Реферат на тему воздушная известь

Обновлено: 05.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Институт физики и химии

Кафедра физической химии

Реферат по дисциплине Химия строительных материалов,

Выполнил студент 4-го курса,

специальности ХФиММ: Кутюшев Д. Р.

Проверил преподаватель: Арасланкин С. В.

Вяжущие вещества – вещества, затвердевающие в следствии действия различных физико-химических процессов, иными словами, они работают в качестве цементирующего элемента. Переходя из вязкой пастообразной фазы в камневидную фазу, вяжущие вещества соединяют друг с другом частицы какого-нибудь заполнителя (песка, каменной крошки, щебня и прочих). Данная функциональная черта вяжущих веществ, нашла довольно обширное применение в строительной промышленности, их используют в рецептурах растворов – кладочных, штукатурных и специализированных, а кроме того бетонов, силикатного кирпича, асбестоцементных и других необожженных строительных материалов искусственного происхождения[2].

Вяжущие вещества классифицируются на органические и неорганические (минеральные) вещества. К органическому классу вяжущих веществ, принадлежат битумы, дегти, животные клеи, различные высокомолекулярные соединения. Они все переходят в эксплуатационную фазу в следствии воздействия повышенных температур, расплавления, либо растворения в разных органических растворителях. К неорганическому классу вяжущих веществ, принадлежат строительный гипс, известь, различные виды цементов, растворимое стекло и прочие. Неорганические вяжущие вещества, как правило, затворяются водой, а иногда и водными растворами различных солей. Их классифицируют на воздушные, кислотостойкие, гидравлические и вяжущие вещества автоклавного твердения. Также вяжущие вещества подразделяются на множество разных марок. Марка вяжущего вещества говорит о его прочностных показателях при сжатии, в стандартных условиях эксперимента. Еще их классифицируют по быстроте затвердевания. Самую большую скорость затвердевания имеют вяжущие вещества на основе гипса (до нескольких часов). Самую маленькую скорость затвердевания имеет воздушная известь (не один месяц)[5].

О примитивных вяжущих веществах знали уже за несколько тысячелетий до нашей эры, их прародителем была необожженная глина. Уже в древнем династическом Египте, в эпоху властвования фараонов, при строительстве пирамид активно употребляли вяжущие вещества, которые получали из гипса. Наглядным примером является известная египетская пирамида Хеопса, построенная приблизительно 4000 лет назад, которая возведена именно на гипсовом растворе. Тогда вяжущие вещества получали в следствии обжига гипсового камня и известняковых пород. Римляне для повышения стойкости к воде, к ним добавляли различные сильно измельченные минеральные порошки, например вулканический пепел, туф или пемзу. В древней Руси вяжущие вещества на основе гипса начали применять приблизительно в XI веке, при строительстве Софийского храма в Киеве[1]. В растворы, обладающие хорошими гидравлическими показателями, наши предки также добавляли бычью кровь, творожную массу, яйца и прочие похожие материалы. В 1584 году в Москве был издан Каменный приказ, который наряду с заготовкой строительного камня и выпуском кирпича ведал также изготовлением извести.

Большой вклад в развитие производства вяжущих веществ внесли англичане. В 1796 году Джеймс Паркер получил патент на производство романцемента. А в 1824 году Джозефом Аспдином был заявлен патент на производство портландцемента[1].

В нашей стране первые рецептуры по приготовлению вяжущих веществ были разработаны в XVIII веке. Данные рецептуры были обобщенным плодом многолетних исследований многих русских ученых.

Так, Василий Михайлович Севергин говорил о целесообразности применения известняковых пород с примесями глин и мергелистых пород для приготовления вяжущих веществ, обладающих хорошими гидравлическими свойствами[2].

Совершенно новым стали правила технологии получения гидравлических вяжущих, представленные в научной работе русского военного техника Егора Герасимовича Челиева, изданной в XIX веке. В своих исследованиях он приводит описание изготовления гидравлического вяжущего, полученного из извести и глины (в отношении 1:1) смешанных в присутствии воды; изготовления кирпичей и обжига их в горне на сухих дровах (примерно при температуре 1100 – 1200 ° C ). Уже тогда Егор Челиев предложил применять гипс при затворении получаемого им цемента водой, как для повышения устойчивости к воздушной среде только что обожженного продукта, так и для повышения прочности лежавшего без употребления в течение долгого времени цемента[1].

В XIX – XX веках в усовершенствование базы по производству вяжущих большой вклад внесли исследования Дмитрия Ивановича Менделеева, а также работы таких великих ученых, как Алексей Романович Шуляченко, Иван Григорьевич Малюга, Николай Николаевич Лямин, Николай Аполонович Белелюбский[1].

1. Неорганические вяжущие

Неорганическими вяжущими называют порошкообразные вещества высокой степени перемола, которые переходят в следствии затворения водой в вязкотекучее сходное с тестом вещество, затвердевающее при конкретных условиях до камневидного состояния.

По своему составу, важным показателям и применению выделяют несколько разновидностей неорганических вяжущих: воздушные, кислотоустойчивые, гидравлические и вяжущие автоклавного затвердевания. Каждую из приведенных групп подразделяют еще на некоторое количество различных подгрупп[2].

Таблица 1. Классификация минеральных вяжущих

В контакте с воздухом, затворенные воздушные вяжущие схватываются, затвердевают и упрочняются. В конечном итоге выходит камневидный материал, долго сохраняющий свои прочностные показатели, но исключительно на воздухе. Эти материалы, в силу особенности своих свойств, не используются ни в каких сооружениях, кроме наземных, в коих исключено действие не воздушных сред. К этому классу принадлежат строительная воздушная известь, гипсовые и магнезиальные вяжущие[2].

Кислотостойкие вяжущие после затвердевания в воздухе некоторый период сохраняют свои прочностные характеристики под влиянием неорганических кислот. К данному классу вяжущих принадлежат кислотостойкий цемент и прочие[ 1 ].

Затворенные водой, гидравлические вяжущие обладают особенностью, увеличивать свои прочностные характеристики в воде. По клинкерному и вещественному составу бывают: цементы на базе портландцементного клинкера (портландцемент, портландцемент с неорганическими добавками) и цементы на базе глиноземистого клинкера (глиноземистый и гипсоглиноземистый).

Вяжущие автоклавного твердения превращаются в камень исключительно в автоклавных условиях, то есть при паровом давлении 0,9 – 1,3 МПа и температуре 440 – 470 K . К ним принадлежат, к примеру известково-кремнеземистые, известково-пуццолановые, известково-зольные вяжущие и прочие [2].

Важными показателями вяжущих являются плотность, насыпная плотность, показатель водопотребления, быстрота схватывания и твердения, прочностные показатели.

Плотность сильно зависит от класса неорганического вяжущего. Больше остальных у негашеной извести – 3,1 – 3,3 г/см 3 и портландцемента – 3 – 3,2 г/см 3 , меньше всего у гипсовых вяжущих – 2,6 – 2,7 г/см 3 .

Насыпная плотность вяжущих сильно зависит от основной плотности и степени перемола порошка. Насыпная плотность портландцемента – 900 – 1100 кг/м 3 .

Водопотребление – это объем воды, нужный для достижения вязкотекучего тестообразного состояния. Маленький показатель водопотребления дает лучшее качественные и прочностные характеристики. Самый маленький показатель у портландцемента – 24 – 28%, самый большой у вяжущих на базе гипса – 50 – 80 %.

Время схватывания – это время, за которое затворенное неорганическое вяжущее, поддерживает свои показатели пластичности. Очень скоро схватываются гипсовые вяжущие: начинают через 4 – 5 минут, заканчивают через 10 – 15 минут после затворения водой. Очень долго схватывается гидратная известь, аж через 3 – 5 суток.

Быстрота затвердевания зависит от взаимодействия компонентов неорганического вяжущего с водой. У гипсовых вяжущих скорость затвердевания около 1 – 2 часов. Гашеная известь затвердевает не один год. Цементы по быстроте твердения выделяют: обычные (с нормировкой прочностных показателей за срок 28 суток), быстротвердеющие (с нормировкой прочностных показателей за срок 1 – 28 суток), быстротвердеющие (с нормировкой прочностных показателей за 1 сутки и меньше).

Прочность показывает способность вяжущего сохранять свои свойства под действием различных внешних нагрузок. Прочностные показатели камневидной фазы являются зависимыми от нескольких условий: вида вяжущего, тонкости его перемола, показателя водопотребления, быстроты твердения. По прочностным характеристикам выделяют цементы: высокопрочные (550 – 600 и более), повышенной прочности (500), рядовые (300 – 400), низкомарочные (менее 300). Большие прочностные показатели имеют вяжущие автоклавного твердения. А вот, прочностные показатели воздушных вяжущих намного меньше (5 – 20 МПа)[ 5 ].

1.1 Воздушные вяжущие

Затворенные водой воздушные вяжущие затвердевают и сохраняют прочностные характеристики исключительно в воздухе. Под влиянием водной среды такие материалы достаточно быстро подвергаются разрушению. Из-за этого воздушные вяжущие используются только при возведении наземных сооружений. К таким материалам принадлежат гипсовые вяжущие, воздушная известь (негашеная комовая известь, гашеная молотая известь), магнезиальные вяжущие, кислотостойкий цемент, растворимое стекло и прочие[2].

Гипсовые вяжущие классифицируются на две группы – низко обжиговые и высоко обжиговые. Исходным сырьем для них служит гипсовый камень – двухводный гипс – CaSО 4 ·2H 2 О, и ангидрит, в его состав входит безводный гипс – CaSО 4 , а кроме того отходы химической индустрии, содержащее двухводный или безводный сернокислый кальций. Чистый двухводный гипс состоит из 32,56% СаО; 46,51% SО 3 и 20,93% воды, а ангидрит – из 41,19% СаО и 58,81% SО 3 . Растворимость двухводного гипса, равна 2,05 грамм в одном литре воды при 20 ° С. Растворимость ангидрита – один грамм на один литр воды[ 3 ].

Магнезит широко распространенный минерал, который назван от области Магнесия (Фессалия, Греция), где был впервые обнаружен. В природных условиях магнезит существует в двух разновидностях – кристаллическом и аморфном. Прочностные показатели и того и другого вида магнезита по шкале Мооса находится в интервале 3,5 – 4,5; плотность 2,9 – 3,1. Состав магнезита 47,82% оксида магния и 52,18% CO 3 . В природном магнезите имеют место разные примеси: глинистые породы, углекислый кальций и прочие. В зависимости от состава примесных компонентов различают белый, бурый, серый и желтый магнезит. В аморфном состоянии всегда есть наличие кремнезема, но отсутствуют соединения железа. В природных условиях магнезит более редкий минерал, чем известняк и доломит. Наиболее известны два магнезиальных вяжущих: каустический магнезит и доломит. Каустический магнезит получают в следствии обжига магнезита (MgCО 3 ) и перемолом его в порошок высокой степени тонкости. Отличие между каустическим доломитом и каустическим магнезитом в исходном сырье. Для каустического доломита им является не магнезит, а доломит (CaCО 3 ·MgCО 3 ). И то и другое вяжущие затворяют раствором хлористого магния, сернокислого магния или прочих солей.

Доломит – это минерал, который имеет состава CaCO 3 – MgCO 3 . Еще доломитом называют осадочную карбонатную горную породу, которая состоит из минерала доломита на 95 %. Доломит назвали в честь геолога из Франции Деода де Доломье, он первым описал характерные особенности доломитовых пород. Прочностные показатели доломита по шкале Мооса 3,5 – 4; плотность 2,85 – 2,95. Содержание в доломите СаСО 3 – 54,27%; MgCО 3 – 45,73% или в окислах: СаО – 30,41%; MgO – 21,87% и СО 2 – 47,72%. Доломит, который встречается в природе, как правило, имеет избыток углекислого кальция. Кроме него, в доломите имеются глинистые и прочие примеси. Доломит бывает белого, желтого и бурого цвета, в зависимости от примесного состава[4].

Воздушная известь одно из самых древних вяжущих, которое до сих пор применяется в строительстве. Известь получается в следствии обжигания кальциевых и кальциево-магниевых карбонатных пород до избавления от углекислого газа. В следствии обжигания получается белый материал, который имеет название негашеная комовая известь. Исходным сырьем для получения извести являются достаточно распространенные осадочные горные породы: известняки, доломиты, мел, доломитизированные известняки. В составе сырья имеет преимущество карбонат кальция СаСО 3 , а также содержатся карбонат магния и прочие примеси. Сырье, обжигают в шахтных или вращающихся печах при температуре 900 – 1200 ° C , по итогам обжигания комовую известь гасят водой. В контакте с водной средой комки извести активно с ней взаимодействуют, преобразуясь в порошок, а при излишнем количестве воды – в пластичное тестообразное вещество. Такой процесс, сопровождающийся очень большим выделением тепла и нагреванием воды до кипения, называют гашением извести. В зависимости от времени гашения различают быстро гасящуюся известь (время гашения до 8 минут) средне гасящуюся (до 25 минут) и медленно гасящуюся (более 25 минут)[3].

1.2 Гидравлические вяжущие

Гидравлические вяжущие являются порошками высокой степени перемола, состоящие из силикатов и алюминатов кальция, которые реагируют с водой, переходя в твердую камневидную фазу. Состав компонентов, из которых состоят гидравлические вяжущие, записывают в виде различных оксидов. Например, силикат кальция CaSiО 3 , трехкальциевый алюминат Са 3 А1 2 О 3 [3].

К гидравлическим вяжущим принадлежат гидравлическая известь, которая занимает среднее положение между воздушными и гидравлическими вяжущими, романцемент, портландцемент, разновидности портландцемента и специализированные виды цементов[2].

Цементы готовят из мергеля конкретного химического состава или из смеси известняковых горных пород и глин (известняк 75 %, глина 25 %). Эту смесь подвергают обжигу в печах при 1450 ° C . Результатом обжига является частичное оплавление, и получение гранул, которые называют клинкером. Типичный клинкер имеет примерный состав 67% СаО, 22% SiO 2 , 5% A l 2 O 3 , 3% Fe 2 O 3 и 3% других компонентов и обычно содержит четыре фазы: алит, белит, алюминатная и ферритная фаза. В клинкере также обычно присутствуют в небольших количествах и несколько других фаз, таких как щелочные сульфаты и оксид кальция. При едином перемоле клинкера с гипсом и прочими добавками получается порошок серого цвета – это и есть цемент. Гипс регулирует быстроту схватывания; его можно частично заменить другими формами сульфата кальция. Степень перемола цемента также оказывает влияние на быстроту его схватывания, а еще и на прочностные показатели после затвердевания. Цементы разделяют: по виду клинкера и вещественному составу; прочностным показателям; быстроте затвердевания; специальным свойствам. Портландцемент готовят путем совместного перемола портландцементного клинкера, доменного шлака и гипса. Шлаковый портландцемент схватывается и затвердевает намного дольше, чем обычный портландцемент[5].

Воздушная известь — продукт умеренного обжига кальциево-магниевых карбонатных горных пород: мела, известняка, доломитизированного известняка, доломита с содержанием глины не более 6%.
Основной составляющей известняка является карбонат кальция (СаСОз). Обжигают известняк при температуре 900 — 1200°С до возможно более полного удаления С02 по реакции СаСОз = СаО + + С02. Продукт обжига содержит кроме СаО (основной составной части) также и некоторое количество окиси магния, образовавшейся в результате термической диссоциации карбоната магния: MgC03==MgO + C02.

Работа состоит из 1 файл

Воздушная известь.docx

1.Воздушная известь: получение, свойства и применение.

Получение и гашение воздушной извести

Воздушная известь — продукт умеренного обжига кальциево-магниевых карбонатных горных пород: мела, известняка, доломитизированного известняка, доломита с содержанием глины не более 6%.

Основной составляющей известняка является карбонат кальция (СаСОз). Обжигают известняк при температуре 900 — 1200°С до возможно более полного удаления С02 по реакции СаСОз = СаО + + С02. Продукт обжига содержит кроме СаО (основной составной части) также и некоторое количество окиси магния, образовавшейся в результате термической диссоциации карбоната магния: MgC03==MgO + C02.

Чем выше содержание основных окислов (CaO + MgO) в извести, тем пластичнее известковое тесто и тем выше ее сорт. Содержание непогасившихся частиц, к которым относятся частицы недожога и пережога, снижает качество извести. Недожогом называют оставшиеся зерна сырья — известняка, которые отощают известковое тесто, ухудшают его пластичность и пескоемкость. Пережог представляет собой остеклованную трудногасящуюся окись кальция, уплотненную при высокой температуре. Частицы пережога гидратируются очень медленно с увеличением своего объема, что может вызвать растрескивание штукатурки, известковых изделий.

Обжиг известняка чаще всего производят в шахтных печах, в которые известняк поступает в виде кусков размером 8 — 20 см; обжиг мелких кусков известняка может производиться во вращающихся печах. При обжиге известняка удаляется углекислый газ, составляющий 44% от массы СаС03, поэтому комовая негашеная известь получается в виде пористых кусков, активно взаимодействующих с водой.

Гашение воздушной извести заключается в гидратации окиси кальция при действии воды на комовую негашеную известь: СаО + Н20 = Са(ОН)2. Гашение сопровождается разогревом массы вследствие выделения значительного количества тепла — 950 кДж/кг. В процессе гашения куски негашеной извести самопроизвольно диспергируются, распадаясь на тонкие частицы Са(ОН)2 размером в несколько микронов (тоньше, чем у цемента). Воздушная известь является единственным вяжущим веществом, которое превращается в тонкодисперсное состояние химическим диспергированием. Громадная удельная поверхность частиц Са(ОН)2 обусловливает большую водоудерживающую способность и пластичность известкового теста. После отстаивания известковое тесто содержит около 50% твердых частиц Са(ОН)2 и 50% воды. Каждая частица окружена тонким слоем адсорбированной воды, играющей роль своеобразной гидродинамической смазки. Высокая пластичность известкового теста в смеси с песком — это то свойство, которое так ценится при изготовлении строительных растворов.

Гашение комовой извести в тесто на специализированных растворных заводах производят в известегасильных машинах. Механизированное гашение ускоряет процесс, повышает качество известкового теста. На небольших стройках комовую известь сначала гасят в творилах, и известковое тесто через сетку сливают в известегасильную яму, в которой завершается гашение. Известковое тесто выдерживают в яме не менее двух недель. Нельзя применять известковое тесто, в котором осталась непогасившаяся известь, так как ее гашение в штукатурке и кладке вызовет растрескивание затвердевшего известкового раствора.

Свойства и технические характеристики.

Строительную известь изготавливают в соответствии с требованиями государственного стандарта по технологическому регламенту, утвержденному в установленном порядке. В производстве строительной извести используются следующие материалы: карбонатные породы, минеральные добавки (гранулированные доменные или электротермофосфорные шлаки, активные минеральные добавки, кварцевые пески). Они должны удовлетворять требованиям соответствующих действующих нормативных документов.

Воздушная негашеная известь без добавок подразделяется на три сорта: 1, 2 и 3; негашеная порошкообразная с добавками — на два сорта: 1 и 2; гидратная (гашеная) без добавок и с добавками на два сорта: 1 и 2.

Требования к воздушной извести.

Норма для извести, %, по массе

магнезиальной и доломитовой

АктивныеСаО + МgO, не менее:

Активный МgO, не более

Непогасившиеся зерна, не более

1. В скобках указано содержание МgO для доломитовой извести.

2. СО2 в извести с добавками определяют газообъемным методом.

3. Для кальциевой извести 3-го сорта, используемой для технологических целей, допускается по согласованию с потребителями содержание непогасившихся зерен не более 20 %.

Влажность гидратной извести не должна быть более 5 %.Сортность извести определяют по величине показателя, соответствующего низшему сорту, если по отдельным показателям она соответствует разным сортам.

Требования к химическому составу гидравлической извести.

Норма для извести, %, по массе

Активные СаО + МgО:

Активный МgO, не более

Предел прочности образцов, МПа (кгс/см2), через 28 сут. твердения должен быть не менее:

0,4 (4,0) - для слабогидравлической извести;

1,0 (10) - для сильногидравлической извести;

1,7 (17) - для слабогидравлической извести;

5,0 (50) - для сильногидравлической извести.

Вид гидравлической извести определяют по пределу прочности при сжатии, если по отдельным показателям она относится к разным видам.

Содержание гидратной воды в негашеной извести не должно быть более 2 %.

Степень дисперсности порошкообразной воздушной и гидравлической извести должна быть такой, чтобы при просеивании пробы извести сквозь сито с сетками № 02 и №008 по ГОСТ 6613 проходило соответственно не менее 98,5 и 85 % массы просеиваемой пробы. Максимальный размер кусков дробленой извести должен быть не более 20мм.

Воздушная и гидравлическая известь должна выдерживать испытание на равномерность изменения объема.

Область применения извести многогранна и важна. Наиболее крупными потребителями данной продукции являются черная металлургия, строительная индустрия, целлюлозно-бумажная промышленность, химическая промышленность, сахарная промышленность и сельское хозяйство. Также в значительных объемах известь используется для охраны окружающей среды (нейтрализация сточных вод и дымовых газов).

Охрана окружающей среды: Известь используется при очистке дымовых газов от оксида серы. Известь смягчает воду, осаждает органические вещества, находящиеся в воде, а также производит нейтрализацию кислых природных и отбросных сточных вод.

Сельское хозяйство: При внесении извести в почву устраняется вредная для сельскохозяйственных растений кислотность. Почва обогащается кальцием, улучшается обрабатываемость земли, ускоряется гниение гумуса, при этом заметно снижается потребность во внесении больших доз азотных удобрений. Известняк используется для улучшения качественной характеристики почвы, например, в сельском хозяйстве. Воздействием извести раскисляется почва, пополняется запас кальция в коллоидном комплексе почвы, повышается доступность фосфора для растений, улучшает физические свойства почвы, её водный и воздушный режим. В сельском хозяйстве известь используется для известкования - дезинфекции животноводческих ферм, бытовых помещений. В животноводстве и птицеводстве гидратная известь используется для подкормки с целью устранения дефицита кальция в рационе животных, а также для общего улучшения санитарных условий содержания скота.

Металлургия: Неоценимо значение применения извести в горнодобывающей и перерабатывающей металлургической промышленности. Известь - необходимый компонент в технологическом процессе обогащения полиметаллических и железистых руд горно-обогатительных комбинатов.

Химическая промышленность: Перспективно применение гидратной извести и известковых сорбентов для получения химически осажденного высокодисперсного карбоната кальция, используемого при изготовлении высших сортов мелованной бумаги и как наполнителя в электронной, электротехнической, кабельной, резинотехнической, лакокрасочной, парфюмерной и фармацевтической промышленности. А так же известь используется для получения гипохлорита кальция, для получения фторида кальция.

В нефтехимической промышленности известь используется как нейтрализатор кислых гудронов.А так же в качестве реагента в основном органическом и неорганическом синтезе.

Строительство: Известь - один из самых экологически чистых строительных материалов. Строительную известь применяют для приготовления строительных растворов, в производстве известково-пуццолановых вяжущих, в производстве термоизоляционных материалов, для изготовления искусственных каменных материалов — силикатного кирпича, силикатных и пеносиликатных изделий, шлакобетонных блоков, газобетона (газосиликата), а также в качестве покрасочных составов, в производстве сухих строительных смесей: штукатурных, клеевых, композиций для заделки межплиточных швов, кладочных составов, шпатлевок.

Пищевая и кожевенная промышленность: Известь применяется в основном как омылитель жиров.

Текстильная промышленность: Известь применяется при обработке тканей в процессе крашения.

2.Свойства тяжелого цементного бетона.

Непременной структурной частью бетона, подобно другим конгломератам, являются контактные зоны (обычно шириной до 50—65 мкм), микроструктура цементного камня в которых несколько отлична от такой же структуры в объемном цементном камне по­вышенной концентрацией кристаллической фазы и пониженным содержанием микропор. Контактный слой может также отличаться химическим составом его кристаллической фазы. Такова в общих чертах структура и микроструктура тяжелого цементного бетона.

В значительной мере структура по свойствам неоднородна, как неоднородны составляющие ее компоненты (щебень, песок, цементный камень). Она не свободна от многих дефектов, связанных с технологическим и эксплуатационным периодами, что отражается на уровне показателей механических свойств и долговечности бетона.

Для тяжелых бетонов характерным является не только высокое значение средней плотности, но и высокая прочность. Значения средней плотности находятся в пределах 1800—2500 кг/м3, а прочность по сжатию — от 5 до 80 МПа. Проектные марки его по пределу прочности при сжатии: М50, 75, 100, 150, 200, 250, 300, 350, 400, 500, 600, 700 и 800.

Процесс твердения очень длительный, и полной карбонизации извести практически не происходит, хотя поверхностная карбонизация протекает достаточно быстро. Существует мнение, что при длительном контакте извести с кварцевым песком в присутствии влаги между этими компонентами происходит взаимодействие с образованием контактного слоя из гидросиликатов. Это также повышает прочность и водостойкость… Читать ещё >

Дать общие сведения о строительной воздушной извести; описать производство, гашение, твердение воздушной извести ( реферат , курсовая , диплом , контрольная )

Строительной воздушной известью называется продукт, получаемый из известковых и известково-магнезиальных карбонатных пород обжигом их до возможно полного удаления углекислоты и состоящий преимущественно из оксида кальция. ([2] стр 136). Содержание примесей глины, кварцевого песка и т. п. в карбонатных породах не должно превышать 6—8%. При большем количестве этих примесей в результате обжига получают гидравлическую известь.

Воздушная известь относится к классу воздушных вяжущих: при обычных температурах и без добавок пуццолановых веществ она твердеет лишь в воздушной среде.

Различают следующие виды воздушной извести: известь негашеную комовую; известь негашеную молотую; известь гидратную (пушонку); известковое тесто.

Известь негашеная комовая представляет собой смесь кусков различной величины. По химическому составу она почти полностью состоит из свободных оксидов кальция и магния с преимущественным содержанием СаО. В небольшом количестве в ней могут присутствовать неразложившийся карбонат кальция, а также силикаты, алюминаты и ферриты кальция и магния, образовавшиеся во время обжига при взаимодействии глины и кварцевого песка с оксидами кальция и магния.

Известь негашеная молотая — порошковидный продукт тонкого измельчения комовой извести. По химическому составу она подобна комовой извести.

Гидратная известь — высокодисперсный сухой порошок, получаемый гашением комовой или молотой негашеной извести соответствующим количеством жидкой или парообразной воды, обеспечивающим переход оксидов кальция и магния в их гидраты. Гидратная известь состоит преимущественно из гидроксида кальция Са (ОИ)2, а также гидроксида магния Mg (OH)2 и небольшого количества примесей (как правило, карбоната кальция).

Известковое тесто — продукт, получаемый гашением комовой или молотой негашеной извести водой в количестве, обеспечивающем переход оксидов кальция и магния в их гидраты Са (ОН)2 и Mg (OH) и образование пластичной тестообразной массы. Выдержанное тесто содержит обычно 50—55% гидроксидов кальция и магния и 50—45% механически и адсорбционно связанной воды.

Сырьем для производства воздушной извести служат горные породы, содержащие в основном углекислый кальций — мел, известняк, известковые туфы и т. д. Разработку залежей известняка ведут открытым способом с помощью взрывных работ с последующей погрузкой породы на транспортные средства одноковшовыми экскаваторами.

Размеры кусков поставляемой с карьера породы достигают 50 — 60 см и более. Требуемая величина кусков породы, поступающих на обжиг, определяется типом обжигового агрегата. Загружаемый в шахтную печь известняк имеет обычно размеры 60 — 200 мм.

Принципиальная технологическая схема производства строительной воздушной извести.

Рисунок 1. Принципиальная технологическая схема производства строительной воздушной извести При обжиге во вращающихся печах применяют фракции 5 — 20 мм или 20 — 40 мм. Поэтому поступающую с карьера породу необходимо дробить.

Дробленый материал подвергается рассеву на грохотах, что обеспечивает постоянство фракционного состава. Основа получения известковых вяжущих — обжиг карбонатсодержащих пород. При производстве воздушной извести известняк и мел декарбонизируются и превращаются в известь по реакции СаСО3>CaO+ СО2.

Как правило, обжигу подвергают твердые карбонатные породы в виде кусков, но возможна и тепловая обработка меловых шламов.

Температура разложения карбоната кальция зависит от парциального давления углекислоты в окружающем пространстве. Разложение СаСО3 начинается уже при 6000С, и с повышением температуры реакция ускоряется. При 9000С парциальное давление углекислоты достигает атмосферного, поэтому данную температуру иногда называют температурой разложения известняка. Дальнейшее повышение температуры значительно увеличивает скорость разложения, но отрицательно сказывается на качестве извести — ухудшает ее реакционную способность вследствие роста размеров кристаллов.

При обжиге кусков в первую очередь декарбонизируются поверхностные слои. Образующаяся известь вследствие высокой пористости и малой теплопроводности тормозит передачу теплоты вглубь кусков. Чем толще слой извести, тем выше его сопротивление проникновению теплоты и тем более высокие температуры нужны для передачи теплоты в глубину. Поэтому практически температура обжига всегда выше теоретической. Ее устанавливают на каждом заводе в зависимости типа печи и других факторов — плотности сырья, наличия примесей, размера частиц (кусков) сырья и т. д. Чем плотнее и чем более крупнокристалличным является сырье, тем выше требуемая температура обжига. Наличие глинистых примесей облегчает удаление СО и снижает температуру обжига. Однако чем больше в извести примесей, тем при более низкой температуре наступает ухудшение ее свойств. Уже при 1000 — 11 000С возникает опасность пережога поверхности кусков извести. В заводских условиях температура обжига карбоната кальция составляет 1050−12 000С, причем под температурой обжига понимают не температуру в печи, а температуру обжигаемого материала.

Для завершения процесса обжига необходимо определенное время, в течение которого материал должен находиться в печи. Скорость перемещения зоны диссоциации СаСО3 по куску зависит от температуры обжига: при 9000С она составляет примерно 2 мм/ч, а при 11 000С — 14 мм/ч, т. е. обжиг идет в 7 раз быстрее. Для повышения производительности печей желательно уменьшение размеров кусков в допустимых пределах. При обжиге кусков различной крупности режим процесса определяют исходя из времени, необходимого для обжига кусков средних размеров. Характер процессов, протекающих при обжиге мела или известняка, зависит также от содержания в них примесей, влияющих на свойства обожженного материала.

Шахтная печь.

Рисунок 2. Шахтная печь: а) распределение зон обжига в шахтной печи: б) температурный режим при обжиге извести: 1 — температура материала; 2 — температура горячих газов; I — зона подогрева; II — зона обжига; III — зона охлаждения;

В третьей зоне материал охлаждается поступающим в печь снизу воздухом.

Известь воздушная отличается от других вяжущих веществ тем, что может превращаться в порошок не только при помоле, но и путем гашения — действием воды на куски комовой извести.

Гидратация различных видов извести происходит по следующим уравнениям:

кальциевая известь СаО + Н2О Са (ОН)2 + Q;

доломитовая известь (при обычном гашении) СаО + MgO + Н2О Са (ОН)2 + MgO + Q;

доломитовая известь (при автоклавном гашении) СаО + MgO + 2Н2О Са (ОН)2 + Mg (ОН)2 + Q;

Q — количество теплоты, равное 1160 кДж на 1 кг оксида кальция. [4].

Доломитовая известь вследствие пережога MgO гидратуется при высокой температуре 185 oС и давлении 9 атм. [3].

Теоретически для гашения извести в пушонку, необходимо 32,13% воды от веса СаО. Практически в зависимости от состава извести, степени ее обжига и способа гашения количество воды берут в два, а иногда и в три раза больше, так как в результате выделения тепла при гашении происходит парообразование и часть воды удаляется с паром. На скорость гашения извести оказывают влияние температура и размеры кусков комовой извести: с повышением температуры ускоряется процесс гашения; особенно быстро он протекает при гашении паром при повышенном давлении в закрытых барабанах.

По окончании гашения жидкое известковое тесто через сетку сливают в известехранилище, где его выдерживают до тех пор, пока полностью не завершится процесс гашения. Известковое тесто с размером непогасившихся зерен менее 0,6 мм можно применять сразу. Крупные непогасившиеся зерна опасны тем, что среди них могут быть пережженные.

Содержание воды в известковом тесте не нормируется. Обычно в хорошо выдержанном тесте соотношение воды и извести около 1:1.

Процесс твердения очень длительный, и полной карбонизации извести практически не происходит, хотя поверхностная карбонизация протекает достаточно быстро. Существует мнение, что при длительном контакте извести с кварцевым песком в присутствии влаги между этими компонентами происходит взаимодействие с образованием контактного слоя из гидросиликатов. Это также повышает прочность и водостойкость бетонов и кирпичной кладки на извести, имеющих возраст более 200…300 лет.

Твердение гашеной извести Согласно теории твердения известковых растворов, изложенной Ю. М. Буттом , два одновременно протекающих процесса обуславливают твердение: испарение механически перемешанной воды и постепенная кристаллизация гидрата извести из насыщенного раствора. Карбонизация извести идет так же под действием углекислого газа, который в небольшом количестве содержится в воздухе:

Са (ОН)2 + СО2 + nН2O СаСО3 + (n+1)Н2O.

Процесс карбонизации имеет при твердении извести второстепенное значение. Гораздо важнее испарение воды, сопровождающееся кристаллизацией гидроксида кальция. Высыхание вызывает уплотнение студнеобразной массы с нарастанием прочности твердеющих известковых растворов. Образующиеся кристаллы срастаются друг с другом, с зернами песка и с кристаллами углекислой извести.

Твердение молотой негашеной извести Молотую негашеную известь получают путем тонкого размола комовой извести без предварительного гашения.

Гидратационное твердение негашеной молотой извести приводит к быстрому обезвоживанию раствора и его более высокой прочности. При правильно подобранном водоизвестковом отношении (0,9−1,5) кристаллы гидроксида кальция, получившиеся при гидратации окиси кальция непосредственно в материале (CaO.H2O), срастаются между собой и быстро образуют прочный кристаллический сросток.

Отрицательно влияет на гидратное твердение негашеной извести пережог. Замедленная гидратация крупных кристаллов окиси кальция (крупнее 10—20 мкм) в уже затвердевшем известковом камне вызывает дополнительные некомпенсируемые напряжения. Поэтому количество пережога в молотой негашеной извести не должно превышать 3—5%.

Воздушная известь представляет собой вяжущее, получаемое путем обжига относительно чистых известняков, мела и подобных пород, состоящих из СаСО3, или доломитизированных известняков, содержащих, кроме СаСО3, также MgCO3.

Виды воздушной извести

В зависимости от содержания окиси магния воздушная известь разделяется на маломагнезпальную, с содержанием окиси магния не более 5%, магнезиальную и доломитовую, с содержанием окиси магния соответственно от 5 до 20% и от 20 до 41%.

В зависимости от скорости гашения комовая известь (табл.) разделяется на быстрогасящуюся, среднегасящуюся, медленногасящуюся, со скоростью гашения соответственно до 10 мин., от 10 до 30 мин. и от 30 мин. и выше.
Известь молотую негашеную получают в результате тонкого измельчения негашеной комовой извести или обожженных глинистых известняков с содержанием глины от 8 до 20%.

Применение воздушной извести

Известь молотая негашеная И. В. Смирновым применяется для приготовления строительных растворов и бетонов, вяжуших материалов и при производстве искусственных безобжиговых камней. В зависимости от прочности молотая негашеная известь подразделяется на 4 марки: 4, 10, 25 и 50. Обозначение марки соответствует пределу прочности при сжатии (в кг/смг) кубиков, изготовленных из пластичного раствора состава 1:3 (по весу) с нормальным песком и испытанных через 28 суток со дня их изготовления. Применение молотой негашеной извести в строительстве способствует сокращению сроков строительства и форсированию производственных процессов.

По стандарту воздушная известь делится на три сорта, важнейшие показатели которых (для маломагне­зиальной извести). Для остальных видов извести качественные показатели ниже.

воздушная известь для строительства

Твердение извести

Известковое тесто, смешанное с песком, шлаком и т. п., применяют в виде строительных растворов при кладке стен и для штукатурки. На воздухе известковый раствор постепенно отвердевает под влиянием двух одновременно действующих факторов:

  1. выделения кристалликов гидрата окиси кальция из пересыщенного раствора при высыхании;
  2. действия углекислого газа, который всегда содержится в воздухе, хотя и в небольшом количестве; при этом образуется
    углекислый кальций и выделяется вода:

Этот процесс называют карбонизацией, в результате образуется то же вещество, из которого получали известь. При карбонизации выделяется вода, содержащаяся в гашеной извести в химически связанном состоянии, поэтому стены и штукатурку в которых была применена гидратная известь, приходится высушивать.
В результате этих двух процессов образуется углекислый кальций СаСО3 и выкристаллизовывается гидрат окиси кальция Са(ОН)2) которые срастаются между собой и с зернами песка, образуя искусственный камень. Обычно углекислый кальций Образуется на поверхности, соприкасающейся с воздухом, а гидрат окиси кальция — в глубине.

После того как на поверхности раствора появляется корка из углекислого кальция, доступ углекислому газу в глубь раствора затрудняется, и там идет лишь медленное испарение влаги с кристаллизацией гидрата окиси кальция.
Карбонизация происходит только в среде с определенной г важностью (оптимальные условия для карбонизации — влажность известково-песчаного раствора от 2,5 до 5% по весу).
Твердение воздушных известковых растворов идет медленно, п огобеитюсги в толстых стенах.

Для ускорения твердения к извести добавляют цемент, активные кремнеземистые добавки, гипс, а также молотую известь-кипелку.

Требования к воздушной извести

Кроме того, на практике в зависимости от скорости гашения известь делят на быстрогасящуюся — со скоростью гашения — за 10 мин., среднегасящуюся —10—30 мин. и медленногасящуюся — свыше 30 мин.
Требования к прочности затвердевшей извести по стандарту установлены только для молотой негашеной извести. Прочность образцов из пластичного раствора такой извести с нормальным песком состава 1 :3 (по весу) при сжатии через 28 дней составляет от 4 до 50 кг/см2. Поэтому для молодой негашеной извести установлены марки (прочность при сжатии) 4, 10, 25 и 50. Более высокие марки из указанных может иметь известь водного твердения.

Известь негашеная комовая

Известь воздушная представляет собой вяжущее, получаемое путем обжига известняков (углекислый кальций), не имеющих значительных примесей глины. Обжиг ведется до температуры 1100—1200°. В результате получается продукт в виде кусков белого или серого цвета.

Полученная в результате обжига известь называется негашеной известью. Размалывая эту известь в тонкий порошок, получают молотую известь-кипелку.

Негашеная известь химически соединяется с водой и образует гашеную известь. При гашении извести ограниченным количеством воды она распадается в тонкий порошок, называемый пушонкой. При гашении большим количеством воды или при смешивании пушонки с водой получается известковое тесто. Если это тесто разбавить еще большим количеством воды, получается известковое молоко.

Известь-кипелка

Известь-кипелка применяется для изготовления известково-гипсовых, известково-глиняных и известково-шлаковых строительных растворов, а также для изготовления искусственных безобжиговых камней и смешанных вяжущих материалов.

Применение молотой кипелки ускоряет схватывание, твердение и высыхание смесей материалов, в состав которых она входит. При правильном подборе соотношения между известью и водой — водоизвесткового отношения (обычно в пределах 0,7—1,1) тонкомолотый порошок извести-кипелки в смеси с песком или шлаком быстро схватывается (подобно гипсу) и затем твердеет, причем никаких трещин от гашения извести не образуется.

При гашении извести в пушонку объем ее увеличивается в 2—3 раза. Объемный вес гашеной извести-пушонки составляет 400—450 кг/м3. Во время гашения известь выделяет большое количество тепла (276 ккал на 1 кг). Поэтому необходимо быть осторожным, так как при гашении вода закипает, и брызги, попав на тело, могут вызвать ожоги.

Известковое тесто, которое получают при гашении извести большим количеством воды, содержит около 50% воды (по весу). Его средний объемный вес 1 400 кг /м3. Из пушонки в смеси с различными добавками приготовляются вяжущие, носящие название известково-шлакового, известково-глинитного, известково-пуццоланового и известково-зольного цементов.

Все эти виды цементов относятся к гидравлическим вяжущим. Они — продукт совместного измельчения порошка гашеной извести с одной из перечисленных ниже добавок или результат тщательного смешения в сухом виде раздельно измельченных тех же материалов.

В качестве добавок применяются при изготовлении:

  • в) известково-шлакового цемента — высушенные гранулированные шлаки;
  • б) известково-глинитного цемента — глины, обожженные при температуре выше 650°, промышленные отходы из обожженной глины (цемянкa: бой, брак кирпича, черепицы, гончарные изделия и пр.) и глины, естественно обожженные (глиежи);
  • в) известково-пуццоланового цемента — гидравлические добавки;
  • г) известково-зольного цемента — золы некоторых видов топлива.

Во все эти цементы допускается введение гипса в количестве, необходимом для регулирования их свойств. Содержание извести в перечисленных цементах предусматривается в пределах 10-30%.

Тонкость измельчения этих цементов характеризуется тем, что остаток на сите № 200 (900 отверстий на 1 см2) должен быть не более 5%, а на сите № 90 (4 900 отв/см2) не более 25%.

Государственным стандартом предусматривая следующие марки (прочность) этих цементов:

Читайте также: