По способу присоединения цепи обратной связи ко входу усилителя различают последовательную (рисунок.1 2 а,б) и параллельную (рисунок 1.2 в.г) обратные связи. Способ подключения цепи обратной связи к выходу усилителя позволяет получить связь по току (рисунок 1.2 б,г) или напряжению (рисунок 1.2 а,в).

2 Структурные схемы различных видов обратной связи.


Рисунок 1.3-Структурная схема и пример соответствующей принципиальной схемы, содержащей последовательную обратную связь по напряжению.


Рисунок 1.4-Структурная схема и пример соответствующей принципиальной схемы, содержащей последовательную обратную связь по току.


Рисунок 1.3-Структурная схема и пример соответствующей принципиальной схемы, содержащей параллельную обратную связь по напряжению.


Рис.4. Структурная схема и пример соответствующей принципиальной схемы, содержащей параллельную обратную связь по току.

Введение в усилитель последовательной по току или по напряжению отрицательной обратной связи увеличивает его входное сопротивление, а параллельной – уменьшает в (1- β К) раз.

Отрицательная обратная связь по напряжению (параллельная или последовательная) уменьшает исходное (без о.с.) значение выходного сопротивления, а по току–увеличивает в (1- β К) раз.

Усилитель с отрицательной обратной связью обязательно исследует на устойчивость против самовозбуждения. Усилитель с обратной связью будет работать устойчиво (не переходит в режим генерирования колебаний), если ни при каких условиях его использования знаменатель в формуле (4) не обращается в ноль.

Если из эммитерной цепочки RC-каскада исключить конденсатор, то в него будет введена последовательная по току отрицательная обратная связь (рис.4).

Пусть транзистор VT имеет крутизну рабочего участка передаточной вольт–амперной характеристики S. Тогда коллекторный ток, вызванный входным сигналом, будет равен


Протекая через резистор Rк, этот ток создает выходное напряжение


Здесь знак минус отражает тот факт, что с увеличением коллекторного тока понижается напряжение на коллекторе.


Рис.5. Принципиальная схема RC-каскада с последовательной отрицательной обратной связью по току.

2.2 Разработка и проверка схемы усилителя с обратной связью.

Разработка платы под схему усилителя

Для данной работы была разработана (с помощью программы layout40),а затем создана следующая схема (рис.11).


Рисунок 1.12- Плата под усилитель.

Проверка работы схемы с помощью программы ElectronicsWorkbench.


Рисунок 1.13- Схема усилителя в программе ElectronicsWorkbench.


Рисунок 1.14- Электронная осциллограмма при отсутствии обратной связи.

При отсутствии обратной связи на осциллограмме видно, что выходной сигнал значительно больше входного. Коэффициент усиления приблизительно равен К≈125.

При наличии обратной связи параметры усиления значительно меняются. Коэффициент усиления уменьшается до значения К≈8.


Рисунок 1.15- Электронная осциллограмма при наличии обратной связи

При экспериментальном исследовании разработанного модуля усилителя были получены следующие данные:

Коэффициент усиления без обратной связи К=95;

Коэффициент усиления при наличии последовательной отрицательной обратной связи по току Кос=9;

Коэффициент обратной связи β=-0.1;

Глубина обратной связи (1- β К)=10.5;

На основании данной схемы был собран лабораторный модуль для исследования обратной связи, который будет использоваться студентами физического факультета в лабораторных работах по курсу “Основы радиоэлектроники”.

При выполнении данной работы использовались следующие программы: ElectronicsWorkbench- для виртуального моделирования электрических схем, SprintLayout – для разводки печатных плат, Splan4.0 –для рисования схем.

1. Основы радиоэлектроники. Под редакцией Г.Д.Петрухина.- М.: Издательство МАИ, 1993.

2.Ефимчик М.К. Технические средства электронных систем: Учебное пособие. – М.: Тесей, 2006

3. Мамонхин И.Г. Усилительные устройства: Учеб. пособие для вузов.— М.: Связь, 1977.

4. Расчет электронных схем. Примеры и задачи: Учеб. пособие для вузов / Г.И. Изъюрова, Г.В. Королев, В.А. Терехов и др. — М.: Высшая школа, 1987.

5. Каяцкас А.А. Основы радиоэлектроники: Учеб. пособие для вузов. — М.: Высшая школа, 1988.

6. Манаев Е.И. Основы радиоэлектроники: Учеб. пособие для вузов. —М.: Радио и связь, 1985.

7. Головин О.В., Кубицкий А.А Электронные усилители. — М.: Радио и связь, 1983.

Название работы: Обратная связь в усилителях

Предметная область: Коммуникация, связь, радиоэлектроника и цифровые приборы

Описание: Обратной связью называют влияние некоторой выходной величины на некоторую входную которая в свою очередь существенным образом влияет на выходную величину определяет эту выходную величину. При наличии отрицательной обратной связи выходной сигнал таким образом влияет на входной что входной сигнал уменьшается и соответственно приводит к уменьшению выходного сигнала.

Дата добавления: 2015-05-12

Размер файла: 225.23 KB

Работу скачали: 20 чел.

Обратная связь в усилителях.

Когда в 1928 г. была предпринята попытка запатентовать отрицательную обратную связь, то эксперты не увидели ее полезности и дали отрицательный ответ. И действительно, на первый взгляд, отрицательная обратная связь только уменьшает коэффициент усиления усилителя. Однако, как это часто бывает в технике вообще и в электронике в частности, один недостаток того или иного решения может значительно перевешиваться его достоинствами. Отрицательная обратная связь, хотя и уменьшает коэффициент усиления, но исключительно благотворно влияет на многие параметры и характеристики усилителя. В частности, уменьшаются искажения сигнала, в значительно большем диапазоне частот коэффициент усиления оказывается не зависящим от частоты и т. д.

2.2.1. Классификация обратных связей в усилителях

Различают следующих 4 вида обратных связей в усилителе (рис. 2.9):

  1. последовательная по напряжению (а);
  2. параллельная по напряжению (б);
  3. последовательная по току (в);
  4. параллельная по току (г).


На рис. 2.9 обозначено: К — коэффициент прямой передачи, или коэффициент усиления усилителя без обратной связи; B — коэффициент передачи цепи обратной связи.

2.2.2. Анализ влияния отрицательной обратной связи на примере последовательной обратной связи по напряжению

Рассмотрим влияние ООС на примере усилителя, охваченного последовательной обратной связью по напряжению (рис. 2.10).


В структурную схему входит цепь прямой передачи и цепь обратной связи (цепь обратной передачи). Предполагается, что указанные цепи линейные. На усилитель с обратной связью подается внешний синусоидальный входной сигнал и вх1 а на цепь прямой передачи — сигнал и вх2. Цепь прямой передачи характеризуется комплексным ко-

эффициентом усиления по напряжению Ки (коэффициентом прямой передачи):


где U вх2 , U вых -соответственно комплексные действующие значения напряжений и вх2 и и вых. Цепь обратной связи характеризуется комплексным

коэффициентом обратной связи β :


где U ос — комплексное действующее значение напряжения обратной связи иос


Коэффициент усиления усилителя, охваченного обратной связью. Этот коэффициент Киос определяется по формуле

где U вх1 — комплексное действующее значение напряжения и вх1. Легко заметить, что



Поэтому


Отсюда можно сделать следующий очень важный вывод: если глубина отрицательной обратной связи достаточно велика, то коэффициент усиления усилителя, охваченного обратной связью Киос, зависит только от свойств цепи обратной связи и не за висит от свойств цепи прямой передачи.

В цепи прямой передачи используются активные приборы (транзисторы, операционные усилители и т. д.), которые обычно не отличаются высокой стабильностью параметров. Из-за этого и коэффициент Ки является нестабильным. Но если используется глубокая отрицательная обратная связь и в цепи обратной связи применяются высокостабильные пассивные элементы (резисторы, конденсаторы и так далее), то общий коэффициент усиления Киос оказывается стабильным.

Даже если глубина обратной связи не настолько велика, что можно пренебрегать единицей в выражении

1 + β • Ки , отрицательная обратная связь, как можно показать, уменьшает нестабильность коэффициента Киос.

Важно уяснить, что сделанный вывод справедлив независимо от того, какие дестабилизирующие факторы влияют на изменение величины Ки (температура, уровень радиации и т. д.).

Частотные характеристики усилителя, охваченного обратной связью . Если рассуждать формально, то при наличии частотных характеристик для Ки и B частотные

характеристики для Киос оказываются однозначно определенными выражением


И тем не менее очень поучительно более детально рассмотреть вопрос влияния отрицательной обратной связи на частотные свойства усилителя. Пусть коэффициенты Ки и β являются вещественными. Тогда и коэффициент Киос — вещественный. Будем для этого случая использовать обозначения Ки, β и Киос . Пусть в некотором частотном диапазоне коэффициент К и изменяется в пределах от 10000 до 1000 (на 90% по отношению к значению 10000), а коэффициент B является постоянным, β = 0,1. Тогда в соответствии с формулой для Киос окажется, что Киос будет изменяться в пределах от 9,99 до 9,9 (примерно на 1%). Таким образом, изменение коэффициента усиления после введения отрицательной обратной связи станет значительно меньшим.

Важно уяснить, что если все же необходимо повысить коэффициент усиления до 10000, то и в этом случае использование отрицательной обратной связи значительно улучшит стабильность.

Пусть для получения большого коэффициента усиления использованы 4 включенных последовательно описанных усилителя, охваченных отрицательной обратной связью. Тогда в рассматриваемом диапазоне частот общий коэффициент усиления будет изменяться в пределах от 9960 (9,99 • 9,99 • 9,99 • 9,99) до 9606 (9,9 • 9,9 • 9,9 • 9,9).

Изменение составит 3,6% ((9960-9606)/9960•100%). Это, очевидно, значительно меньше 90%.

В первом приближении можно считать, что единицей можно пренебречь при условии, что


1 β Ки |.

Отсюда получаем | Ки | > 1/ | β |

Пусть в качестве цепи прямой передачи используется рассмотренный выше операционный усилитель К140УД8, а в качестве цепи обратной связи — делитель напряжения,

причем β = β = 0,1 (рис. 2.11).

Легко заметить, что U ос= U вых •0,1

Таким образом, для этой схемы действительно


В соответствии с полученным выше неравенством можно, в первом приближении, считать, что

| Киос | = 1/ β = 10 в том диапазоне частот, в котором | Ки | > 10.

Поэтому для определения частоты среза fcp ос усилителя, охваченного отрицательной обратной связью, в первом приближении достаточно провести горизонтальную линию на уровне | Ки | = 10 до пересечения с амплитудно-частотной характеристикой используемого операционного усилителя К140УД8. Из рис. 2.12 видно, что fcp ос =


=5 • IO 5 Гц, это значительно больше частоты среза fcp операционного усилителя ( fcp =10 Гц), не охваченного обратной связью. Характеристика, изображенная жирной линией, представляет собой в первом приближении амлитудно-частотную характеристику усилителя с отрицательной обратной связью, которая, естественно, оказывает благотворное воздействие и на фазочастотную характеристику.


Обозначим через Z вх входное комплексное сопротивление цепи прямой передачи:


где iex -комплексное действующее значение тока iex .

Найдем входное комплексное сопротивление Zex ос усилителя, охваченного обратной связью:



Получим


Таким образом,


Пусть коэффициенты Ки и B являются вещественными (Ки = Ku и β = β ), тогда

Отсюда следует, что последовательная отрицательная обратная связь увеличивает входное сопротивление по модулю. Практически всегда это является положительным фактором.

Выходное сопротивление усилителя, охваченного обратной связью . Обозначим через Z вых и Z вых ос соответственно выходное комплексное сопротивление цепи прямой передачи и выходное комплексное сопротивление усилителя, охваченного обратной связью. По определению


где Δ U вых, ΔI вых — приращения комплексных действующих значений соответственно напряжения ивых и тока ie ых При этом предполагается, что обратная связь отключена (например, выход цепи обратной связи закорочен).

Также предполагается, что Uexl = const , а изменение величин U вых и I вых вызвано изменением сопротивления нагрузки.


но при этом предполагается, что обратная связь действует и что Uexl = const .

В этом случае причиной возникновения приращения Δ U вых . является не только падение напряжения на выходном сопротивлении Ze ых, но и появление приращения

ΔU ос комплексного действующего значения напряжения u ос.



Отсюда с учетом, что Δ U ос = ΔUe ы x • β , получим


В соответствии с этим

Пусть коэффициенты К u и β являются вещественными. Тогда, очевидно, отрицательная обратная связь по напряжению уменьшает выходное сопротивление усилителя. Очень часто это является положительным фактором.

А также другие работы, которые могут Вас заинтересовать

Гост

ГОСТ

Виды обратной связи в усилителях

Обратная связь — это связь между электрическими цепями, при которой часть энергии выходного сигнала передается на вход (то есть из цепи с высоким уровнем сигнала в цепи с более низким).

Обратная связь оказывает заметное воздействие на характеристики и свойства усилителя. Данную связь вводят в схему усилителя с целью изменение ее свойств в необходимом направлении — внешняя обратная связь. Иногда обратная связь может возникнуть самопроизвольно. Например, причиной этого может быть физические особенности усилительного элемента — внутренняя обратная связь. Паразитная обратная связь появляется из-за паразитных связей (индуктивных, емкостных и т.п.).

Усилитель — это устройство, которое предназначено для усиления интенсивности (мощности) сигнала, без изменения его вида.

Часть схемы усилителя и обратная связь при соединении между собой образуют замкнутый контур, который называется петлей обратной связи. Пример схемы такой связи изображен на рисунке ниже.

Рисунок 1. Петля обратной связи. Автор24 — интернет-биржа студенческих работ

K – коэффициент усиления усилителя; В — коэффициент передачи цепи обратной связи.

При конструировании и проектировании принимают ряд мер, направленных на ликвидацию или ослабление паразитной обратной связи. К основным способам относятся:

Готовые работы на аналогичную тему

  1. Организация параллельной обратной связи по выходу (обратная связь по напряжению). Данный способ подразумевает снятие энергии сигнала с выхода схемы параллельно нагрузке.
  2. Организация последовательной обратной связи по выходу. (обратная связь по току). Данный способ подразумевает снятие энергии сигнала с выход схемы последовательно нагрузке. В этом случае напряжение обратной связи прямо пропорционально выходному току.
  3. Организация комбинированной обратной связи. Данный способ подразумевает использование комбинации последовательной и параллельной обратных связей. Такой способ в основном используется в многоканальных телекоммуникационных системах.

По количеству петель различают многопетлевые и однопетлевые обратные связи. Если в петле обратной связи, которая охватывает весь усилитель, присутствуют петли, охватывающие отдельные части и каскады усилителя, то данные цепи называются местными петлями обратной связи. Примеры цепей обратной связи с разным количеством петлей изображены на рисунке ниже.

Рисунок 2. Примеры цепей обратной связи с разным количеством петлей . Автор24 — интернет-биржа студенческих работ

Рисунок 3. Примеры цепей обратной связи с разным количеством петлей. Автор24 — интернет-биржа студенческих работ

Влияние обратной связи на коэффициент усиления по напряжению и нестабильность усиления

Для оценки и анализа воздействия обратной связи на коэффициент усиления по напряжению будет рассмотрен последовательный способ введения сигнала, изображенный на рисунке ниже.

Рисунок 4. Последовательный способ введения сигнала. Автор24 — интернет-биржа студенческих работ

Для начала предполагается, что входное сопротивление (Zвх) бесконечно велико, поэтому:

Uвх. ист — Uвх. ос + Uсв = 0

Uвх. ист — сигнал источника; Uвх. ос — результирующий сигнал на входе усилителя; Ucв — выходное напряжение.

Таким образом результирующий сигнал на входе усилителя можно рассчитать по следующей формуле:

Uвх. ос = Uвх. ист + Ucв.

Выходное напряжение усилителя вычисляется по формуле:

Uвых. ос = К • Uвх. ос,

где, К — коэффициент усиления по напряжению.

Из данного уравнения понятно, что коэффициент усиления не изменяется, однако, по отношению к сигналу источника видоизменяется:

Uвых. ос = Кос • Uвх. ист.

Так как левые части двух выше представленных уравнений равны, то можно записать:

К / Кос. = Uвх. Ист / Uвх. ос. = F

где, F - возвратная разность.

И становится понятно, что коэффициент усиления по напряжению изменяется пропорционально изменению входного сигнала. Учитывая, что:

Uвх. Ист = Uвх. ос – Uсв. и К /Кос. = Uвх. ист. / Uвх.ос. = F

F = (Uвх.ос. – Ucв.) / Uвх.ос. = 1 - (Uсв. / Uвх.ос.) =1 + Т

где Т — возвратное отношение.

Возвратное отношение является комплексной величиной, которая равна (после преобразования предыдущего уравнения):

Т = -(Uсв. / Uвых.ос.) • (Uвых.ос. / Uвх.ос. = -В • К

где В — коэффициент передачи цепи обратной связи.

Модуль возвратного отношения характеризует изменение сигнала при прохождении им цепи обратной связи. Если возвратная разность больше единицы, то цепь называют отрицательной, а если меньше — положительной. Если цепь обратной связи отрицательная, то коэффициент усилителя с обратной связью будет уменьшаться:

Kос. = К /|F|= К / (1 + В • К)

Если цепь обратной связи положительная, то коэффициент усиления усилителя будет расти:

Кос. = К / |F|= К / (1 – В • К)

В групповых усилителях используется комбинированная глубокая отрицательная обратная связь (возвратная разность намного больше единицы), в таком случае коэффициент усиления усилителя будет равен:

Кос. = К / (1 + В • К) = 1 / В

Заметное влияние на коэффициент усиления оказывают дестабилизирующие факторы, к которым относятся:

  1. Изменение влажности.
  2. Старение усилительных элементов.
  3. Изменение температуры.
  4. Старение деталей схемы.

Количественное изменение коэффициента усиления из-за воздействия дестабилизирующих факторов характеризуют величину без обратной связи:

где, dK – дифференциал коэффициента усиления усилителя.

Нестабильность с обратной связью вычисляется по формуле:

dqсв = dKсв / Ксв

Подставляя в формулу для расчета коэффициент усиления при отрицательной обратной связи и продифференцировав его, получаем:

Рисунок 5. Формула. Автор24 — интернет-биржа студенческих работ

Таким образом, ясно, что отрицательная обратная связь стабилизирует усиление усилителя, снижая его нестабильность.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 18 02 2022

Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.

Понятие "обратная связь" широко используется как в технике, так и в других областях знаний.
В усилителях под обратной связью (ОС) подразумевается такая электрическая связь, при которой часть энергии усиленного сигнала с выхода усилителя подается обратно на его вход.
Различают, по признаку усиления, положительную обратную связь (ПОС) и отрицательную обратную связь (ООС).
При положительной ОС сигнал на вход усилителя поступает в фазе со входным сигналом. При отрицательной ОС сигнал будет подаваться в противофазе с входным сигналом.
В усилителях используется, как правило, отрицательная обратная связь. а положительная - в генераторах и регенеративных радиоприемниках.
При наличии отрицательной обратной связи выходной сигнал таким образом влияет на входной так, что входной сигнал уменьшается и, соответственно, уменьшается выходной сигнал. И тут возникает вопрос: и зачем нужна такая обратная связь? Вот так и эксперты в 1928 году не увидели ее полезности и не запатентовали это изобретение.
И действительно, на первый взгляд, отрицательная обратная связь только уменьшает коэффициент усиления усилителя. Это так, но она исключительно благотворно влияет на многие параметры и характеристики усилителя.
В частности, уменьшаются искажения сигнала; в значительно большем диапазоне частот коэффициент усиления оказывается не зависящим от частоты и т.д. Но эти преимущества мы рассмотрим позже, а сейчас определимся с видами обратной связи и что происходит в усилителях при применении этих связей.

Виды обратной связи.

Усилитель с обратной связью можно рассматривать как два четырехполюсника (рис.1). Один из них - собственно усилитель, на вход которого подается напряжение Uвх. Второй четырехполюсник, состоящий из линейных элементов, образует цепь обратной связи.
Оба четырехполюсника могут соединяться по разному.
По способу подачи обратной связи различают ОС по напряжению и ОС по току.
В первом случае напряжение обратной связи пропорционально величине выходного напряжения усилителя, во втором случае - пропорционально току, протекающему через нагрузку усилителя.
На рис.1 показаны основные виды обратных связей, которые подразделяются на:
(а) последовательная по напряжению;
(б) параллельная по напряжению;
(в) последовательная по току;
(г) параллельная по току,
где К– коэффициент прямой передачи, или коэффициент усиления усилителя без обратной связи;
β– коэффициент передачи цепи обратной связи.

OS1

Если цепь обратной связи подключается к выходному напряжению усилителя на нагрузке Rн, а напряжение обратной связи Uос - последовательно в разрыв цепи входного напряжения Uвх, то такая обратная связь называется последовательной обратной связью по напряжению (рис.1а).
Если же цепь ОС подключена к выходу Uвых, а Uос включена параллельно напряжению на входе усилителя Uвх, то это будет параллельная обратная связь по напряжению (рис.1б).
При снятии токового сигнала для обратной связи на выходе усилителя с разрыва цепи нагрузочного сопротивления Rн и подключение этого сигнала последовательно с входным напряжением, получится последовательная обратная связь по току (рис.1в).
Параллельная обратная связь по току образуется при подачи токового сигнала с выхода усилителя на вход параллельно входному напряжению Uвх (рис.1г).
Короче говоря: обратная связь может подключаться на вход усилителя или последовательно, или параллельно, а сигнал сниматься с выхода либо токовый, либо напряжением.

OS2

Далее рассмотрим принципиальные и структурные схемы каскадов усилителей с различными способами присоединения цепи обратной связи.
На рис.2 показана последовательная схема обратной связи по напряжению. , когда вход цепи ОС подсоединен параллельно выходу каскада, а выход - последовательно ко входной цепи и образует последовательную ОС по напряжению. При подключении выходного напряжения усилителя к параллельно - последовательной цепи нагрузки, состоящей из сопротивления нагрузки Rн и резисторов Rос и Rт, напряжение обратной связи Uос подается последовательно в разрыв цепи входного напряжения сигнала Uc на внутреннею нагрузку Rвх.

OS3

На рис.3 вход цепи обратной связи подключен параллельно сопротивлению нагрузки Rн. В этой схеме напряжение на входе цепи ОС Uсв равно выходному напряжению Uн (нагрузке Rн) усилительного каскада. Таким образом создается параллельная обратная связь по напряжению.
Для всех ОС по напряжению характерно уменьшение их действия с уменьшением сопротивлений нагрузки, а при коротком замыкании выхода - полное прекращение.

OS4

Последовательная обратная связь по току (рис.4) образуется при последовательном соединения входа и выхода через цепь обратной связи. Для получения такой ОС, напряжение для ОС Uсв снимают с резистора Rт, включенного в цепь эмиттера. При изменении тока коллектора транзистора, которое вызывается переменным входным сигналом, создает на Rт переменное падение напряжения и, соответственно, разность между подводимом ко входу напряжением и переменным напряжением, действующим на резисторе.

OS5

На рис.5 показана параллельная обратная связь по току. Здесь переменное напряжение для обратной связи Uсв снимается с резистора Rт. Это напряжение, фаза которого противоположна фазе входного сигнала, параллельно подается на вход первого транзистора и управляет им.
Эти ОС по току прекращаются при разрыве входной или выходных цепях каскада, т.к. токи, создающие напряжения обратной связи, равны нулю.

OS6

Из перечисленных простых видов ОС могут создаваться усилители с многопетлевой ОС, состоящих из двух, трех и более каскадов усиления, в которых встречаются несколько петель обратной связи, охватывающая один каскад (местная петля ОС) и весь усилитель (общая петля ОС). Петли могут быть независимыми, а также частично или полностью входить одна в другую (рис.6). Поэтому необходимо учитывать действие общей ОС на местные ОС при расчете и выборе параметров последних.
В многокаскадных усилителях чаще всего общей петлей ОС охватывается не более двух каскадов, а в остальных каскадах, если требуется высокие электрические показатели, применяются местные петли.
При охвате петлей обратной связи нескольких каскадов усилителя могут возникнуть фазовые сдвиги из влияния реактивных элементов в каскадах (конденсаторы, катушки), что может привести к самовозбуждению усилителя.

Коэффициент усиления обратной связи.

Усилитель с обратной связью можно рассматривать как два четырехполюсника (рис.7).
Один из них - собственно усилитель, на вход которого подается напряжение Uвх. Этот усилитель при отключенной нагрузке Rн имеет коэффициент усиления К, т.е. на его выходе развивается э.д.с. KUвх. При включенной нагрузке напряжение на выходе усилителя Uн меньше э.д.с. KUвх на величину падения напряжения на выходном (внутреннем) сопротивлении усилителя Rвых от тока нагрузки Iн:
Uн = KUвх - IнRвых. (1)
Второй четырехполюсник, состоящий из линейных элементов, образует цепь обратной связи. Коэффициент передачи этой цепи равен β = Uос/Uсв, где Uос - напряжение, поступающее с выхода цепи обратной связи на вход усилителя.
Напряжение на входе собственно усилителя Uвх равно сумме напряжений источника сигнала Uс и обратной связи Uос:
Uвх = Uс + Uос = Uс + βUн.
Подставим это выражение в (1), получим:
Uн = К(Uс + βUн) - IнRн
или
Uн(1 - Кβ) = КUс - IнRн.
Выходное напряжение усилителя с ОС оказывается равным
Uн = [К/(1 - Кβ)]Uс - [Rн/(1 - Кβ)]Iн. (2)
Соотношение (1) и (2) выражают закон Ома для всей цепи: в левой части соотношений фигурирует выходное напряжение усилителя, а в правой - разность между действующей в выходной цепи э.д.с. и падением напряжения на выходном сопротивлении Rн усилителя.

OS7

Положительные свойства отрицательной обратной связи в усилителях.

Уменьшение нелинейных искажений.

Нелинейные искажения возникают в тех случаях, когда усилитель на дает на выходе увеличенную точную копию входного сигнала, а так или иначе изменяет его форму из-за нелинейности проходной характеристики. Нелинейные искажения - это амплитудные искажения, не зависящие от частоты сигнала. Они могут возникнуть тогда, когда коэффициент усиления падает при больших положительных или отрицательных отклонениях сигнала ("приплюснутая" синусоида), так же с уменьшением коэффициента, когда сигнал становится очень малым по величине вблизи пересечения нуля ("ступенька") и т.д.
Эти искажения можно рассматривать как внесение усилителем погрешности в выходной сигнал.

OS8

Основное достоинство отрицательной обратной связи в усилителях - уменьшение нелинейных искажений, возникающих главным образом в выходных каскадах. Поэтому ООС делается всегда именно в этом каскаде, но может охватывать также и предыдущий каскад.
Приводимый ниже расчет показывает, что отрицательная обратная связь уменьшает искажения во столько же раз, во сколько раз падает коэффициент усиления.
Рассмотрим усилитель на рис.8 с коэффициентом усиления К без ОС и искажающим сигналом D на выходе до включения обратной связи, т.е. без нее:
Uвых = КUвх + D,
где
Uвх = Uс - βUвых.
Поэтому
Uвых = К(Uс - βUвых) + D.
Выполняя преобразования, получим
Uвых(1 + βК) = КUс + D.
Следовательно,
Uвых = [К/(1 + βК)]Uс + D/(1 + βК)
или
Uвых = К'Uс + D',
где К' = К/(1 + βК) - коэффициент усиления с ОС,
D' = D/(1 + βК) - величина искажающего сигнала на выходе при наличии отрицательной обратной связи.
Отсюда видно, что в случае, когда усилитель охвачен ООС, искажения D' уменьшаются в (1 + βК) раз, но при этом входной сигнал Uс должен быть увеличен во столько же раз, чтобы поддержать основновной выходной сигнал на прежнем уровне.

Для большей наглядности рассмотрим числовой пример.
Пусть каскад имеет без обратной связи на средней частоте коэффициент усиления К = 40.
Переменный входной сигнал на входе усилителя равен 1 В, а на выходе - 40 В.
Напряжение обратной связи Uос = βUвых обычно составляет от 5 до 20% усиленного сигнала.
Предположим, что 10% усиленного сигнала, т.е. 4 В, подводится обратно на вход усилителя. Чтобы получить прежнее Uвых = 40 В, надо на вход подать Uвх = 1 + 4 = 5 В, т.к. тогда на входе напряжение сигнала снова будет:
Uс = Uвх - Uос = 5 - 4 = 1В.
Усиление каскада при ОС стало равно:
К = Uвых/Uвх = 40/5 =8,
т.е. уменьшилось в пять раз. Для поддержки Uвых на прежнем уровне нужно увеличить коэффициент усиления в пять раз.
Использование второго усилителя для увеличения входного сигнала не внесет существенного вклада в общий уровень искажений, т.к. будут усиливаться только малые сигналы. Дополнительное усиление - небольшая плата за малые искажения, так что это стоящий обмен.

OS9

Числовой пример по этой теме мы уже привели. До полной ясности приведем еще графический пример с нелинейными искажениями, источниками которых являются нелинейности вольт-амперных характеристик (ВАХ) транзисторов. Поэтому в усилителе положительные и отрицательные полуволны выходного сигнала могут быть разными.
Для уменьшения таких искажений применяется ООС.
На рис.9а показаны графики синусоидального входного и искаженного выходного напряжения в транзисторном усилителе (рис.8), не имеющие ОС (масштабы Uвх и Uвых разные). В данном случае нелинейные искажения таковы, что положительная полуволна выходного сигнала имеет бОльшую амплитуду, чем отрицательная.
Графики работы этого же усилителя с отрицательной обратной связью даны на рис.9б.
На входе Uс по прежнему синусоидальное. Его пришлось увеличить. Напряжение Uос = -βUвых противоположное по фазе Uвх, имеет первую полуволну с большей амплитудой, а вторую - с меньшей, т.к. оно является частью выходного напряжения.
Напряжение на входе усилителя Uвх равно разности напряжений источника сигнала Uс (предыдущего каскада или генератора) и Uос и показано жирной линией. Оно имеет положительную полуволну с меньшей амплитудой, а отрицательную - с большей. Так как меньшая положительная полуволна из-за нелинейности характеристики усилителя усиливается больше, то на выходе получается сигнал, близкий к синусоидальному.

Улучшение частотных характеристик.

OS10

Никакой усилитель не дает один и тот же коэффициент усиления на всех частотах и начинает падать на высоких частотах, главным образом из-за внутренней паразитной емкости усилителя. Этот недостаток иногда называют частотными искажениями, но их не следует путать с нелинейными искажениями.
Отрицательная обратная связь может скорректировать плохую частотную характеристику в пределах интервала частот и позволяет получить более равномерную амплитудно-частотную характеристику усилителя. В этом просто легко убедиться простым образом.
Допустим, что коэффициент частотных искажений Мв = Кср/Кв > 1 , т.е. усиление на высоких частотах Кв меньше, чем на средних Кср.
При отрицательной ОС
Мв.ос = Кср.ос/Кв.ос,
где Кср.ос и Кв.ос - коэффициенты усиления соответственно на средних и высоких частотах при введении в усилитель ОС.
Но
Кср.ос = Кср/(1 + βКср),
Кв.ос = Кв/(1 + βКв),
следовательно,
Мв.ос = [Кср/(1 + βКср)] / [Кв/(1 + βКв)] = (Кср/Кв)·[(1 + βКв) / (1 + βКср)],
или
Мв.ос = Мв·[(1 + βКв) / (1 + βКср)]. (6)
Так как
Кв
то отношение
(1 + βКв) / (1 + βКср)
Таким образом, Мв.ос
Предполагая, что обратная связь весьма глубокая (βК >> 1), и пренебрегая единицей по сравнению с βКв и βКср в выражении (6) получаем Мв.ос ≈ 1, т.е. βКв и βКср примерно равные и частотные искажения в усилителе с глубокой отрицательной обратной связью уменьшаются.
Это сглаживание амплитудно - частотной характеристики (АЧХ) объясняется так. Уровень напряжения, подаваемого с выхода на вход усилителя, в соответствии с АЧХ усилителя разный на разных частотах и, поэтому, различно действие обратной связи.
В области частот, где имеется подъем, обратная связь больше ослабляет усиление, чем на частотах, где имеется завал АЧХ. Таким образом, неравномерность характеристики сглаживается (рис.10).
Все это лишь в случае, если β не зависит от частоты. Применяя в цепи обратной связи реактивные элементы, т.е. делая коэффициент β частотно зависимым, можно получить АЧХ любой формы в зависимости от схемы. Этим пользуются для коррекции частотных искажений, возникающих в каскадах усиления, не охваченных обратной связью.

Для наглядности работы обратной связи на разных частотах рассмотрим числовой пример с каскадом усилителя, как делали это выше.
Там каскад имеет без ОС на средней частоте коэффициент усиления К = 40. Переменное напряжение на входе усилителя равно 1 В, а на выходе - 40 В.
Допустим, что этот усилитель без обратной связи на низшей или высшей частоте имеет коэффициент усиления 30, т.е. дает уменьшение усиления на 25%. Это значит, что при подаче на вход усилителя 1 В на выходе будет 30 В.
Предположим, что коэффициент обратной связи равен 0,1 (10% выходного напряжения) и равен 3 В, а напряжение на входе для получения U = 30 в должно быть Uвх = 1 + 3 = 4 В.
Следовательно, коэффициент усиления при обратной связи равен 30/4 = 7,5, а для средней частоты от был 8. Как видно, "заваливание" усиления получается немного больше 6%, т.е. оно уменьшилось в четыре раза.

Расширение полосы пропускания.

OS11

Использование отрицательной обратной связи приводит к уменьшению нижней граничной частоты fн и увеличение верхней граничной частоты fв, т.е. расширению полосы пропускания усилителя (рис.11).
Новые граничные частоты f'н и f'в зависят, как и коэффициент усиления, от выражения (1 + βК) :
f'н = fн/(1 + βК),
f'в = fв(1 + βК),
а новый коэффициент К' равен
К' = К/(1 + βК).
Если усилитель имеет К = 40 и fв = 8 кГц, то после применения ООС с β = 0,05 получаем новый коэффициент усиления
К' = 40/(1 + 40·0,05) = 13,3
и граничную частоту
f'в = 8·(1 + 40·0,05) = 24 кГц.
Из этих расчетов видно, что увеличение широты пропускания привело к уменьшению коэффициента усиления в три раза.
Отсюда можно сделать общий вывод: произведение коэффициента на ширину пропускания К·∆f является постоянной величиной.

Устойчивость схем с отрицательной обратной связью.

В принципе усилители с ООС устойчивы, но тогда, когда хорошо сконструированы и грамотно изготовлены.
В результате фазовых сдвигов в некоторых диапазонах частот, обычно на краях усиливаемой полосы, связь из отрицательной может стать положительной и усиление может возрасти до бесконечности, что приведет к превращению усилителя в генератор, генерирующий собственные колебания. О таком усилителе говорят, что он нестабильный.
Вероятность нестабильности увеличивается с количеством обратной связи с большим усилением и глубокой связью, охватывающих несколько каскадов.Поэтому при конструировании усилителей ограничивают число каскадов, охваченных ОС, до трех
Так же дополнительно уменьшают коэффициент усиления на границах полосы пропускания на тех частотах, на которых в в результате фазового сдвига отрицательная обратная связь превращается в положительную.

Преимущества и недостатки отрицательной обратной связи.

ООС позволяет улучшить следующие свойства усилителя:
а) уменьшение чувствительности усиления к изменению параметров элементов схемы, режимов питания и внешних факторов;
б) уменьшение нелинейных искажений;
в) возможность формирования частотных характеристик;
г) возможность изменения входного и выходного сопротивлений.
К недостаткам ООС относится уменьшение коэффициента усиления и возможность нестабильности схемы.

Литература:
1.Белоцерковский Г.Б. - Основы радиотехники.
2.Гершунский - Основы электроники.
3.Давыдов С.Л. - Радиотехника, 1963 г.
4.Серегин Б.А. - Обратная связь в усилителях, 1983 г.
5.Хабловски И. - Электроника в вопросах и ответах.

Читайте также: