Реферат о транспорте и транспирации при ее наличии в организмах споровых растений

Обновлено: 05.07.2024

Естественный физиологический процесс водного обмена с окружающей средой у растений называется транспирацией. Это сложный механизм жизнедеятельности, в основу которого положена способность флористических организмов изменять агрегатное состояние поступающей жидкости.

Что такое транспирация?

Термин введен в обиход биологами для того, чтобы подчеркнуть отличие этого сложного биологического процесса от обычного испарения воды.

Транспирация обусловлена:

Расходование воды регулируется несколькими базовыми анатомо-физиологическими механизмами. Одно из важных значений этого процесса заключается в терморегулирующей функции. Транспирация у растений – это контролируемый биологический процесс движения поступающей из почвы и атмосферы влаги. Она насыщает стебли, листья и соцветия необходимыми для планомерного развития питательными веществами, а затем испаряется.

Процесс позволяет растению снизить температуру, что особенно актуально для знойного климата и летнего сезона. Транспирация предотвращает перегрев листьев и их ожог. Благодаря ей растение избавляется от излишков жидкости после сильного дождя или при произрастании в сильно увлажненном грунте.

Транспирация обеспечивает биологическую деятельность верхнего концевого двигателя водотока. В жаркий летний день температура листьев обычно на 3-8°С ниже окружающего атмосферного воздуха.

Транспирацию можно назвать своеобразной системой охлаждения, которая выполняет еще и питательную функцию. Этот жизненно важный физиологический процесс способствует доставке в клетки тканей минеральных веществ и микроэлементов, растворенных в воде.

Виды транспирации

Растения располагают 2-мя вариантами биологического механизма испарения воды – устьичным и кутикулярным. Приоритетность той или иной разновидности транспирации зависит от анатомического строения флористического организма и климатических условий. Главную роль в этом физиологическом процессе играют листья. От их строения зависит интенсивность испарения.

Транспирация у растений. Что это такое, значение, виды, чему способствует

Анатомически листья сформированы 4-мя функциональными элементами:

  • Эпидермальными слоями (кожицей). Они играют роль внешней оболочки, которая непосредственно соприкасается с окружающей средой.
  • Мезофиллом (паренхимой). Внутренняя ткань листьев, задействованная в процессе фотосинтеза. Паренхима располагается между верхним и нижним слоями эпидермиса.
  • Прожилками. Служат своеобразными кровеносными сосудами растения. По ним в процессе транспирации движется вода с растворенными в ней питательными веществами.
  • Устьицами. Это особые высокоспециализированные комплексы с парой замыкающих клеток и функциональными щелями (апертурами) между ними, образующими воздухсодержащие каверны.

Эпидермис листьев выполняет барьерную, терморегулирующую и защитную функции. Кожица оберегает внутренние ткани от механического воздействия, разнообразных повреждений, проникновения патогенных микробов и некоторых насекомых-паразитов. Эпидермис поддерживает фотосинтез и надлежащий водный баланс за счет транспирации, предотвращая пересыхание растения. Часто кожица покрыта восковым налетом (кутикулой), создающим дополнительную защиту и активно участвующем в переносе влаги.

Не менее важна роль устьичных клеток в процессе транспирационного испарения. С их помощью растение осуществляет водный и газовый обмен с окружающим пространством. Это ключевые элементы своеобразной совмещенной кровеносно-дыхательной системы.

Устьичная

При таком варианте транспирационного обмена влага испаряется с поверхности эпидермиса. В результате отдачи жидкости капиллярные мениски изгибаются вовнутрь. Поверхностное натяжение листа возрастает и дальнейшее испарение замедляется. Это дает растению возможность существенно экономить живительную жидкость. Преобразованная в пар вода сквозь щелевые отверстия устьиц отводится в окружающее атмосферное пространство.

Такой тип транспирационного процесса характеризуется высокой интенсивностью, так как эти функциональные элементы листа обладают значительными способностями к диффузии. После закрытия высокоспециализированных клеток устьиц скорость влагообмена снижается в несколько раз. Таким способом растение регулирует процесс отвода жидкости. При сопоставимой площади листа влага быстрее улетучивается через несколько мелких клеточных щелей, чем через одно большое. После закрытия устьичных отверстий наполовину скорость влагообмена снижается незначительно.

Транспирация у растений. Что это такое, значение, виды, чему способствует

Транспирация у растений – это управляемая скорость отдачи воды в окружающее пространство. Число устьичных образований различается в зависимости от типа, анатомического строения и классификационной принадлежности организма. У одних видов такие высокоспециализированные комплексы расположены только на внутренней поверхности листьев, у других – на тыльной и наружной сторонах. Различается и расстояние между устьичными щелями.

Кутикулярная

Эта функциональная часть листа, подобно предыдущему элементу, способна реагировать на уровень насыщенности внутренних тканей жидкостью. Разбросанные по всей поверхности влагообмена чувствительные волосковые рецепторы защищают растение от воздействия атмосферного воздуха и выжигающего влагу солнечного ультрафиолета. Такой естественный биологический механизм служит целям уменьшения потерь воды, что препятствует пересыханию листьев. Кутикулярная транспирация берет на себя основную роль в обмене влаги с окружающей средой в то время, когда устьичные щели находятся в закрытом состоянии.

Интенсивность отдачи преобразованной в пар жидкости зависит от площади и толщины этого функционального элемента. Чем тоньше кутикула, тем выше скорость протекания транспирационного процесса. Важен и возраст растения. Зрелые листья имеют показатель потери влаги не более 10%. Молодая зеленая масса способна обмениваться испаренной водой с окружающим пространством в 5 раз быстрее. Активная кутикулярная транспирация иногда свойственная старым деревьям и крупным кустарникам почтенного возраста.

Транспирация у растений. Что это такое, значение, виды, чему способствует

Это объясняется:

  • повреждениями эпидермиса;
  • нарушением его защитных функций;
  • рассыханием поверхности;
  • растрескиванием листьев;
  • деятельностью паразитов и болезнетворных микроорганизмов.

У таких наземных растений наблюдается интенсификация газообмена, заключающаяся в ассимиляции (поглощении) атмосферного СО2. Чем ниже водный потенциал окружающего воздуха, тем выше скорость кутикулярной транспирации.

Роль в физиологии растений

Такой биологический процесс обеспечивает нормальное функционирование систем растительного организма. Во многом благодаря транспирации созревают плоды и завязываются побеги. Этот процесс защищает растение от негативных внешних воздействий. Вместе с водой по тканям распространяются минеральные соединения. За счет транспирации снижается корневое натяжение и организм получает необходимые питательные вещества. В культивируемой зоне благодаря этому важному биологическому процессу распространяются удобрения, которые повышают урожайность.

В оранжерейных и парниковых системах, где атмосферный воздух зачастую характеризуется высоким показателем влажности, транспирационный механизм замедляется. В таких условиях не редкость ожоги листьев при искусственном досвечивании или прямом воздействии агрессивного солнечного ультрафиолета. Транспирация связана с биологическими свойствами воды и ее ролью в жизнедеятельности растений. У некоторых культур это физиологическое явление служит цели насыщения жидкостью коллоидов протоплазмы, что обуславливает активное плодоношение и созревание.

Транспирация у растений. Что это такое, значение, виды, чему способствует

Роль испаряемой в результате транспирации воды в биологических процессах развития растительных организмов:

Для функционального состояния и планомерного развития растительного организма важна не только общая увлажненность, зависимая от интенсивности транспирационного процесса.

Большое значение имеют физико-химические характеристики воды:

  • концентрированность;
  • энергетический уровень;
  • показатель текучести;
  • реакционные способности.

Транспирация у растений. Что это такое, значение, виды, чему способствует

Важна роль транспирации в прохождении фотосинтеза. Он лучше всего протекает в температурном диапазоне +20…+25°С, который обеспечивается биологической системой терморегуляции.

Влияющие факторы

Транспирация в живой природе протекает под различными внешними воздействиями. На ее интенсивность и качество влияет множество факторов окружающей среды.

Среди них выделяются:

  • суточные циклы;
  • количество солнечных дней в году;
  • объем и агрессивность рентгеновского и ультрафиолетового излучения;
  • экологическая обстановка в ареале произрастания;
  • влажность и температура воздуха;
  • уровень загрязнения атмосферной смеси вредными выбросами промышленного производства;
  • сила ветра;
  • активность вредителей.

Солнечный свет способствует раскрытию щелевых отверстий устьичных образований. В культивируемых зонах, парниковых, тепличных и оранжерейных комплексах эту функцию выполняют искусственные светодиодные или галогенные источники электромагнитного излучения.

Транспирация у растений. Что это такое, значение, виды, чему способствует

Поглощаемые растением фотоны увеличивает проницаемость протоплазмы ответственных за испарение клеточных структур для водного конденсата. Это важнейший фактор транспирации.

Солнечное изучение энергично впитывается хлорофиллом – зеленым пигментом, задействованным в химической реакции фотосинтеза. В результате такого процесса возрастает температура листьев и усиливается парообразование. Активизация транспирации охлаждает поверхность, что лежит в основе ее терморегулирующей функции. Даже рассеянное излучение низкой интенсивности усиливает парообразование примерно на 30-40% в сравнении с показателем процесса, проходящего в ночное время или при вечерних сумерках.

Научные данные гласят, что 100 см 2 кукурузных листьев в полной темноте испаряют 0,097 г жидкости за 1 ч. При мягком рассеянном освещении это показатель возрастает до 0,114 г, а под воздействием прямого солнечного излучения – до 0,785 г/ч. Не менее важный фактор влияния на естественный ход транспирации – температура атмосферного воздуха. По мере его нагревания испарительный процесс ускоряется, поскольку молекулы воды разгоняются и усиливается диффузия пара с коллоидной поверхности клеточных мембран.

Транспирация у растений – это процесс, подверженный многофакторному как естественному, так и техногенному влиянию. Промышленные загрязнения воздуха повышают его плотность, а выбросы в атмосферу углекислых соединений создают парниковый эффект. Это приводит к резкому росту температуры и ускорению транспирации. Важный естественный фактор – сила ветра, которая играет неоднозначную роль в физиологических реакциях растительных организмов. В результате интенсивного движения атмосферных потоков тяжелые влажные слои заменяются легкими сухими.

Это оказывает существенное влияние на отвод испаренной воды из межклеточного пространства листьев. Порывы ветра провоцируют преждевременное замыкание устьичных щелей, что приводит к замедлению физиологической реакции.

Описание процесса транспирации

Обобщенно такое биологическое явление, свойственное всем представителям растительного мира, представляет собой продвижение водной жидкости от корней к листьям с испарением в конечной фазе. Лишь незначительная часть влаги используется для роста, развития и метаболизма. В результате транспирации растение теряет 99% впитанной воды. Протекание базовой физиологической реакции зависит от анатомического строения устьичного комплекса и вида флористического организма.

Важная функция транспирационного процесса – раскрытие щелей для доступа содержащего в атмосфере углекислого газа, который необходим растениям для дыхания. Физиологическая реакция поддерживает нормальный уровень осмотического давления в клетках. Протекание транспирационного процесса частично обеспечивает капиллярный эффект прожилков. Но большей частью он проходит благодаря разнице давлений в корневой системе, стебле, листьях и других анатомических структурах.

В высоких деревьях гравитационное сопротивление преодолевается за счет снижения гидростатического напряжения в верхних участках, обеспечиваемого устьичными комплексами и их диффузными способностями. В жаркий сезон растительный лист испаряет объем воды, многократно превосходящий его собственную массу. Например, 1 га пшеничных посевов прогоняет в течение летних месяцев транспирационным путем 2-3 тыс. т воды. Пустынная растительность оснащена особым физиологическим механизмом испарения влаги, направленным на ее максимальную экономию.

Транспирация у растений. Что это такое, значение, виды, чему способствует

Этой цели служат:

  • существенно утолщенная кутикула;
  • сильно умешенная листовая поверхность;
  • сверхчувствительные волосяные рецепторы;
  • малая площадь теплообмена.

Некоторые пустынные представители флоры используют САМ-фотосинтез – особый метаболический способ связывания углерода. Их устьица в дневное время плотно замкнуты, а раскрываются только ночью после снижения температуры.

Транспирация на протяжении суток

Наиболее ослаблена физиологическая реакция ночью и ранним утром до восхода Солнца. Транспирация четко привязана к суточному циклу и биологическому ритму растения. С появлением светила над горизонтом и увеличением объема поглощаемого солнечного излучения биологическая реакции интенсифицируется. Этому способствуют попутные факторы – повышение температуры атмосферной смеси, уменьшение концентрации в воздухе скопивших за ночь водяных испарений, усиливающиеся под воздействием излучения порывы ветра. Чем выше светило в зените, тем интенсивнее транспирация.

К вечеру она замедляется и падает до суточного минимума в ночные часы. Это теоретическая модель транспирационного процесса, которой практически невозможно достичь в естественных условиях.

Здесь не учитываются:

  • пора года;
  • географическая широта;
  • тип почвы;
  • уровень экологической загрязненности;
  • особенности региона;
  • наличие рек и других водоемов вблизи места произрастания;
  • переменчивость погоды;
  • влияние циклонов, прочие факторы.

Транспирация у растений. Что это такое, значение, виды, чему способствует

Наиболее интенсивно физиологическая реакция протекает при безоблачном небе в теплое время года.

Ночью стандартная интенсивность транспирации составляет 1-20 г/ч в пересчете на аналогичную площадь испарения.

Продуктивность

Такой показатель отражает объем сухой полезной массы, накопленной растением в течение учетного периода транспирационного процесса, на протяжении которого испарен 1 кг жидкости. Это имеет особое значение для сельскохозяйственных культур, цветов, специально выращиваемых лечебных трав и кустарников. Продуктивность транспирации варьируется в весовом диапазоне 1-8 г. Средний показатель для типичных культурных растений составляет 3 г.

Определение уровня транспирации

В аграрной сфере оперируют понятием транспирационного коэффициента в качестве экономического показателя.

Для измерения таких значений применяют:

  • потометр – специальный прибор, показывающий скорость поглощения влаги срезанными побегами либо молодыми сеянцами;
  • лизиметр – переносное приспособление или стационарная конструкция, предназначенная сбора и анализа почвенного раствора;
  • порометр – устройство для измерения размера устьичных щелей;
  • фотосинтетические методы, изучающие особенности протекания ключевой для растений биологической реакции.

Испаренная в процессе транспирации влага изотопным составов существенно отличается от окружающих грунтовых вод. У всех растений это показатель разный. Коэффициент транспирации обычно составляет 200-600. Это вынуждает затрачивать на выращивание 1 кг сухой массы урожая 200-1000 л воды.

Каждый человек однажды наблюдал наличие жидкости на листьях и стеблях растений. Данное явление возникает благодаря биологическому свойству, называемому транспирацией.

Что такое транспирация?

Транспирация – это термин, отражающий процессы передвижения воды по организму растений с последующим её выведением через поверхность наружных органов (листья, стебель). Большая часть жидкости выводится через устьичные щели (порядка 95-99%) и только оставшиеся 1-5% процентов воды участвует в непосредственно метаболических реакциях организма растительных клеток.

Функции транспирации

Вода поглощается растением из почвы, откуда распределяется по всему организму благодаря наличию проводниковой ткани (ксилемы). Выводится вода через специальные устьицы, при выведении жидкости через органы транспирации растений происходит открытие устьиц, в результате чего в растительный организм может поступать углекислый газ.

Другая особенность трнаспирационных явлений заключается в том, что при протекании данного физиологического процесса происходит охлаждение растительного организма, улучшение тока питательных веществ к функциональным частям растительного организма, также изменяется осмотическое давление в растительные клетках, что в значительной мере определяет тургор. Помимо прочего благодаря протеканию транспирационных явлений реализуются процессы (обязательным условием протекание которых является наличие H20): фотосинтез, рост, развитие и метаболизм растительных клеток. Подытожим функции транспирации:

участвует в обеспечении фотосинтетических процессов водой;

участвует в испарении воды с листьев и стебля;

охлаждает растительного макроорганизма;

улучшает ток питательных веществ и воды к растительным клеткам;

изменяет осмотическое давление в растительные клетках;

влияет на тургор;

открывает устьицы, что позволяет растению активно поглощаться углекислый газ.

Примеры транспирации

Транспирация у растений

В зависимости от различия в органах испарения воды буду наблюдаться различные виды транспирационных явлений:

стоматальная и лентикулярная транспирации;

Стоматальная транспирация

При протекании данного процесса происходит выведение воды благодаря наличию специальных устьиц в поверхности листа. При выведении влаги с листьев вода на финальной части пути к наружной поверхности органа выделения превращается к парообразную форму существования (водяной пар) и выводит через поверхность устьиц. Данный вид выведения жидкости по-другому также может называться транспирацией листьев.

Кутикулярное дыхание

Кутикула – это воскообразное покрытие листьев растений. Кутикулярное испарение воды происходит в сухих условиях, когда устьицы листьев закрыты. Благодаря кутикулярному дыханию теряется порядка 5-10% воды.

Лентикулярная транспирация

Лентикулярное выведение влаги представляет собой процесс выделения жидкости посредством использования чечевиц. Чечевицы – это небольшие порообразные структуры, которые имеются далеко не у всех семейств растений. Процент выведенной воды при таком способе выделения значительно меньше, чем при других примерах данного процесса.

Факторы, которые влияют на транспирацию

Обозначим основные факторы окружающей среды, которые активно влияют на процессы транспирации:

соотношение влажности почвы и воздуха;

При значительном повышении температурного фактора происходит открытие устьиц, в результате чего скорость выделения воды (особенно стоматальной) значительно повышается.

При высокой влажности воздуха любой процесс испарения затрудняется, однако для процесса транспирации и его скорости важно соотношение влажности почвы и воздуха. При наличии в почве большего количества влаги, чем в воздухе скорость удаления жидкости повышается.

Ветер сдувает капли влаги с поверхности листьев, в результате чего образуются новые. Таким образом, чем выше скорость ветра, тем больше скорость транспирационных процессов.

Транспирация как часть круговорота воды

Транспирационные процессы растения участвуют в протекании круговорота воды в природе. Испарение с поверхностных органов растений является частью суммарного испарения. В последующем образуются осадки, из которых посредством дождей жидкость попадает в почву, откуда вновь всасывается в растения с последующим за этим испарением.

Биологический процесс распределения и испарения воды в растительном организме достаточно сложная теоретическая часть ботанической науки, однако понимание фундаментальные основ и принципов протекания транспирационных явлений в растениях, позволяет человеку понимать генез воды на поверхностях стеблей и листьев (а также чечевиц) растений в различные периоды времени.

Ответ

Чуть напиши о споровых бактериях и чуть о органах, потом полностью пиши о споровых бактерий.споры это маленькие частицы разновидностей, точно будет 5 готовься и удачи!

Ответ

Все современные папоротниковидные-потомки древнейших форм,повсеместно заселявших нашу планету.эти растения понять, как развивалось многообразие растительного царства земли.

Ответ

спинной мозг расположен позвоночном канале. в нем условно выделяют пять отделов: шейный, грудной, поясничный, крестцовый и копчиковый.

из см отходит 31 пара корешков спинномозговых нервов. см имеет сегментарное строение. сегментом считают отрезок см, соответствующий двум парам корешков. в шейной части – 8 сегментов, в грудной – 12, в поясничной – 5, в крестцовой – 5, в копчиковой – от одного до трех.

в центральной части спинного мозга находится серое вещество. на разрезе оно имеет вид бабочки или буквы н. серое вещество состоит преимущественно из нервных клеток и образует выступы — задние, передние и боковые рога. в передних рогах расположены эффекторные клетки (мотонейроны), аксоны которых иннервируют скелетные мышцы; в боковых рогах — нейроны вегетативной нервной системы.

вокруг серого вещества располагается белое вещество спинного мозга. оно образовано нервными волокнами восходящих и нисходящих путей, соединяющих различные участки спинного мозга друг с другом, а также спинной мозг с головным.

в состав белого вещества входят 3 вида нервных волокон:

- комиссуральные – соединяют 2 половины мозга.

все спинно-мозговые нервы смешанные, т.к. образованы от слияния чувствительного (заднего) и двигательного (переднего) корешков. на чувствительном корешке до его слияния с двигательным находится спинальный , в котором находятся чувствительные нейроны, дендриты которых идут с периферии, а аксон входит через задние корешки в см. передний корешок образован аксонами мотонейронов передних рогов см.

функции спинного мозга:

1. рефлекторная – заключается в том, что на разных уровнях см замыкаются рефлекторные дуги двигательных и вегетативных рефлексов.

2. проводниковая – через спинной мозг проходят восходящие и нисходящие пути, которые связывают все отделы спинного и головного мозга:

- восходящие, или чувствительные, пути проходят в задних и боковых канатиках от тактильных, температурных рецепторов, проприорецепторов и рецепторов боли к различным отделам см, мозжечку, стволовому отделу, кгм;

- нисходящие пути идут в составе передних и частично латеральных канатиков и представлены двумя основными трактами: пирамидным и экстрапирамидным. эти тракты берут начало от клеток коры головного мозга и идут к мотонейронам спинного мозга. пирамидный тракт, связывает нейроны двигательной зоны коры больших полушарий с мотонейронами передних рогов спинного мозга и отвечает за произвольные движения. латеральный пучок пирамидного тракта делает перекрест на уровне продолговатого мозга, спускаясь на противоположную сторону спинного мозга.

спинной мозг является центром простых безусловных двигательных и вегетативных рефлексов. двигательные рефлексы спинного мозга в целостном организме подчиняются вышележащим отделам цнс.

виды спинальных рефлексов.

сухожильные рефлексы – возникают при быстром растяжении мышцы. например, в ответ на легкий удар молоточком по сухожилию мышца быстро сокращается (коленный, ахиллов, локтевой рефлекс).

транспирация у растений

Транспирация у растений – это естественный процесс водообмена между растительным миром и атмосферным воздухом. Исследования ученых показали, что суточное количество испаряемой влаги значительно превышает объем воды, содержащийся в растении. Такое явление имеет важнейшее значение в жизнедеятельности любого растительного организма, произрастающего в тепличных условиях или на открытых грунтах. Из этой публикации вы узнаете, что такое транспирация у растений, ознакомитесь с разновидностями и способами регулирования данного процесса.

Механизм транспирации

механизм транспирации

Процесс жизнедеятельности любого растения неразрывно связан с потреблением влагой. Из суточного объема полученной воды для фотосинтеза и физиологических потребностей растению необходимо только 10%. Оставшиеся 90% испаряются в атмосферу.

Транспирация – это процесс перемещения жидкости по растительному организму и ее испарения наземной частью растения. В транспирации участвуют листья, стебли, цветы, плоды, корневая система растительного организма.

влагообмен у растений

Зачем растению нужно испарять влагу? Транспирация позволяет растению получать из грунта питательные вещества и микроэлементы, растворенные в воде.

Механизм действия следующий:

Благодаря процессу испарения растения естественным образом регулируют свою температуру, защищая себя от перегрева. Доказано, что температура транспирирующего листа ниже не испаряющего влагу. Разница достигает 7°С.

У растений различают две разновидности влагообмена:

лист растения в разрезе

Чтобы понять принцип действия данного явления необходимо вспомнить строение листа из школьного курса биологии.

Лист растения состоит из:

При устьичной транспирации, процесс испарения происходит в две стадии:

  1. Переход влаги из жидкой фазы в парообразную. Вода в жидком состоянии находится в клеточных оболочках. Пар формируется в межклеточном пространстве.
  2. Выделение газообразной влаги в атмосферу через устья эпидермиса.

влагообмен через устьица

При устьичном влагообмене растение может регулировать уровень испарения. Далее рассмотрим механизм действия данного процесса.

Кутикулярная транспирация регулирует испарение влаги с поверхности листьев при закрытых устьях. Интенсивность испарения жидкости зависит от толщины кутикулы и возраста растения.

Важно знать, что уровень устичной транспирации составляет от 80 до 90 % от объема испарения всего листа. Именно поэтому такой механизм является основным регулятором интенсивности испарения у растений.

Лист как орган транспирации

лист как орган транспирации

Что такое транспирация мы разобрали. Теперь следует понять, какую роль в данном механизме играет лист.

Благодаря большой площади испарения, главными диффундирующими участками растения являются листья. Процесс испарения влаги начинается с нижней части листа через раскрытые устья, через которые и осуществляется обмен кислородом и углекислым газом между растением и окружающим воздухом.

Механизм раскрытия устьиц заключается в следующем:

  1. По окружности устий расположены замыкающие клетки.
  2. При увеличении объема они растягивают отверстия в эпидермисе, увеличивая раскрытие устьиц.

Обратный процесс происходит при уменьшении объема замыкающих клеток, стенки которых перестают воздействовать на устьичные щели.

Интенсивность транспирации

интенсивность транспирации

Интенсивность транспирации – это количество влаги, испаряемой с дм 2 растения за расчетную единицу времени. Данный параметр регулируется величиной раскрытия устьичных щелей, которая, в свою очередь, зависит от количества попадающего на растение света. Далее рассмотрим, как влияет свет на интенсивность транспирации.

Деформация клеток эпидермиса проходит под действием фотосинтеза, в процессе которого происходит преобразование крахмала в сахара.

Помимо света на интенсивность транспирации оказывает влияние ветер и физические характеристики воздуха:

  1. Чем ниже уровень влажности атмосферного воздуха, тем быстрее происходит испарение воды, а значит и скорость влагообмена.
  2. При повышении температуры возрастает упругость водяных паров, которая приводит к снижению влажностных характеристик окружающей среды и увеличению объема испаряемой воды.
  3. Под влиянием ветра значительно увеличивается скорость испарение влаги, тем самым ускоряется перенос влажного воздуха с поверхности листа, вызывая усиление водообмена.

Для определения данного параметра не следует забывать и об уровне влажности почвы. Если ее недостаточно, значит и наблюдается ее недостаток в растении. Снижение объема влаги в растительном организме автоматически изменяет интенсивность испарения.

Суточный ход транспирации

суточный ход транспирации у разных растений

В течение суток уровень испарения влаги у растений меняется:

  1. Ночью, процесс водообмена между растением и окружающим воздухом практически останавливается. Это обусловлено отсутствием солнца, закрытием отверстий эпидермиса, снижением температуры атмосферного воздуха и увеличением уровня его влажности.
  2. На рассвете, устья открываются. Степень их раскрытия увеличивается с изменением освещенности, климатических и физических показателей воздушных масс.
  3. Максимальная интенсивность транспирации у растений наблюдается в полдень, к 12-13 часам. На данный процесс влияет напряженность солнечного света.
  4. При недостаточной влажности в дневной период, интенсивность водообмена может снижаться. Этот механизм позволяет растению значительно сократить потерю влаги, защитив себя от увядания.
  5. При снижении солнечной инсоляции в вечерние часы интенсивность транспирации вновь возрастает.

Суточный процесс влагообмена также зависит от вида и возраста растений, региона произрастания, схемы расположения листьев.

У кактусов, повышение уровня транспирации происходит исключительно ночью, когда устья полностью раскрыты. У растений, листва которых повернута боковой частью к горизонту, данный процесс начинается непосредственно с первыми лучами солнечного света.

Читайте также: