Реферат на тему замечательные кривые в математике

Обновлено: 05.07.2024

Точная формула провисающей цепочки Галилея. Разгадка секрета цепной линии: график показательной функции. Связь между кривой и формой висящей цепочки: поиск уравнения линии. Подобие цепных линий, определение коэффициента подобия в преобразовании кривой.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 09.11.2010
Размер файла 714,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство высшего и профессионального образования

Оренбургский государственный университет

Аэрокосмический институт

Реферат по высшей математике:

“Замечательные кривые”

Выполнил: Обухов Е.В. (2000МСИ)

Проверил: Липилина В. В.

План

    Цепочка Галилея
  • Цепная линия
  • График показательной функции
  • Подбор длины цепочки
  • А если длина не та?
  • Все цепные линии подобны
  • Список использованной литературы

Цепочка Галилея

В книге Галилея “Беседы и математические доказательства…”, напечатанной впервые на итальянском языке в голландском городе Лейдене в 1638г., предлагался, между прочим, такой способ построения параболы: “Вобьём в стену два гвоздя на одинаковой высоте над горизонтом и на таком расстоянии друг от друга, чтобы оно равнялось двойной ширине прямоугольника, на котором желательно построить полупараболу; между одним и другим гвоздём подвесим тонкую цепочку, которая свешивалась бы вниз и была такой длины, чтобы самая низкая точка её находилась от уровня гвоздя на расстоянии, равном высоте прямоугольника (рис.1). Цепочка эта, свисая, расположится в виде параболы, так что, отметив её след на стене пунктиром, мы получим параболу, рассекаемую пополам перпендикуляром, проведённым через середину линии, соединяющей оба гвоздя”. Способ этот прост и нагляден, но не точен. Это понимал и сам Галилей. На самом деле, если параболу построить по всем правилам, то между нею и цепочкой обнаружатся зазоры. Они видны на том же рис.1, где соответствующая парабола обозначена сплошной линией.

Только через полвека после выхода книги Галилея старший из двух братьев-математиков Бернулли - Якоб нашёл чисто теоретическим путём точную формулу провисающей цепочки. Не спеша сообщать своё решение задачи, он бросил вызов другим математикам. Правильное решение опубликовали уже в следующем 1691г. Христиан Гюйгенс, Готфрид Вильгельм Лейбниц и младший брат Якоба - Иоганн Бернулли. Все они пользовались для решения задачи, во-первых, законами механики, а во-вторых, могучими средствами недавно разработанного тогда математического анализа - производной и интегралом.

Гюйгенс назвал кривую, по которой располагается цепочка, подвешенная за два конца, цепной линией.

Так как цепочки бывают разной длины, да и концы их могут подвешиваться на разных расстояниях друг от друга - то ближе, то дальше, то и цепных линий существует не одна, а много. Но все они подобны между собой, как, например, подобны между собой любые окружности.

График показательной функции

Оказалось, что разгадка секрета цепной линии лежит в показательной функции. В XVIII веке она была ещё новинкой, а теперь её должен знать каждый восьмиклассник. Это функция вида y=a x , где a - какое-либо положительное число, не равное 1. Вычисления показали, что для построения цепной линии удобнее всего принять a равным так называемому неперову числу, обозначаемому буквой e. Оно получило своё имя в честь шотландского математика Джона Непера - одного из изобретателей логарифмов. Число это почти столь же знаменито, как и число ; его приближённое значение, взятое с точностью до 0,0005: e2,718.

На рис.2 сплошной линией изображен график показательной функции y=e x , а пунктиром - график другой показательной функции, тесно связанной с предыдущей.

Если воспользоваться отрицательными показателями степеней, то последнюю функцию можно представить в виде y=e - x . Теперь ясно, что оба графика симметричны друг другу относительно оси ординат, что и обнаруживает рисунок.

Образуем теперь две новые функции, беря для каждого x либо полусумму значений наших показательных функций - получим y= 1 /2 (y=e x +e - x ), либо их полуразность: y= 1 /2 (y=e x -e - x ). Графики этих новых функций приведены на рис.3 и рис.4. Оказывается, что первый из них это и есть одна из цепных линий. Из него путем простых преобразований, о которых пойдет речь ниже, можно получить любую цепную линию, симметричную относительно оси ординат. Что касается графика, представленного на рис.4, то он будет нами использован как вспомогательное средство при переходе от цепной линии рис.3 к более общему случаю цепной линии.

Подбор длины цепочки

Рассмотрим подробнее связь между кривой, изображенной на рис.3, и формой висящей цепочки. Представим себе, что эта кривая вычерчена на строго вертикальной и совершенно гладкой стене и что нам разрешено забивать гвозди в разные точки кривой. Забьём их, как советовал Галилей, в точках A и B на одной горизонтали (впрочем, это условие несущественно). Подберём теперь тонкую цепочку, длина которой точно равна 2l - длине дуги AB - и концы её закрепим в A и B. Тогда цепочка провиснет строго по дуге, которую мы заранее вычертили. Никаких зазоров между ней и этой кривой не будет наблюдаться.

Подбор цепочки нужной длины можно производить путем проб. Взять цепочку подлиннее - с запасом, а потом подвешивать её за разные звенья в точках A и B, по мере надобности увеличивая или уменьшая длину провисающей части, пока не произойдёт совпадения (рис.5). Но можно поступить и иначе: зная d (половину расстояния между гвоздями), найти путём вычисления l (половину длины дуги AB) и тогда уже брать цепочку, длина которой точно равна 2l. Такой подсчёт удаётся с помощью интеграла. Укажем здесь результат: l=1/2 (e d -e - d ). Отсюда следует, что если взять на графике функции y=1/2 (e x -e - x ) (рис.4) x=d, то соответствующая ордината у точки E этого графика будет равна l.

Так как l=1/2 (e d -e - d ) d -e - d ) (см. рис.5), то получается любопытное заключение: длина дуги CB цепной линии, представленной на рис.5 (половина длины всей цепочки) короче, чем ордината точки подвеса. С другой стороны, имеем: l>d, т.е. эта длина больше, чем абсцисса точки подвеса.

А если длина не та?

Как отыскать уравнение линии в случае, когда для данных точек подвеса A и B длина цепочки 2l` не совпадает с длиной 2l дуги AB, принадлежащей кривой y=1/2 (e x -e - x )? В поисках ответа мы будем опираться на отмеченный выше факт, что все цепные линии подобны между собой.

Пусть, например, l`>l. Тогда цепочка провиснет по некоторой дуге AC`B, расположенной под дугой ACB (рис.5). Мы покажем, что нужное уравнение цепной линии, которой принадлежит дуга AC`B, можно найти в три приёма. Сначала перейти от кривой (1): y=1/2 (e x -e - x ) к некоторой кривой (2): y=1/2 (e x / k -e - x / k ); эта кривая получается из (1) посредством преобразования подобия с центром в точке O и коэффициентом подобия k (k>0). Затем перейти от кривой (2) к кривой (3): y=b+k/2 (e x / k -e - x / k ) посредством сдвига предыдущей в направлении оси ординат (в зависимости от знака b вверх или вниз).

Вся хитрость заключается в том, чтобы определить коэффициент подобия k. С этой целью отметим в плоскости вспомогательной кривой, изображённой на рис.4, точку F с координатами x=d и y=l`. В силу того, что l`>l, она не попадёт на кривую, а окажется выше неё.

Продолжим OF до пересечения с кривой в некоторой точке G (можно доказать, что точка пересечения найдётся, помимо точки O, и притом только одна). Положим OF/OG (в нашем случае 0 d / k -e - d / k ). Отсюда следует, что если на кривой (1) (рис.3) взять точки A` и B` с абсциссами - d/k и d/k, то длина дуги A`B`, их соединяющей, будет равна 2l`/k.

Все цепные линии подобны

Найденное число k используем как коэффициент подобия в преобразовании кривой (1); в качестве центра подобия возьмем начало координат O. Тогда каждой точке P (x,y) кривой (1) будет соответствовать точка Q (kx,ky) преобразованной кривой (2) (рис.6). Если ввести обозначения: X=kx, Y=ky, то x=X/k, y=Y/k. Последние числа должны удовлетворять уравнению (1), так как точка P (x,y) лежит на ней. Получаем: Y/k=1/2 (e X / k -e - X / k ). Это и есть уравнение кривой (2), полученной в результате преобразования. Большие буквы для обозначения координат можно здесь заменить маленькими, помня, что теперь это координаты любой точки кривой (2).

Заметим, что точкам A` и B` кривой (1) с абсциссами - d/k и d/k будут соответствовать точки A`` и B`` кривой (2) с абсциссами - d и d (рис.7). В силу подобия дуг A`B` и A``B`` длина A``B`` будет равна 2l`, т.е. равна заданной длине цепочки. В этом и состоит преимущество кривой (2) перед исходной кривой (1). Недостаток её, однако, в том, что кривая (1) проходила через заданные точки подвеса A и B, а кривая (2) может через них и не проходить. Но этот недостаток легко устранить. Если ордината точки B`` (или A``): k/2 (e d / k +e - d / k ) не равна r, т.е. B`` не совпадает с B, то положим r-k/2 (e d / k +e - d / k ) =b.

В результате сдвига кривой (2) в направлении оси ординат на величину b она перейдёт в кривую (3): y=b+k/2 (e d / k +e - d / k ). Последняя кривая, во-первых, подобна кривой (1) и, следовательно, является сама цепной линией. Во-вторых, она проходит через заданные точки подвеса: A (-d,r) и B (d,r). И, в-третьих, длина дуги AB равна длине данной цепочки 2l`. Эти условия и обеспечивают, как это было доказано Бернулли, Гюйгенсом и Лейбницем, что цепочка провиснет как раз по дуге AB.

На этом очерк о цепочке Галилея можно считать законченным.

Список использованной литературы

1. А.И. Маркушевич “Замечательные кривые”; Москва; “Наука”-1978г.

2. Г. Штейнгауз “Математический калейдоскоп”; Москва; “ГосТехИздат”-1949г.

3. Г.Н. Берман “Циклоида”; Москва; “ГосТехИздат”-1954г.

Подобные документы

Книга Галилея "Беседы и математические доказательства…". Предложен наглядный способ построения параболы. Формула провисающей цепочки, найденная братьями Бернулли. График показательной функции. Подбор длины цепочки. Уравнение линии. Коэффициент подобия.

доклад [270,2 K], добавлен 12.09.2019

Понятие и способы образования плоских и кривых линий. Примеры пересечения алгебраической кривой линии. Поверхность в геометрии. Аргументы вектор-функции. Уравнения семейства линий. Способ построения касательной и нормали в произвольной точке лемнискаты.

контрольная работа [329,5 K], добавлен 19.12.2014

Математическое понятие кривой. Общее уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы. Оси симметрии гиперболы. Исследование формы параболы. Кривые третьего и четвертого порядка. Анъези локон, декартов лист.

дипломная работа [877,9 K], добавлен 14.10.2011

Замечательные линии 3-го порядка: Декартов лист, циссоида Диоклеса, строфрида, верзьера Аньези. Линии четвертого и высших порядков и некоторые трансцендентные линии: спираль Архимеда, кривая кратчайшего спуска. Площадь области, ограниченной лемнискатой.

курсовая работа [1,1 M], добавлен 07.08.2015

Уравнения линии на плоскости, их формы. Угол между прямыми, условия их параллельности и перпендикулярности. Расстояние от точки до прямой. Кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и главные геометрические свойства.

лекция [160,8 K], добавлен 17.12.2010

Определение типа кривой по виду уравнения, уравнение с угловым коэффициентом, в отрезках и общее уравнение. Определение медианы, уравнения средней линии в треугольнике. Вопросы по линейной алгебре. Решение системы уравнения при помощи обратной матрицы.

контрольная работа [97,5 K], добавлен 31.10.2010

Поиск базисного решения для системы уравнений, составление уравнения линии, приведение его к каноническому виду и построение кривой. Собственные значения и векторы линейного преобразования. Вычисление объема тела и вероятности наступления события.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение.

Г. Галилей

Цели и задачи проекта.

Актуальность темы: заключается в демонстрации и применении математических знаний в практической деятельности человека. В курсе изучения аналитической геометрии не предусмотрено рассматривание свойств замечательных кривых, которые широко используются в жизни.

Цель работы: изучить свойства, применение, построение некоторых кривых, которые встречаются и имеют практическое применение в нашей жизни и создать программы на языке программирования Pascal ABC для их построения.

Задачи:

- изучить необходимую литературу про свойства замечательных кривых;

-исследовать присутствие и применение некоторых кривых в окружающей жизни;

- найти практическое применение данных кривых на уроках математики и информатики.

Объект исследования: построение кривых и их свойства.

Гипотеза: использование данного материала показывает практическое применение кривых в жизни человека.

Практическая значимость: материал по замечательным кривым поможет красочно и доступно продемонстрировать значимость их свойств , а несложные инструменты, созданные на основе этих свойств, помогут без особого труда построить данные кривые .

Объектом исследования явились замечательные кривые.

Задачи исследования: Я хочу познакомить вас с некоторыми поистине замечательными кривыми, населяющими удивительный мир геометрии и встречающиеся в нашей жизни гораздо чаще, чем кажется. Они не так уж редки в природе и имеют практическое приложение в жизни человека. Знание их замечательных свойств используется в различных механизмах, применяемых человеком в жизни. Я выбрал эту тему, так как считаю её интересной и содержательной, развивающей познавательный интерес к математике, открывающей практическое приложение математики в жизни. Использование данного материала на факультативных занятиях расширяет кругозор учащихся, развивает пространственное представление, мышление. В школьном курсе математики рассматриваются кривые второго порядка – гипербола, парабола, окружность, синусоида, но нигде не говорится о замечательных свойствах эллипса, циклоиды, кардиоиды, спирали Архимеда, кардиоиды, а тем более об их практическом применении. Я думаю, что полезно будет знать информацию об этих кривых, которые широко применяются в жизни. В данной работе собран материал с уклоном на практическое построение и применение кривых. Изучение каждой кривой я рассматривал в трех направлениях:

· Теория – определение кривой и её замечательное свойство.

· Практика – как построить кривую при помощи школьных чертежных инструментов или подручного материала.

· Приложение – построение замечательных кривых при помощи компьютерных программ.

Циклоида.

Циклоидой именуют кривую, которая описывает точка окружности, катящейся без скольжения по неподвижной прямой(рис.1).

Название кривой дал Галилео Галилей, впервые обративший на нее внимание. Сравнивая вес двух металлических пластинок равной толщины, одна из которых была вырезана по циклоиде, а другая по окружности, порождающей эту циклоиду, Галилей обнаружил, что площадь сегмента циклоиды в три раза больше площади соответствующего круга. Опыты Галилея дали толчок строгим математическим исследованиям циклоиды. Сначала его ученик Торричелли, а затем Роберваль, Декарт и Ферма не только обосновали зависимость, открытую Галилеем, но и установили ряд других свойств циклоиды. Простота и изящество определения циклоиды привлекали к ней многих математиков XVII-XVIII вв. Ею занимались Паскаль, Лейбниц, Гюйгенс, Даниил Бернулли. Причем вначале циклоида сама была предметом пристального изучения, а впоследствии на ней проверялись мощные методы зарождающего математического анализа.

Построение.

Чтобы построить на бумаге приближенно одну арку циклоиды, описанную при качении обруча диаметром, равным, например, трем сантиметрам, отложим на прямой отрезок, равный 3х3,14 = 9,42 см.

Получим отрезок, длина которого равна длине обода обруча, т. е. длине окружности диаметром в три сантиметра. Разделим далее этот отрезок на некоторое число равных частей, например на 6, и для каждой точки деления изобразим наш обруч в том его положении, когда он опирается именно на данную точку, занумеровав эти положения цифрами: 0, 1, 2, 3, 4, 5, 6.Чтобы перейти

из одного положения в соседнее, обруч должен повернуться на одну шестую полного оборота, так как расстояние между соседними точками деления равно шестой части окружности). Поэтому если в положении 0 мел будет находиться в точке М0 , то в положении 1 он будет лежать в точке M1 - на одной шестой окружности от точки касания, в положении 2 - в точке М2 - на две шестых от точки касания и т. д. Чтобы получить точки M1 , M2 , М3 и т.д., нужно лишь производить засечки соответствующей окружности, начиная от точки касания, радиусом, равным 1,5 см, причем в положении 1 нужна одна засечка, в положении 2 - две засечки, выполненные одна за другой, в положении 3 - три засечки и т. д. Теперь для вычерчивания циклоиды остается соединить точки М0, М1 , M2 , М3 , М4 , M5 , M6 , плавной кривой (на глаз).

Декартов Лист.

Впервые уравнение кривой исследовал Р.Декарт в 1638 году, однако он построил только петлю в первом координатном угле, где (x) и (y) принимают положительные значения. Декарт полагал, что петля симметрично повторяется во всех четырёх координатных четвертях, в виде четырёх лепестков цветка. В то время эта кривая называлась цветком В современном виде эту кривую впервые представил Х.Гюйгенс в 1692году.

Роза.

Роза - известная математическая кривая, похожая на цветок с лепестками.

Эллипс.

Эллипс - замкнутая кривая на плоскости, которая может быть получена как пересечение плоскости и кругового цилиндра или как ортогональная проекция окружности на плоскость. Окружность является частными случаем эллипса. Наряду с гиперболой и параболой, эллипс является коническим сечением и квадрикой.

Парабола.

Парабола — геометрическое место точек, равноудалённых от данной прямой(называемой директрисой параболы) и данной точки (называемой фокусом параболы).Наряду с эллипсом и гиперболой, парабола является коническим сечением. Она может быть определена как коническое сечение с единичным эксцентриситетом.

Кардиоида.

Если использовать две окружности с одинаковыми радиусами и вращать одну вокруг другой, то получится кардиоида (греч.кардиа - сердце) - по мнению математиков, получаемая кривая отдаленно напоминает сердце.На рисунке 2 изображено построение в программе PascalABC.

Гипоциклоида.

Гипоциклоида — плоская кривая, образуемая точкой окружности, катящейся по внутренней стороне другой окружности без скольжения. Гипоциклоиду можно построить с помощью программы PascalABC.

Спираль Архимеда.

Архимедова спираль – плоская кривая, описываемая точкой M, равномерно движущейся по прямой OA, в то время как эта прямая равномерно вращается в плоскости вокруг одной из своих точек O.

Геометрическим свойством, характеризующим спираль Архимеда, является постоянство расстояний между витками (рис.3). На (рис.4)изображено построение Спирали Архимеда в программе PascalABC. рис.3 Рис.4Построение(С помощью чертёжных инструментов)

1. Делим радиус окружности на одинаковое число равных частей.

2. Делим окружность на такое же число равных частей.

3. Проводим лучи из центра через точки деления окружности.

4. На первом луче откладываем одно деление радиуса.

5. На втором луче откладываем два деления радиуса и т. д.

6. Если строить спираль дальше, то на луче 1 откладываем 8+1 деление радиуса (получаем точку IX).

7. На втором луче откладываем 8+2 деления радиуса (получаем точку X).

8. На третьем луче откладываем 8+3 деления радиуса (получаем точку XI) и т. д.(Приложение 6)

Спираль Архимеда состоит из бесконечно многих витков. Она начинается в центре, и все более и более удаляется от него по мере того, как растет число оборотов.

Безобидная воронка, образованной вытекающей из ванны водой; свирепый смерч(рис.5), опустошающий все на своем пути; величественный круговорот гигантского космического вихря туманностей и галактик (рис.6) – все они имеют форму спиралей. рис.(5) и рис(6)

По спирали Архимеда идет, например звуковая дорожка. Одна из деталей швейной машинки – механизм для равномерного наматывания нити на шпульку – имеет форму спирали Архимеда(рис.7).

Спираль Архимеда в настоящее время широко используется в технике. Одно из изобретений ученого – винт (прообраз объемной спирали)- использовалось как механизм для передачи воды в оросительные каналы из низколежащих водоемов. Винт Архимеда стал прообразом шнека – устройства, широко используемого в различных машинах для перемешивания жидких, сыпучих и тестообразных материалов. Самая распространенная его разновидность – винтовой ротор в мясорубке. Заключение.

Применение замечательных кривых широко распространено, их применяют в производстве, строительстве, военном деле. Замечательные кривые поистине замечательны своими свойствами. Трудно себе представить мир без этих кривых, хотя они так не заметны для нашего повседневного взора.

Мы их видим каждый день! Несмотря на то, что у них на первый взгляд сложные и непонятные названия – все они по-своему замечательные!

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Министерство высшего и профессионального образования

Оренбургский государственный университет

Аэрокосмический институт

Реферат по высшей математике:

Выполнил: Обухов Е. В. (2000МСИ)

Проверил: Липилина В. В.

График показательной функции

Подбор длины цепочки

А если длина не та

Все цепные линии подобны

В книге Галилея “Беседы и математические доказательства…”, напечатанной впервые на итальянском языке в голландском городе Лейдене в 1638г., предлагался, между прочим, такой способ построения параболы: “Вобьём в стену два гвоздя на одинаковой высоте над горизонтом и на таком расстоянии друг от друга, чтобы оно равнялось двойной ширине прямоугольника, на котором желательно построить полупараболу; между одним и другим гвоздём подвесим тонкую цепочку, которая свешивалась бы вниз и была такой длины, чтобы самая низкая точка её находилась от уровня гвоздя на расстоянии, равном высоте прямоугольника (рис. 1). Цепочка эта, свисая, расположится в виде параболы, так что, отметив её след на стене пунктиром, мы получим параболу, рассекаемую пополам перпендикуляром, проведённым через середину линии, соединяющей оба гвоздя”.

Способ этот прост и нагляден, но не точен. Это понимал и сам Галилей. На самом деле, если параболу построить по всем правилам, то между нею и цепочкой обнаружатся зазоры. Они видны на том же рис. 1, где соответствующая парабола обозначена сплошной линией.

Только через полвека после выхода книги Галилея старший из двух братьев-математиков Бернулли – Якоб нашёл чисто теоретическим путём точную формулу провисающей цепочки. Не спеша сообщать своё решение задачи, он бросил вызов другим математикам. Правильное решение опубликовали уже в следующем 1691г. Христиан Гюйгенс, Готфрид Вильгельм Лейбниц и младший брат Якоба – Иоганн Бернулли. Все они пользовались для решения задачи, во-первых, законами механики, а во-вторых, могучими средствами недавно разработанного тогда математического анализа – производной и интегралом.

Гюйгенс назвал кривую, по которой располагается цепочка, подвешенная за два конца, цепной линией.

Так как цепочки бывают разной длины, да и концы их могут подвешиваться на разных расстояниях друг от друга – то ближе, то дальше, то и цепных линий существует не одна, а много. Но все они подобны между собой, как, например, подобны между собой любые окружности.

График показательной функции.

Оказалось, что разгадка секрета цепной линии лежит в показательной функции. В XVIII веке она была ещё новинкой, а теперь её должен знать каждый восьмиклассник. Это функция вида y=a x , где a – какое-либо положительное число, не равное 1. Вычисления показали, что для построения цепной линии удобнее всего принять a равным так называемому неперову числу, обозначаемому буквой e. Оно получило своё имя в честь шотландского математика Джона Непера – одного из изобретателей логарифмов. Число это почти столь же знаменито, как и число ; его приближённое значение, взятое с точностью до 0,0005:e2,718.

На рис. 2 сплошной линией изображен график показательной функции y=e x , а пунктиром - график другой показательной функции, тесно связанной с предыдущей.

Если воспользоваться отрицательными показателями степеней, то последнюю функцию можно представить в виде y=e - x . Теперь ясно, что оба графика симметричны друг другу относительно оси ординат, что и обнаруживает рисунок.

Образуем теперь две новые функции, беря для каждого x либо полусумму значений наших показательных функций – получим y= 1 /2 (y=e x +e - x ), либо их полуразность: y= 1 /2 (y=e x -e - x ). Графики этих новых функций приведены на рис. 3 и рис. 4. Оказывается, что первый из них это и есть одна из цепных линий. Из него путем простых преобразований, о которых пойдет речь ниже, можно получить любую цепную линию, симметричную относительно оси ординат. Что касается графика, представленного на рис. 4, то он будет нами использован как вспомогательное средство при переходе от цепной линии рис. 3 к более общему случаю цепной линии.

Подбор длины цепочки.

Рассмотрим подробнее связь между кривой, изображенной на рис. 3, и формой висящей цепочки. Представим себе, что эта кривая вычерчена на строго вертикальной и совершенно гладкой стене и что нам разрешено забивать гвозди в разные точки кривой. Забьём их, как советовал Галилей, в точках A и B на одной горизонтали (впрочем, это условие несущественно). Подберём теперь тонкую цепочку, длина которой точно равна 2l – длине дуги AB – и концы её закрепим в A и B. Тогда цепочка провиснет строго по дуге, которую мы заранее вычертили. Никаких зазоров между ней и этой кривой не будет наблюдаться.

Подбор цепочки нужной длины можно производить путем проб. Взять цепочку подлиннее – с запасом, а потом подвешивать её за разные звенья в точках A и B, по мере надобности увеличивая или уменьшая длину провисающей части, пока не произойдёт совпадения (рис. 5). Но можно поступить и иначе: зная d (половину расстояния между гвоздями), найти путём вычисления l (половину длины дуги AB) и тогда уже брать цепочку, длина которой точно равна 2l. Такой подсчёт удаётся с помощью интеграла. Укажем здесь результат: l=1/2(e d -e - d ). Отсюда следует, что если взять на графике функции y=1/2(e x -e - x ) (рис. 4) x=d, то соответствующая ордината у точки E этого графика будет равна l.

Так как l=1/2(e d -e - d ) d -e - d ) (см. рис. 5), то получается любопытное заключение: длина дуги CB цепной линии, представленной на рис. 5 (половина длины всей цепочки) короче, чем ордината точки подвеса. С другой стороны, имеем: l>d, т.е. эта длина больше, чем абсцисса точки подвеса.

А если длина не та?

Как отыскать уравнение линии в случае, когда для данных точек подвеса A и B длина цепочки 2l` не совпадает с длиной 2l дуги AB, принадлежащей кривой y=1/2(e x -e - x )? В поисках ответа мы будем опираться на отмеченный выше факт, что все цепные линии подобны между собой.

Пусть, например, l`>l. Тогда цепочка провиснет по некоторой дуге AC`B, расположенной под дугой ACB(рис. 5). Мы покажем, что нужное уравнение цепной линии, которой принадлежит дуга AC`B, можно найти в три приёма. Сначала перейти от кривой (1): y=1/2(e x -e - x ) к некоторой кривой (2): y=1/2(e x / k -e - x / k );эта кривая получается из (1) посредством преобразования подобия с центром в точке O и коэффициентом подобия k (k>0). Затем перейти от кривой (2) к кривой (3): y=b+k/2(e x / k -e - x / k ) посредством сдвига предыдущей в направлении оси ординат (в зависимости от знака b вверх или вниз).

Вся хитрость заключается в том, чтобы определить коэффициент подобия k. С этой целью отметим в плоскости вспомогательной кривой, изображённой на рис. 4, точку F с координатами x=d и y=l`. В силу того, что l`>l, она не попадёт на кривую, а окажется выше неё.

Продолжим OF до пересечения с кривой в некоторой точке G (можно доказать, что точка пересечения найдётся, помимо точки O, и притом только одна). Положим OF/OG (в нашем случае 0 ); тогда координатами точки G будут числа x=d/k, y=l`/k. Поэтому они будут связаны уравнением кривой: l`/k=1/2(e d / k -e - d / k ). Отсюда следует, что если на кривой (1) (рис. 3) взять точки A` и B` с абсциссами –d/k и d/k, то длина дуги A`B`, их соединяющей, будет равна 2l`/k.

Все цепные линии подобны.

Найденное число k используем как коэффициент подобия в преобразовании кривой (1); в качестве центра подобия возьмем начало координат O. Тогда каждой точке P(x,y) кривой (1) будет соответствовать точка Q(kx,ky) преобразованной кривой (2) (рис. 6). Если ввести обозначения: X=kx, Y=ky, то x=X/k, y=Y/k. Последние числа должны удовлетворять уравнению (1), так как точка P(x,y) лежит на ней. Получаем: Y/k=1/2(e X / k -e - X / k ). Это и есть уравнение кривой (2), полученной в результате преобразования. Большие буквы для обозначения координат можно здесь заменить маленькими, помня, что теперь это координаты любой точки кривой (2).

Заметим, что точкам A` и B` кривой (1) с абсциссами –d/k и d/k будут соответствовать точки A`` и B`` кривой (2) с абсциссами –d и d(рис. 7). В силу подобия дуг A`B` и A``B`` длина A``B`` будет равна 2l`, т. е. равна заданной длине цепочки. В этом и состоит преимущество кривой (2) перед исходной кривой (1). Недостаток её, однако, в том, что кривая (1) проходила через заданные точки подвеса A и B, а кривая (2) может через них и не проходить. Но этот недостаток легко устранить. Если ордината точки B`` (или A``): k/2(e d / k +e - d / k ) не равна r, т. е. B`` не совпадает с B, то положим r-k/2(e d / k +e - d / k )=b.

В результате сдвига кривой (2) в направлении оси ординат на величину b она перейдёт в кривую (3): y=b+k/2(e d / k +e - d / k ). Последняя кривая, во-первых, подобна кривой (1) и, следовательно, является сама цепной линией. Во-вторых, она проходит через заданные точки подвеса: A(-d,r) и B(d,r). И, в-третьих, длина дуги AB равна длине данной цепочки 2l`. Эти условия и обеспечивают, как это было доказано Бернулли, Гюйгенсом и Лейбницем, что цепочка провиснет как раз по дуге AB.

Помогаем учителям и учащимся в обучении, создании и грамотном оформлении исследовательской работы и проекта.

Темы исследований

Оформление работы

Наш баннер

Сайт Обучонок содержит исследовательские работы и проекты учащихся, темы творческих проектов по предметам и правила их оформления, обучающие программы для детей.


Код баннера:

Исследовательские работы и проекты

Математические кривые


Подробнее о работе:


Актуальность исследовательского проекта по математике на тему "Математические кривые" заключается в демонстрации и применении математических знаний в практической деятельности человека. Люди различают окружающие их вещи по форме. Интерес к форме предмета может быть вызван какой-либо потребностью у человека, а может и красотой самой формы. В индивидуальном проекте изучен вопрос применения кривых - математических роз и спиралей в природе и жизни человека.

Оглавление

Введение
1. Понятие математических кривых.
1.1. Определение математических кривых.
1.2. Определение математических спиралей.
1.3. Определение математических роз.
2. Практическое применение математических кривых.
2.1. Виды и уравнения математических спиралей.
2.2. Исследование роли математических спиралей в жизни человека.
2.3. Виды и уравнения математических роз.
2.4. Исследование применения математических роз в природе и жизни человека.
2.5. Построение математических роз и спиралей в классе.
Заключение
Литература

Введение


Актуальность темы заключается в демонстрации и применении математических знаний в практической деятельности человека. Люди различают окружающие их вещи по форме. Интерес к форме предмета может быть вызван какой-либо потребностью у человека, а может и красотой самой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии у человека.

Цель исследования: Анализ видов роз и спиралей, известных в математике, а так же рассмотрение объектов, с которыми человек встречается ежедневно и использует в своей деятельности.

  1. Изучение литературы;
  2. Анализ интернет - ресурсов, посвященных розам и спиральным кривым в математике;
  3. Рассмотрение объектов, имеющих вид роз и спиралей, которые встречаются в жизни человека.
  4. Построение математических роз и спиралей в классе.

Объект исследования: математические кривые - розы и спирали.

Предмет исследования: Применение математических роз и спиралей в жизни людей.

Общенаучные методы

  • анализ научной литературы;
  • синтез;
  • классификация;
  • исследование и обобщение.

Эмпирическое исследование

Объяснительное эмпирическое исследование. Данное исследование включает в себя не только сбор и анализ, но и объяснение полученных фактов, а так же содержит выявление причин и причинно-следственных зависимостей между фактами, при котором неизвестное объясняется через известное.

Гипотеза: математические кривые – розы и спирали проявляютсявезде, на них основана жизнь. Розы и спирали присутствуют в каждом аспекте нашей жизни.

Определение математических кривых

Прямая и окружность - две наиболее простые и вместе с тем наиболее замечательные по своим свойствам кривые. Любой человек знаком с прямой и окружностью больше, чем с другими кривыми, но при этом ему не полностью хорошо известны важнейшие свойства прямой и окружности. Именно из этих двух понятий и математических кривых, при довольно интересном и легком взаимодействии, образуются такие интересные кривые, как спирали и розы.

Определение математических спиралей


Математические спирали - плоские кривые, которые обычно обходят вокруг одной (или нескольких точек), приближаясь или удаляясь от нее/них.

Определение математических роз

Математические розы – плоские кривые, напоминающие символическое изображение цветка.

кривые 1

Виды и уравнения математических спиралей

Архимедова спираль – кривая, задаваемая уравнением r=aφ, где a – некоторое фиксированное число.

кривые 2

Геометрическим свойством, характеризующим спираль Архимеда, является постоянство расстояний между соседними витками. Каждое из них равно 2πa. Действительно, если угол φ увеличивается на 2π, т.е. точка делает один оборот против часовой стрелки, то радиус увеличивается на 2π, что и составляет расстояние между соседними витками.

Циклоида – кривая, которую описывает точка, закрепленная на окружности, катящаяся без скольжения по прямой линии.

Спираль Ферма - спираль, задаваемая на плоскости в полярных координатах уравнением r^2=a^2 φ, является видом Архимедовой спирали.

кривые 3

кривые 4

Логарифмическая спираль (изогональная)


Данная спираль получила такое название из-за того, что логарифм расстояния (log_α⁡r) возрастает пропорционально углу поворота. Описывается она уравнением r=α^φ, где r – расстояние от точки, вокруг которой закручивается спираль (ее называют полюсом), до произвольной точки на спирали, φ – угол поворота, относительно полюса, постоянная.

кривые 6

кривые 7

Золотая спираль – логарифмическая спираль, коэффициент роста которой равен φ^4, где φ - золотое сечение. Коэффициент роста показывает, во сколько раз изменился полярный радиус спирали при повороте на угол 360.

Уравнение для золотой спирали в полярной системе координат имеет такой вид: r= αφ^(±2θ/π), где a – произвольная положительная вещественная константа,

А φ=(√5+1)/2 – золотое сечение.

кривые 9

кривые 10

Спираль Корню (Клотоида) - кривая, у которой кривизна изменяется линейно как функция длины дуги. 1/R~L↔R∙L=const

кривые 11

Исследование роли математических спиралей в жизни человека


Математические кривые широко распространены, их применяют в производстве, строительстве, военном деле и т.д. Они поистине замечательны своими свойствами.

Изначально поражает необычайное разнообразие значений символа спирали. Он воспринимается, как ход и бег времени (циклические ритмы, смена солнечных и лунных фаз, ход истории человеческой жизни).

Спираль считается знаком развития жизненной силы, данной нам природой. Это стремление к новым уровням, к своему центру, мудрости. Спираль часто ассоциируется со змеей, олицетворяющей, в свою очередь, мудрость предков. Ведь известно, что змеи очень любят сворачиваться кольцами и внешне походят на спирали.

В природе спираль проявляется в трех основных формах: застывшей (раковины улиток), расширяющейся (изображения спиральных галактик) или сжимающейся (подобие водоворота).Спиральные формы представлены от эволюционных глубин (молекулы ДНК) до законов диалектики.

Спирали также широко проявляют себя в растительном и животном мире:

Помимо природы спираль встречается также в деятельности человека:

Самая распространенная его разновидность - винтовой ротор в обычной мясорубке. Примером применения в технике архимедовой спирали также является самоцентрирующийся патрон. Данный механизм используется в швейных машинках для равномерного наматывания ниток.

Таким образом, мы можем сделать вывод, что строгая математика находится в постоянном взаимодействии с нами, хоть мы этого и не замечаем.

Виды и уравнения математических роз

Роза Гвидо Гранди

Уравнение данной розы имеет такой вид: r=R sin⁡ωφ.

Задавая параметр ω=n/d, отношением натуральных чисел, можно получить замкнутые кривые, при определенных условиях превращающиеся в лепестковые цветы или в ажурные розетки, которые могут служить элементами декора или орнамента.

Изменяя данное уравнение, а так же подставляя в него множество чисел можно получить огромное разнообразие роз.

кривые 12

Семейство роз Гранди имеет свойство, которое в природе не сразу и заметишь, так как:

Если ω=n/d, то вся кривая расположена внутри круга единичного радиуса. В силу периодичности тригонометрических функций роза состоит из одинаковых лепестков, симметричных относительно наибольших радиусов, каждый из которых равен 1. ρ=α sin⁡2φ

кривые 13

ρρ=α sin⁡3φ

Свойства четырехлепестковой розы
Четырехлепестковая роза есть геометрическое место оснований перпендикуляров, опущенных из начала координат на отрезок длиной - 1, концы которого скользят по координатным осям.
Площадь, ограничиваемая четырехлепестковой розой, равна π/2. Если k – натуральное число, то роза состоит из 2k лепестков при четном: лепестков при k нечетном. Если k - рациональное число (k=m/n), то роза состоит из n лепестков в случае, когда оба числа n и m нечетные, и из 2n лепестков, когда одно из этих чисел является четным; при этом лепестки частично перекрываются. Если k – иррациональное число, то роза состоит из бесконечного множества лепестков.

Кардиоида – получила свое название из-за схожести своих очертаний со стилизованным изображением сердца.

Определяется в полярных координатах уравнением: ρ=α(1-cos φ ), в котором α – радиус окружности.

кривая 16

кривая 17

Полярная роза – известная математическая кривая, похожая на цветок.


В полярных координатах определяется уравнением: ρ=2 sin⁡4φ.

Лемниската Бернулли – кривая, у которой произведение расстояний каждой ее точки до двух заданных точек (фокусов) - постоянно и равно квадрату половины расстояния между ними. Уравнение: ρ^2=2с^2 cos 2φ

кривая 19

Исследование применения математических роз в природе и жизни человека

  • Большинство видов математических роз встречается в архитектуре, в создании человеком храмов, церквей и т.д.
  • В архитектуре малых форм (орнамент)

С помощью выращенных цветов, различных кривых и графических редакторов можно сделать, например, различные рисунки, рамки-орнаменты или украсить ими различные предметы. Орнамент – украшение, узор, состоящий из ритмически организованных повторяющихся элементов, которые композиционно могут образовывать орнаментальный ряд или раппорт.

  • В ландшафтном дизайне
  • В природе встречается в огромном разнообразии цветов любых форм.

Построение математических роз и спиралей в классе


В ходе моего исследования по данной теме я выяснила, что человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета у него может быть продиктован жизненной необходимостью, а может быть вызван красотой формы.

Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии у человека. Так же я узнала, как происходит построение математических спиралей и роз и решила воспользоваться и проверить данные знания в реальной жизни.

кривая 20

кривая 21

Заключение

Из всей данной работы можно сделать вывод, что спирали и розы занимают важную и значимую роль в нашей жизни. Без них было бы невозможно существование многих растений, животных, космических галактик. Так же без знания таких фигур люди не смогли бы воспроизводить данную красоту в архитектуре, ландшафтном дизайне и любой другой своей деятельности.

Проведя исследование на данную тему, я узнала много интересного связанного с математическими расчётами, спиралями, розами, об их значениях и проявлениях в природе и деятельности человека. Научилась делать построение некоторых фигур, и в итоге пришла к выводу, что всё всегда связано с окружающим нас миром, и ничего не возникает из ниоткуда.

В жизни всегда было и будет множество великих математиков, открывающих нам огромный мир чисел, формул и построений, но мы не должны забывать про наш удивительный и невероятный мир, полный чудес и еще множеств нерешенных задач.

Практическая значимость работы: Данное исследование можно применять на факультативных занятиях по математике.

Цель работы достигнута: определена значимая роль математических кривых – роз и спиралей в жизни человека. Гипотеза о том, что розы и спирали присутствуют в каждом аспекте нашей жизни, подтверждена. Все поставленные в работе задачи решены: проведен анализ видов роз и спиралей, известных в математике, рассмотрены объекты, с которыми человек встречается ежедневно и использует в своей деятельности, проведено построение математических роз и спиралей в классе.

Читайте также: