Характеристики физических каналов реферат

Обновлено: 08.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

СЕТИ ПЕРЕДАЧИ ДАННЫХ

Одновременно огромный скачок произошел в технике защиты передачи от помех. От простых способов обнаружения ошибок путем проверки перфоленты на четность числа пробитых в ней отверстий удалось перейти к высоконадежным кодам не только обнаруживающим, но и исправляющим ошибки. Самое же главное, была создана микроэлектронная база. Она позволила сделать сложную аппаратуру компактной и экономичной по расходу электроэнергии. Все это открыло возможности построения технических средств передачи с огромной скоростью и ознаменовало наступление новой эпохи развития документальной связи.

От первых систем передачи данных к системе Х.25
Общая структура системы передачи данных показана на рис. 1. Она включает канал передачи данных, на каждом конце которого находятся линейное устройство передачи данных (ЛУПД) и оконечное устройство передачи данных (ОУПД). В официальном издании рекомендаций бывшего МККТТ на английском языке приняты названия Data Circuit terminating Equipment (DCE) и Data Terminal Equipment (DTE). В русском переводе упомянутого документа использованы термины: аппаратура окончания канала данных (АКД) и оконечное оборудование данных (ООД), которые представляются не вполне удачными с точки зрения традиций русскоязычной научно-технической терминологии.

Именно поэтому автор предпочитает более понятные названия, приведенные в тексте. Необходимость введения таких понятий объясняется расширением номенклатуры абонентских устройств, существенно усложняющих задачи их согласования с линией связи.

Телетайпы и другие терминалы с клавиатурой, снабженные устройствами отображения или не имеющие таковых, системы дистанционного ввода заданий с устройствами считывания, печатающие устройства и сканеры, автоматизированные лабораторные установки с различными физическими датчиками, персональные или любые другие ЭВМ с разнообразными периферийными устройствами - все они охватываются понятием ОУПД при условии, что включены для работы в сеть связи.

Задачей ЛУПД является также преобразование сигналов. Если канал передачи данных аналоговый, то данные от терминала поступают на модем (модулятор-демодулятор). Если же канал передачи данных является цифровым, то двоичные данные преобразуются в стандартную форму сбалансированного кода для передачи по линии сигналами, не содержащими составляющей постоянного тока. Другой функцией ЛУПД является выполнение совместно с ОУПД процедур установления, поддержания и прекращения соединений между передающим и приемным концами.

Канал передачи данных - это любая передающая среда. По способу его работы различают симплексную, полудуплексную и дуплексную связь (рис. 2). При симплексной связи, показанной на рис. 2, а, данные всегда перемещаются в одном направлении, как показано сплошными линиями. При этом не исключается возможность передачи в противоположном направлении подтверждений со стороны приемного конца, которые показаны штриховыми линиями.

При полудуплексной связи (рис. 2, б) данные передаются в обоих направлениях, но попеременно. Термин "полудуплексная связь", означающий попеременное применение симплексной связи то в одном, то в другом направлении, не применялся в технике связи до его введения специалистами по вычислительной технике.

При дуплексной связи, как показано на рис. 2, в, данные передаются в обоих направлениях одновременно. При этом как при полудуплексной, так и при дуплексной связи также передаются подтверждения, показанные штриховыми линиями. Физически для симплексной или полудуплексной работы должна использоваться либо одна пара проводов, по которой сигналы передаются в обоих направлениях, либо две пары проводов, по каждой из которых сигналы передаются в одном направлении. Первый способ применяется, когда в тракте нет усилителей, и называется двухпроводным соединением. Второй способ применяется при наличии усилителей и называется четырехпроводным соединением. Дуплексная работа требует четырехпроводного соединения.

Если работа передающего и приемного концов тракта передачи данных полностью согласована во времени, то на приемном конце каждый переданный символ может быть выделен. В противном случае символы выделяются с помощью специальных разделительных знаков: стартового (пробела) и стопового (посылки). Первый способ называется синхронной передачей, второй - асинхронной. В терминалах передачи данных со скоростью до 1,2 кбит/с, как и в телетайпах, применяют асинхронную передачу. В терминалах же со скоростью передачи 2,4 кбит/с и выше применяется синхронная передача.

Широкое применение систем передачи данных началось в 1960-х гг. как по телефонным сетям общего пользования, так и по специализированным сетям. Главные недостатки систем передачи данных по телефонным сетям состоят в том, что для таких систем требуются модемы, а время установления соединения составляет по меньшей мере 15 с, а обычно - значительно больше. Кроме этого, качество передачи в этом случае зависит от характеристик телефонных каналов. Они могут меняться от соединения к соединению и подвергаться воздействию помех, в частности, от работы коммутационных приборов на телефонных станциях электромеханических систем. Некоторое улучшение качества передачи может быть достигнуто при использовании арендованных телефонных линий, но для них также требуются модемы. За выигрыш же возможного улучшения качества передачи приходится расплачиваться заботами о сокращении простоев линий. В ходе таких забот во многих странах разрабатывались и применялись схемы коллективного использования арендованных линий путем формирования групп абонентов, подключения терминалов в разных точках трассы абонентской линии, мультиплексирования, применения других методов.

На нижнем (физическом) уровне устанавливаются стандарты на механические разъемы и электрические характеристики линий связи, на передаваемые по ним цифровые сигналы, включая сигналы занятия линии и ее освобождения. Эти стандарты описаны в рекомендации Х.21 и за недостатком места здесь не рассматриваются. На втором (канальном) уровне определяются требования к средствам передачи информации по участку цифрового канала между двумя соседними узлами в виде блоков данных, называемых кадрами.

На третьем (сетевом) уровне определяются требования к системе передачи информации в виде блоков данных, называемых пакетами. Помимо полезной информации, пакеты несут управляющую информацию об адресах отправителя и получателя, порядковую нумерацию и некоторые другие служебные данные. Описанное разделение функций позволяет в одном физическом цифровом канале создать большое число логических (так называемых виртуальных) каналов. Они одновременно работают между разными пользователями, которые могут находиться в одном или разных пунктах.

Перед тем как перейти к рассмотрению особенностей второго и третьего уровней сети Х.25, уточним некоторые понятия. Будем называть блоком данных произвольный набор символов, предназначенных для передачи по каналу связи. В зависимости от состава (формата) блока, а также его назначения в конкретных случаях блокам могут быть присвоены разные названия. Например, блок данных, передаваемых по СПД общеканальной телефонной сигнализации № 7, называют сигнальной единицей. В этой статье рассматриваются блоки данных, называемые кадрами и пакетами, а в следующей беседе, посвященной технологии АТМ, будут рассматриваться блоки данных, называемые ячейками. Необходимость такого уточнения вызвана тем, что в литературе часто можно встретить термин "пакет" применительно к любому блоку данных, в том числе такому, который с точки зрения рекомендации Х.25 пакетом не является. Именно поэтому читателю, который встретит термин "пакет", можно лишь порекомендовать в каждом конкретном случае внимательно разбираться с тем, какой именно блок данных имеется в виду.

В описываемом стандарте, который подтвержден несколькими международными и национальными организациями и фактически признан во всем мире, рассматривается управление каналом связи по участкам с помощью протокола высокого уровня (по-английски HDLC - High-level Data Link Control). Русским эквивалентом термина HDLC может служить сокращение ВУК (высокоуровневое управление каналом). Обслуживаемый протокол рассчитан на широкий круг применений, в том числе и в локальных сетях для связи целой группы абонентских пунктов. Мы же ограничимся здесь лишь рассмотрением этого протокола на примере одной версии, а именно: версии связи двух равноправных пунктов LAPB (Link Access Procedures Balanced, т.е. процедур сбалансированного доступа к каналу).

Протокол ВУК управляет передачей информации в виде стандартных блоков, поступающих от сетевого уровня и называемых пакетами. На уровне канала к каждому пакету добавляется заголовок, обычно содержащий 48 двоичных разрядов. Пакет с этим дополнительным заголовком называется кадром. Термин "заголовок" носит условный характер, так как часть его разрядов помещается в голове кадра, а другая часть (проверочное поле для обнаружения ошибок) - в его хвосте. Коды, исправляющие ошибки, требуют внесения слишком большой избыточности и поэтому в обычных сетях передачи данных не применяются. Вместо этого используются коды, обнаруживающие ошибки. При обнаружении ошибки посылается автоматический запрос на повторную передачу кадра, а принятый ошибочный кадр сбрасывается. Длина кадра (следовательно, пакета) не регламентируется, так как оптимальная длина пакета зависит от вероятности ошибки в канале. С точки зрения накладных расходов, связанных с передачей служебных разрядов заголовка, длину пакета предпочтительнее сделать как можно больше, чтобы снизить процент содержания служебной информации. При этом, если вероятность ошибки невелика, запросы на повторение передачи будут редки, система будет работать эффективно. Если же вероятность ошибки будет большой, повторная передача потребуется чаще. Тогда большая часть накладных расходов придется не на заголовки, а на участившиеся повторные передачи. Именно поэтому выбор длины пакета (следовательно, кадра) предоставляется пользователю. Для обнаружения же начала и конца кадра в непрерывном потоке цифровой передачи используются специальные кодовые комбинации вида 01111110, называемые флагами (рис. 4, на котором показан формат кадра).

Применение флагов вносит определенные трудности в решение задачи обеспечения прозрачности цифровой передачи, т.е. ее независимости от характера передаваемых последовательностей. Действительно, если в передаваемом потоке полезной информации встретится последовательность из шести единиц, то она будет принята за границу между кадрами. Это вызовет нарушение работы канала. Во избежание подобных сбоев во всех случаях, когда в передаваемой последовательности встречаются пять "1", то после них автоматически вставляются "0". На приемном же конце после принятых пяти "1" следующий за ними "0" всегда сбрасывается. Такое техническое решение позволяет гарантировать прозрачность цифровой передачи. Рассматривая рис. 4, нетрудно обнаружить назначение всех 48 служебных разрядов заголовка кадра.

Как видно из изложенного, описанное поле нумерации кадров позволяет вести счет только до восьми (три двоичных разряда). Следовательно, при наличии семи неподтвержденных кадров передача должна быть приостановлена. Именно поэтому, например, в системах спутниковой связи, когда в пути могут находиться более семи кадров, поле их нумерации может быть расширено до 7 разрядов и, следовательно, счет увеличен до 128. Аналогичным образом стандарт допускает увеличение поля адресов и проверочной последовательности.

Протокол предусматривает различные процедуры передачи на уровне канала. Наибольшее распространение получила так называемая процедура передачи с возвращением на N кадров (N

Понятие физической среды данных. Механические и электрические свойства среды передачи на физическом уровне для физических кабелей. Кабели связи, линии связи, каналы связи. Типы кабелей и структурированные кабельные системы. Кабель типа "витая пара".

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 11.05.2015
Размер файла 23,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

    1. Физическая среда данных
  • 1.1 Понятие физической среды данных
  • 1.2 Кабели связи, линии связи, каналы связи
  • 1.3 Типы кабелей и структурированные кабельные системы
  • 1.4 Кабель типа "витая пара" (twisted pair)
  • 1.5 Коаксиальные кабели
  • 1.6 Оптоволоконный кабель

1. Физическая среда данных

Физическая среда является основой, на которой строятся физические средства соединения. Сопряжение с физическими средствами соединения посредством физической среды обеспечивает Физический уровень. В качестве физической среды широко используются эфир, металлы, оптическое стекло и кварц. На физическом уровне находится носитель, по которому передаются данные. Среда передачи данных может включать как кабельные, так и беспроводные технологии. Хотя физические кабели являются наиболее распространенными носителями для сетевых коммуникаций, беспроводные технологии все более внедряются благодаря их способности связывать глобальные сети.

На физическом уровне для физических кабелей определяются механические и электрические (оптические) свойства среды передачи, которые включают:

тип кабелей и разъемов;

разводку контактов в разъемах;

схему кодирования сигналов для значений 0 и 1.

Канальный уровень определяет доступ к среде и управление передачей посредством процедуры передачи данных по каналу. В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

физическая среда кабель передача

1.2 Кабели связи, линии связи, каналы связи

кабели связи;

линии связи;

каналы связи

Из кабелей связи и других элементов (монтаж, крепеж, кожухи и т.д.) строят линии связи. Прокладка линии внутри здания задача достаточно серьезная. Длина линий связи колеблется от десятков метров до десятков тысяч километров. В любую более-менее серьезную линию связи кроме кабелей входят: траншеи, колодцы, муфты, переходы через реки, море и океаны, а также грозозащита (равно как и другие виды защиты) линий. Очень сложны охрана, эксплуатация, ремонт линий связи; содержание кабелей связи под избыточным давлением, профилактика (в снег, дождь, на ветру, в траншее и в колодце, в реке и на дне моря). Большую сложность представляют собой юридические вопросы, включающие согласование прокладки линий связи, особенно в городе. Вот чем линия (связи) отличается от кабеля.

По уже построенным линиям организуют каналы связи. Причем если линию, как правило, строят и сдают сразу всю, то каналы связи вводят постепенно. Уже по линии можно дать связь, но такое использование крайне дорогостоящих сооружений очень неэффективно. Поэтому применяют аппаратуру каналообразования (или, как раньше говорили, уплотнение линии). По каждой электрической цепи, состоящей из двух проводов, обеспечивают связь не одной паре абонентов (или компьютеров), а сотням или тысячам: по одной коаксиальной паре в междугородном кабеле может быть образовано до 10800 каналов тональной частоты (0,3-3,4 КГц) или почти столько же цифровых, с пропускной способностью 64 Кбит/с.

При наличии кабелей связи создаются линии связи, а уже по линиям связи создаются каналы связи. Линии связи и каналы связи заводятся на узлы связи. Линии, каналы и узлы образуют первичные сети связи.

1.3 Типы кабелей и структурированные кабельные системы

В качестве среды передачи данных используются различные виды кабелей: коаксиальный кабель, кабель на основе экранированной и неэкранированной витой пары и оптоволоконный кабель. Наиболее популярным видом среды передачи данных на небольшие расстояния (до 100 м) становится неэкранированная витая пара, которая включена практически во все современные стандарты и технологии локальных сетей и обеспечивает пропускную способность до 100 Мб/с (на кабелях категории 5). Оптоволоконный кабель широко применяется как для построения локальных связей, так и для образования магистралей глобальных сетей. Оптоволоконный кабель может обеспечить очень высокую пропускную способность канала (до нескольких Гб/с) и передачу на значительные расстояния (до нескольких десятков километров без промежуточного усиления сигнала).

В качестве среды передачи данных в вычислительных сетях используются также электромагнитные волны различных. Однако пока в локальных сетях радиосвязь используется только в тех случаях, когда оказывается невозможной прокладка кабеля, например, в зданиях. Это объясняется недостаточной надежностью сетевых технологий, построенных на использовании электромагнитного излучения. Для построения глобальных каналов этот вид среды передачи данных используется шире - на нем построены спутниковые каналы связи и наземные радиорелейные каналы, работающие в зонах прямой видимости в СВЧ диапазонах.

Очень важно правильно построить фундамент сети - кабельную систему. В последнее время в качестве такой надежной основы все чаще используется структурированная кабельная система.

Структурированная кабельная система SCS (Structured Cabling System) - это набор коммутационных элементов (кабелей, разъемов, коннекторов, кроссовых панелей и шкафов), а также методика их совместного использования, которая позволяет создавать регулярные, легко расширяемые структуры связей в вычислительных сетях.

Преимущества структурированной кабельной системы.

Универсальность. Структурированная кабельная система при продуманной организации может стать единой средой для передачи компьютерных данных в локальной вычислительной сети.

Уменьшение стоимости добавления новых пользователей и изменения их мест размещения. Стоимость кабельной системы в основном определяется не стоимостью кабеля, а стоимостью работ по его прокладке.

Возможность легкого расширения сети. Структурированная кабельная система является модульной, поэтому ее легко наращивать, позволяя легко и ценой малых затрат переходить на более совершенное оборудование, удовлетворяющее растущим требованиям к системам коммуникаций.

Обеспечение более эффективного обслуживания. Структурированная кабельная система облегчает обслуживание и поиск неисправностей.

Надежность. Структурированная кабельная система имеет повышенную надежность, поскольку обычно производство всех ее компонентов и техническое сопровождение осуществляется одной фирмой-производителем.

Существует несколько различных типов кабелей, используемых в современных сетях. Ниже приведены наиболее часто используемые типы кабелей. Множество разновидностей медных кабелей составляют класс электрических кабелей, используемых как для прокладки телефонных сетей, так и для инсталляции ЛВС. По внутреннему строению различают кабели на витой паре и коаксиальные кабели.

1.4 Кабель типа "витая пара" (twisted pair)

Витой парой называется кабель, в котором изолированная пара проводников скручена с небольшим числом витков на единицу длины. Скручивание проводов уменьшает электрические помехи извне при распространении сигналов по кабелю, а экранированные витые пары еще более увеличивают степень помехозащищенности сигналов.

Кабель типа "витая пара" используется во многих сетевых технологиях, включая Ethernet, ARCNet и IBM Token Ring.

Кабели на витой паре подразделяются на: неэкранированные UTP (Unshielded Twisted Pair) и экранированные медные кабели. Последние подразделяются на две разновидности: с экранированием каждой пары и общим экраном STP (Shielded Twisted Pair) и с одним только общим экраном FTP (Foiled Twisted Pair). Наличие или отсутствие экрана у кабеля вовсе не означает наличия или отсутствия защиты передаваемых данных, а говорит лишь о различных подходах к подавлению помех. Отсутствие экрана делает неэкранированные кабели более гибкими и устойчивыми к изломам. Кроме того, они не требуют дорогостоящего контура заземления для эксплуатации в нормальном режиме, как экранированные.

Неэкранированные кабели идеально подходят для прокладки в помещениях внутри офисов, а экранированные лучше использовать для установки в местах с особыми условиями эксплуатации, например, рядом с очень сильными источниками электромагнитных излучений, которых в офисах обычно нет.

Кабели классифицируются по категориям, указанным в табл.4.1 Основанием для отнесения кабеля к одной из категорий служит максимальная частота передаваемого по нему сигнала.

Линия связи состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи дан­ных и промежуточной аппаратуры. Синонимом термина линия связи(line) являет­ся термин канал связи(channel).

Физическая среда передачи данных может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через кото­рые распространяются электромагнитные волны.

В зависимости от среды передачи данных линии связи разделяются на следую­щие:

§ кабельные (медные и волоконно-оптические);

§ радиоканалы наземной и спутниковой связи.

Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и вися­щие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии исполь­зуются и для передачи компьютерных данных. Скоростные качества и помехоза­щищенность этих линий оставляют желать много лучшего. Сегодня проводные линии связи быстро вытесняются кабельными.

Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коак­сиальные кабели с медной жилой, а также волоконно-оптические кабели.

Скрученная пара проводов называется витой парой.Витая пара существует в экранированном варианте, когда пара мед­ных проводов обертывается в изоляционный экран, и неэкранированном, когда изоляционная обертка отсутствует. Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю.

Коаксиальный кабель имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Суще­ствует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения — для локальных сетей, для глобальных сетей, для кабельно­го телевидения и т. п.

Волоконно-оптический кабельсостоит из тонких волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля — он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и лучше других типов передающей среды обеспечивает защиту данных от внешних помех.

Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое количество различных типов радио­каналов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны коротких, средних и длинных волн (KB, СВ и ДВ), называемые также диапазонами амплитудной модуляции (Amplitude Modulation, AM) по типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн (УКВ), для которых характерна частотная модуляция, а также диапазонах сверхвысо­ких частот (СВЧ или microwaves).

В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты использу­ют либо спутниковые каналы, либо радиорелейные каналы, где это условие выпол­няется.

В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных, но наиболее перспективными являются воло­конно-оптические. На них сегодня строятся как магистрали крупных территори­альных сетей, так и высокоскоростные линии связи локальных сетей.

Популярной средой является также витая пара, которая характеризуется отличным соотноше­нием качества к стоимости, а также простотой монтажа. С помощью витой пары обычно подключают конечных абонентов сетей на расстояниях до 100 метров от концентратора. Спутниковые каналы и радиосвязь используются чаще всего в тех случаях, когда кабельные связи применить нельзя — например, при прохождении канала через малонаселенную местность или же для связи с мобильным пользова­телем сети.

Даже при рассмотрении простейшей сети, состоящей всего из двух машин, можно увидеть многие проблемы, присущие любой вычислительной сети, в том числе проблемы, связанные с физической передачей сигналов по линиям связи, без решения которой невозможен любой вид связи.

В вычислительной технике для представления данных используется двоичный код. Внутри компьютера единицам и нулям данных соответствуют дискретные электрические сигналы. Представление данных в виде электрических или оптических сигналов называется кодированием. Существуют различные способы кодирования двоичных цифр 1 и 0, например, потенциальный способ, при котором единице соответствует один уровень напряжения, а нулю - другой, или импульсный способ, когда для представления цифр используются импульсы различной или одной полярности.

В вычислительных сетях применяют как потенциальное, так и импульсное кодирование дискретных данных, а также специфический способ представления данных, который никогда не используется внутри компьютера, - модуляцию (рис. 3). При модуляции дискретная информация представляется синусоидальным сигналом той частоты, которую хорошо передает имеющаяся линия связи.


Потенциальное или импульсное кодирование применяется на каналах высокого качества, а модуляция на основе синусоидальных сигналов предпочтительнее в том случае, когда канал вносит сильные искажения в передаваемые сигналы. Обычно модуляция используется в глобальных сетях при передаче данных через аналоговые телефонные каналы связи, которые были разработаны для передачи голоса в аналоговой форме и поэтому плохо подходят для непосредственной передачи импульсов.


На способ передачи сигналом влияет и количество проводов в линиях связи между компьютерами.

Передача данных может происходить происходит параллельно (рис. 5) или последовательно (рис. 6).

Для сокращения стоимости линий связи в сетях обычно стремятся к сокращению количества проводов и из-за этого используют не параллельную передачу всех бит одного байта или даже нескольких байт, как это делается внутри компьютера, а последовательную, побитную передачу, требующую всего одной пары проводов.



При соединении компьютеров и устройств используются также три различных метода, обозначаемые тремя различными терминами. Соединение бывает: симплексное, полудуп­лексное и дуплексное(рис. 7).

О симплексном соединении говорят, когда данные перемещаются лишь в одном направлении. Полудуплексное соединение позво­ляет данным перемещаться в обоих направлениях, но в разное время, и, наконец, дуплексное соединение, это когда данные следуют в обоих направлениях одновременно.


Рис. 7. Примеры потоков данных.

Другим важным понятием является переключение (коммутация) соединения.

Переключение соединения позволяет аппаратным средствам сети разделять один и тот же физический канал связи между многими устройствами. Два основных способа переключения соединения - пере­ключение цепей и переключение пакетов.

Переключение цепей создает единое непрерывное соединение между двумя сетевыми устройствами. Пока эти устройства взаимодействуют, ни одно другое не сможет воспользоваться этим соединением для передачи собственной инфор­мации - оно вынуждено ждать, пока соединение не освободится.


Рис. 6Переключение цепей

Большинство современных сетей, включая Интернет, используют переключение пакетов. Программы передачи данных в таких сетях делят данные на кусочки, называе­мые пакетами. В сети пакетной коммутации данные могут следовать одновременно одним пакетом, а могут - в нескольких. Данные прибудут в одно и тоже место назначения, несмотря на то, что пути, которыми они следовали, могут быть совершенно различны.

Для сравнения двух видов соединения в сети, предположим, что мы прервали канал в каждом их них. Например, отключив принтер от менеджера на рис. 6 (переставив тумблер в положение В), вы лишили его возможности печатать. Соединение с переключением цепей требует наличия непрерывного канала связи.


Рис. 7. Переключение пакетов

Наоборот, данные в сети с переключением пакетов могут двигаться различными путями. Это видно на рис. 7. Данные необязательно следуют одной дорогой на пути между офисным и домашним компьютерами, разрыв одного из каналов не приведет к потере соединения — данные просто пойдут другим маршрутом. Сети с переключением пакетов имеют множество альтернативных маршрутов для пакетов.

Коммутация пакетов — это техника коммутации абонентов, которая была специ­ально разработана для эффективной передачи компьютерного трафика.

Суть проблемы заключается в пульсирующем ха­рактере трафика, который генерируют типичные сетевые приложения. Например, при обращении к удаленному файловому серверу пользователь сначала просмат­ривает содержимое каталога этого сервера, что порождает передачу небольшого объема данных. Затем он открывает требуемый файл в текстовом редакторе, и эта операция может создать достаточно интенсивный обмен данными, особенно если файл содержит объемные графические включения. После отображения нескольких страниц файла пользователь некоторое время работает с ними локально, что вооб­ще не требует передачи данных по сети, а затем возвращает модифицированные копии страниц на сервер — и это снова порождает интенсивную передачу данных по сети.

Коэффициент пульсации трафика отдельного пользователя сети, равный отно­шению средней интенсивности обмена данными к максимально возможной, может составлять 1:50 или 1:100. Если для описанной сессии организовать коммутацию канала между компьютером пользователя и сервером, то большую часть времени канал будет простаивать. В то же время коммутационные возможности сети будут использоваться и будут недоступны другим пользователям сети.

Пакеты транспортируются в сети как независи­мые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге — узлу назначения.

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета. В этом случае пакет находится некоторое время в очереди пакетов буферной памяти выходного порта, а когда до него дойдет очередь, то он передается следующему коммутатору. Такая схема передачи данных позволяет сглаживать пульсации трафика на магистральных связях между коммутаторами и тем самым использовать их наиболее эффективным образом для повышения пропускной способности сети в целом.

Действительно, для пары абонентов наиболее эффективным было бы предоставление им в единоличное пользование скоммутированного канала связи, как это дается в сетях с коммутацией каналов. При этом способе время взаимодействия пары абонентов было бы минимальным, так как данные без задержек передавались бы от одного абонента другому.

Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов. Тем не менее, общий объем передаваемых сетью компьютерных данных в едини­цу времени при технике коммутации пакетов будет выше, чем при технике ком­мутации каналов.

Обычно при равенстве предоставляемой скоро­сти доступа сеть с коммутацией пакетов оказывается в 2-3 раза дешевле, чем сеть с коммутацией каналов, то есть публичная телефонная сеть.

Каждая из этих схем (коммутация каналов (circuit switching) или коммутация пакетов (packet switching)) имеет свои преимущества и недостатки, но по долгосроч­ным прогнозам многих специалистов будущее принадлежит технологии коммута­ции пакетов, как более гибкой и универсальной.

Сети с коммутацией каналов хорошо приспособлены для коммутации данных с постоянной скоростью, когда единицей коммутации является не отдельный байт или пакет данных, а долговременный синхронный поток данных между двумя абонентами.

Как сети с коммутацией пакетов, так и сети с коммутацией каналов можно разделить на два класса по другому признаку — на сети с динамической коммутациейи сети с постоянной коммутацией.

В первом случае сеть разрешает устанавливать соединение по инициативе пользователя сети. Коммутация выполняется на время сеанса связи, а затем (опять же по инициативе одного из взаимодействующих пользователей) связь разрывается. В общем случае любой пользователь сети может соединиться с любым другим пользователем сети. Обычно период соединения между парой пользователей при динамической коммутации составляет от нескольких секунд до нескольких часов и завершается при выполнении определенной работы — передачи файла, просмотра страницы текста или изображения и т. п.

Во втором случае сеть не предоставляет пользователю возможность выполнить динамическую коммутацию с другим произвольным пользователем сети. Вместо этого сеть разрешает паре пользователей заказать соединение на длительный период[ времени. Соединение устанавливается не пользователями, а персоналом, обслуживающим сеть. Время, на которое устанавливается постоянная коммутация, меряется обычно несколькими месяцами. Режим постоянной коммутации в сетях с коммутацией каналов часто называется сервисом выделенных (dedicated) или арендуемых (leased) каналов.

Примерами сетей, поддерживающих режим динамической коммутации, являются телефонные сети общего пользования, локальные сети, сеть Internet.

Некоторые типы сетей поддерживают оба режима работы.

Еще одной проблемой, которую нужно решать при передаче сигналов, является проблема взаимной синхронизации передатчика одного компьютера с приемником другого. При организации взаимодействия модулей внутри компьютера эта проблема решается очень просто, так как в этом случае все модули синхронизируются от общего тактового генератора. Проблема синхронизации при связи компьютеров может решаться разными способами, как с помощью обмена специальными тактовыми синхроимпульсами по отдельной линии, так и с помощью периодической синхронизации заранее обусловленными кодами или импульсами характерной формы, отличающейся от формы импульсов данных.

Асинхронная и синхронная передачи. При обмене данными на физическом уровне единицей информации является бит, поэтому средства физического уровня всегда поддерживают побитовую синхрони­зацию между приемником и передатчиком.

Однако при плохом качестве линии связи (обычно это относится к телефонным коммутируемым каналам) для удешевления аппаратуры и повышения надежности передачи данных вводят дополнительные средства синх­ронизации на уровне байт.

Такой режим работы называется асинхроннымили старт-стопным.Другой причиной использования такого режима работы является наличие устройств, ко­торые генерируют байты данных в случайные моменты времени. Так работает кла­виатура дисплея или другого терминального устройства, с которого человек вводит данные для обработки их компьютером.

Асинхронным описанный режим называется потому, что каждый байт может быть несколько смещен во времени относительно побитовых тактов предыдущего байта

Задачи надежного обмена двоичными сигналами, представленными соответствующими электромагнитными сигналами, в вычислительных сетях решает определенный класс оборудования. В локальных сетях это сетевые адаптеры, а в глобальных сетях - аппаратура передачи данных, к которой относятся, например, рассмотренные модемы. Это оборудование кодирует и декодирует каждый информационный бит, синхронизирует передачу электромагнитных сигналов по линиям связи, проверяет правильность передачи по контрольной сумме и может выполнять некоторые другие операции.

В вычислительной технике для представления данных используется двоичный код. Внутри компьютера единицам и нулям данных соответствуют дискретные электрические сигналы.

Представление данных в виде электрических или оптических сигналов называется кодированием.

Существуют различные способы кодирования двоичных цифр, например потенциальный способ, при котором единице соответствует один уровень напряжения, а нулю — другой, или импульсный способ, когда для представления цифр используются импульсы различной полярности.

В вычислительных сетях применяют как потенциальное, так и импульсное кодирование дискретных данных, а также специфический способ представления данных, который никогда не используется внутри компьютера, — модуляцию (рис.). При модуляции дискретная информация представляется синусоидальным сигналом той частоты, которую хорошо передает имеющаяся линия связи.


Потенциальное, или импульсное, кодирование применяется на каналах высокого качества, а модуляция на основе синусоидальных сигналов предпочтительнее в том случае, когда канал вносит сильные искажения в передаваемые сигналы. Например, модуляция используется в глобальных сетях при передаче данных через аналоговые телефонные каналы связи, которые были разработаны для передачи голоса в аналоговой форме и поэтому плохо подходят для непосредственной передачи импульсов.

Характеристики физических каналов

Существует большое количество характеристик, связанных с передачей трафика через физические каналы.

Предложенная нагрузка — это поток данных, поступающий от пользователя на вход сети. Предложенную нагрузку можно характеризовать скоростью поступления данных в сеть — в битах в секунду (или килобитах, мегабитах и т. д.).

Скорость передачи данных (information rate или throughput, оба английских термина используются равноправно) — это фактическая скорость потока данных, прошедшего через сеть. Эта скорость может быть меньше, чем скорость предложенной нагрузки, так как данные в сети могут искажаться или теряться.

Емкость канала связи (capacity), называемая также пропускной способностью, представляет собой максимально возможную скорость передачи информации по каналу.

Спецификой этой характеристики является то, что она отражает не только параметры физической среды передачи, но и особенности выбранного способа передачи дискретной информации по этой среде. Например, емкость канала связи в сети Ethernet на оптическом волокне равна 10 Мбит/с. Эта скорость является предельно возможной для сочетания технологии Ethernet и оптиче¬ского волокна. Однако для того же самого оптического волокна можно разра¬ботать и другую технологию передачи данных, отличающуюся способом ко¬дирования данных, тактовой частотой и другими параметрами, которая будет иметь другую емкость. Так, технология Fast Ethernet обеспечивает передачу данных по тому же оптическому волокну с максимальной скоростью 100 Мбит/с, а технология Gigabit Ethernet - 1000 Мбит/с. Передатчик коммуникацион¬ного устройства должен работать со скоростью, равной пропускной способно¬сти канала. Эта скорость иногда называется битовой скоростью передатчика (bit rate of transmitter).

Еще одна группа характеристик канала связи связана с возможностью передачи информации по каналу в одну или обе стороны.

При взаимодействии двух компьютеров обычно требуется передавать информацию в обоих направлениях, от компьютера А к компьютеру В и обратно. Даже в том случае, когда пользователю кажется, что он только получает информацию (например, загружает музыкальный файл из Интернета) или передает (отправ¬ляет электронное письмо), обмен информации идет в двух направлениях. Просто существует основной поток данных, которые интересуют пользователя, и вспомогательный поток противоположного направления, который образуют квитанции о получении этих данных.

Физические каналы связи делятся на несколько типов в зависимости от того, могут они передавать информацию в обоих направлениях или нет.

Дуплексный канал обеспечивает одновременную передачу информации в обоих направлениях. Дуплексный канал может состоять их двух физических сред, каждая их которых используется для передачи информации только в одном направлении. Возможен вариант, когда одна среда служит для одновремен¬ной передачи встречных потоков, в этом случае применяют дополнительные методы выделения каждого потока из суммарного сигнала.

Полудуплексный канал также обеспечивает передачу информации в обоих направлениях, но не одновременно, а по очереди. То есть в течение опре¬деленного периода времени информация передается в одном направлении, а в течении следующего периода — в обратном.

Симплексный канал позволяет передавать информацию только в одном на-правлении. Часто дуплексный канал состоит из двух симплексных каналов.

Читайте также: