Реферат на тему видеоадаптеры

Обновлено: 05.07.2024

Видеока́рта (известна также как графи́ческая пла́та, графи́ческая ка́рта, видеоада́птер) (англ. videocard) — устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора.

Обычно видеокарта является платой расширения и вставляется в разъём расширения, универсальный (PCI-Express, PCI, ISA, VLB, EISA, MCA) или специализированный (AGP), но бывает и встроенной (интегрированной) в системную плату (как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ).

Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический микропроцессор, который может производить дополнительную обработку, разгружая от этих задач центральный процессор компьютера. Например, все современные видеокарты Nvidia и AMD (ATi) поддерживают приложения OpenGL на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные способности графического процессора для решения неграфических задач

Современная видеокарта состоит из следующих частей:

1.графический процессор (Graphics processing unit — графическое процессорное устройство) — занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало чем уступают центральному процессору компьютера, и зачастую превосходят его как по числу транзисторов, так и по вычислительной мощности, благодаря большому числу универсальных вычислительных блоков.

2. видеоконтроллер — отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Современные графические адаптеры (ATI, NVidia) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.

3.видеопамять — выполняет роль кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, DDR2, GDDR3, GDDR4 и GDDR5. Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE

4.цифро-аналоговый преобразователь (ЦАП, RAMDAC — Random Access Memory Digital-to-Analog Converter) — служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Возможный диапазон цветности изображения определяется только параметрами RAMDAC. Чаще всего RAMDAC имеет четыре основных блока — три цифроаналоговых преобразователя, по одному на каждый цветовой канал (красный, зелёный, синий, RGB), и SRAM для хранения данных о гамма-коррекции. Большинство ЦАП имеют разрядность 8 бит на канал — получается по 256 уровней яркости на каждый основной цвет, что в сумме дает 16,7 млн цветов (а за счёт гамма-коррекции есть возможность отображать исходные 16,7 млн цветов в гораздо большее цветовое пространство). Некоторые RAMDAC имеют разрядность по каждому каналу 10 бит (1024 уровня яркости), что позволяет сразу отображать более 1 млрд цветов.

5.видео-ПЗУ (Video ROM) — постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы и т. п. ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор. Хранящийся в ПЗУ видео-BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, а также содержит системные данные, которые могут читаться и интерпретироваться видео-драйвером в процессе работы (в зависимости от применяемого метода разделения ответственности между драйвером и BIOS). На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ (EEPROM, Flash ROM), допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы.

6.система охлаждения — предназначена для сохранения температурного режима видеопроцессора и видеопамяти в допустимых пределах.

Современные графические процессоры отличаются не только высокой производительностью, но и значительным энергопотреблением и, соответственно, большим тепловыделением. Применяемые для борьбы с этим системы охлаждения, как правило, достаточно громоздки и сильно шумят. Впрочем, приятным исключением являются видеокарты GigaByte – у них достаточно эффективное пассивное охлаждение на термотрубках. Главный минус – оно весьма некомпактно.

Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.

1.ширина шины памяти, измеряется в битах — количество бит информации, передаваемой за такт. Важный параметр в производительности карты.

2.объём видеопамяти, измеряется в мегабайтах — объём собственной оперативной памяти видеокарты.

Видеокарты, интегрированные в набор системной логики материнской платы или являющиеся частью ЦПУ, обычно не имеют собственной видеопамяти и используют для своих нужд часть оперативной памяти компьютера (UMA — Unified Memory Access).

3.частоты ядра и памяти — измеряются в мегагерцах, чем больше, тем быстрее видеокарта будет обрабатывать информацию.

4.текстурная и пиксельная скорость заполнения, измеряется в млн. пикселов в секунду, показывает количество выводимой информации в единицу времени.

1.3.Виды современных видеокарт

На данный момент есть только два производителя графических процессоров, которые заслуживают внимания. Это Nvidia и ATI (AMD). У каждого, соответственно, имеется свой модельный ряд. Последние модели каждого производителя:

1. Видеокарта AMD Radeon HD5870

Видеокарта AMD ATI Radeon HD5870 имеет одно из самых высоких значений производительности однопроцессорного решения на базе последних графических процессоров AMD. Примененная в данной модели система охлаждения, по сравнению с системой, установленной на рефересных видеокартах предыдущей серии Radeon HD4870/HD4890, претерпела существенные изменения. Длина печатной платы и вместе с ней системы охлаждения увеличилась, при этом вес видеокарты уменьшился. В верхней части платы на привычном месте расположены два 6-контактных разъема питания. На этой же части платы, но ближе к интерфейсам находятся разъемы Crossfire для связки двух видеокарт. Система охлаждения построена на основе 4-контактного управляемого вентилятора, выполненного в виде турбины. Воздух от вентилятора охлаждает алюминиевый радиатор, который накрывает собой графический процессор и микросхемы памяти. При этом радиатор имеет медное окончание, которое и соприкасается с графическим чипом.

В этой модели используются микросхемы памяти GDDR5 производства компании Samsung, которые имеют маркировку K4G10325FE-HC04. Время выборки этих микросхем равно 0,4 нс, а номинальная частота составляет 1,25 ГГц (5 ГГц QDR). Соответственно, поскольку микросхемы памяти в видеокарте работают на частоте 1,2 (4,8 ГГц QDR) ГГц, у нее есть запас по небольшому разгону. Задняя часть видеокарты, на которой расположены интерфейсы, имеет два разъема DVI, а также HDMI и Display-Port.

Отметим, что по сравнению с предыдущими референсными системами охлаждения от AMD новая система охлаждения стала работать гораздо тише. Температура при максимальной нагрузке и режиме простоя тоже снизилась по сравнению с референсными видеокартами Radeon HD4870 и HD4890.

2. Видеокарта MSI Radeon HD5870 Lightning

В комплекте с видеокартой идут специальные драйверы, а также эксклюзивное программное обеспечение Afterburner для разгона, которое создано на основе утилиты Rivatuner. Эта утилита может не только разгонять частоту ядра и видеопамяти, но и изменять напряжение питания графического процессора и микросхем памяти.

Новая модель поддерживает API DirectX 11. Изначально тактовая частота графического ядра немного завышена и составляет 900 МГц вместо стандартных 850 МГц. Память работает с частотой 4,8 ГГц. Объем GDDR5 составляет 1 Гбайт.

Видеокарта XFX Radeon HD5830

Видеокарта XFX Radeon HD5830 отличается от стандартной референсной модели, представленной компанией AMD, прежде всего тем, что в ней используется нестандартная система охлаждения. Остальные характеристики этой модели совпадают с референсной видеокартой AMD Radeon HD5830. Первоначально данная модель анонсировалась как видеокарта с укороченным размером по отношению к референсной модели, но в конечном счете размер текстолита не был изменен. Используемая система охлаждения построена на основе алюминиевого радиатора с двумя тепловыми трубками. Охлаждение радиатора производится с помощью неуправляемого 60-миллиметрового вентилятора. При этом кулером охлаждается лишь графический процессор — микросхемы памяти остаются без дополнительного охлаждения, что исключает экстремальный разгон данной модели. Чипы памяти GDDR5 представлены восемью микросхемами K4G10325FE-HC04 производства компании Samsung.

Видеокарты Sapphire Radeon HD5770 Vapor-X и Radeon HD5750 Vapor-X

Компания Sapphire хорошо известна российским пользователям как один из ведущих поставщиков видеокарт на базе графических процессоров AMD. В нашем тестировании приняли участие две модели видеокарт, которые относятся к среднему ценовому сегменту рынка, сочетая в себе высокую производительность и достойное качество изображения при относительно низкой цене. Обе модели — Sapphire Radeon HD5770 Vapor-X и Radeon HD5750 Vapor-X — отличаются от референсных моделей, представленных AMD, системой охлаждения.

В видеокарте Sapphire Radeon HD5770 Vapor-X используется полноценная версия системы охлаждения, в которой применяется фирменная двухслотовая система охлаждения Vapor-X с технологией испарительной камеры Vapor Chamber Technology. В обеих видеокартах используется восемь микросхем памяти Hynix H5GQ1H34AFA T2C, которые не имеют дополнительного охлаждения, что исключает их экстремальный разгон.

Видеокарта MSI Radeon HD5670

Видеокарта MSI Radeon HD5670 имеет нештатную систему охлаждения, отличающуюся от референсной. Технические характеристики этой видеокарты такие же, как у референсной модели, представленной компанией AMD. Относясь в большей степени к бюджетному классу, данная видеокарта не имеет разъема для дополнительного питания, поскольку в ней установлен достаточно слабый графический процессор.

Система охлаждения представляет собой алюминиевый радиатор, охлаждаемый двухконтактным вентилятором диаметром 50 мм. Увы, по высоте видеокарта за счет кулера занимает два слота, что ограничивает использование данной модели в небольших медиацентрах. Этот кулер охлаждет только сам графический процессор. Чипы памяти GDDR5, представленные микросхемами K4G10325FE-HC05 производства компании Samsung, не имеют дополнительного охлаждения. При максимальной нагрузке на графическое ядро его температура не превышала 69 °С.

Видеокарта AMD Radeon HD5570

Данная модель относится к бюджетному классу. Видеокарта AMD Radeon HD5570 имеет штатную систему охлаждения и представлена в низкопрофильном варианте. При этом стоит отметить, что медный кулер в этой модели охлаждает не только сам графический чип, но и память GDDR3, которая представлена восемью микросхемами Samsung K4W1G1646E-HC11. Поскольку радиатор в данной модели полностью сделан из меди, эта видеокарта довольно тяжелая. В целом это отличный вариант для построения домашних медацентров.

Видеокарта AMD Radeon HD5450

Данная видеокарта имеет низкопрофильную конструкцию и однослотовую систему охлаждения. Маленький алюминиевый кулер охлаждает только графический процессор. Другая референсная модель этой видеокарты и вовсе оснащена пассивной системой охлаждения. В данной модели используются такие же чипы памяти, как и в видеокарте AMD Radeon HD5570. Данная видеокарта относится к классу сверхбюджетных видеокарт и является идеальным вариантом для построения HTPC.

Конечно, если вы покупаете компьютер для офиса или только для работы в текстовых редакторах, то мощность видеокарты для вас не так уж и существенна, однако, большинство пользователей играют в игры и работают в сложных графических приложениях, для которых нужна хорошая видеокарта. Мощь видеокарты нужна в основном для игр с хорошей графикой, а для программ, просмотра фильмов, и простеньких игр подойдет и слабая. Видеокарта, по-другому ее называют графический процессор, формирует изображение и выводит его на монитор. Она так же должна подходить материнской плате. Если вы думаете при слабой видеокарте качество изображения на мониторе будет плохое, то вы ошибаетесь. Сейчас все, даже самые дешевые видеокарты обеспечивают хорошее изображение. Ну а дорогие и мощные видеокарты нужны для того чтобы можно было играть в новые игры с 3D графикой. Может быть для кого-то это будет новостью, но современный графический процессор в несколько раз сложнее современного же центрального процессора, поэтому очень часто хорошая видеокарта может стоить половину от стоимости всего компьютера.

Понятие видеокарт как устройств, выводящих на экран все действия и процессы, совершаемые на компьютере. Описание их видов (интегрированные, дискретные) и основных технических характеристик: интерфейс, тактовая частота видеопроцессора, видеопамять.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 15.03.2017
Размер файла 16,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Видеокарта - это устройство, выводящее на экран все действия и процессы, совершаемые на компьютере. При помощи видеокарты данные, передаваемые компьютером, преобразовываются в видеосигнал и передаются на монитор. Чтобы подключить к компьютеру монитор, необходим специальный видеоадаптер, именуемый видеокартой. Задача видеокарты -- сформировать сигнал, отображающий на мониторе определенную область памяти, в которой хранятся данные об изображении, а также сигналы синхронизации -- горизонтальную (строчную) и вертикальную (кадровую) развертки. Видеокарты прошли долгий путь совершенствования от первых персональных компьютеров, где в качестве монитора использовались бытовые телевизоры, до современных, превращающих компьютер в мощную графическую станцию. За это время сменилось несколько поколений плат и стандартов. видеокарта интерфейс интегрированный дискретный

1. Виды видеокарт

Существуют два основных типа видеокарт: интегрированные и дискретные.

Интегрированные (встроенные) -- являются неотъемлемой частью центрального процессора или материнской платы, так как встроены в них. Наличие интегрированного видео снижает стоимость и энергопотребление компьютера, однако такие видеокарты обладают ограниченной производительностью. У них зачастую отсутствует собственная видеопамять, поэтому они используют ОЗУ компьютера. Кроме этого, у интегрированной видеокарты нет отдельной системы охлаждения, что позволяет сэкономить пространство внутри системного блока или ноутбука. Такой тип видеокарт в основном используется в офисных и простых домашних компьютерах, где не требуется высокая мощность и производительность.

Дискретная видеокарта -- это отдельная плата, устанавливаемая в специальный слот (PCI Expressx16) и содержащая в себе всё необходимое для полноценной работы. Это позволяет увеличить компьютеру производительность и использовать его для игр с высоким уровнем графики или работы с мощными графическими приложениями. У дискретных видеокарт имеется собственная видеопамять. Их главными недостатками являются дороговизна и потребление большого количества энергии, что играет важную роль для ноутбуков

2. Основные характеристики видеокарт

2.Тактовая частота видеопроцессора -- сильно влияет на производительность видеоадаптера, чем она выше, тем быстрее он работает и тем больше его тепловыделение. Именно поэтому, увеличение рабочей частоты GPU является одним из способов разгона видеокарты. Однако надо иметь в виду, что сравнивать в лоб разные модели видеокарт по данному параметру не совсем правильно, поскольку это будет справедливо только для моделей, построенных на одинаковом чипе, в противном случае в дело вмешивается архитектура чипа. Измеряется частота в мегагерцах.

3.Частота видеопамяти -- измеряется в мегагерцах, и чем она выше, тем быстрее работает подсистема памяти. Так же является одним из способов ускорить работу видеокарты.

5.Объем видеопамяти -- сколько памяти установлено на плате и доступно для хранения данных. В настоящее время измеряется в мегабайтах или гигабайтах и чем ее больше, тем лучше. Однако на самом деле не все так просто, поскольку есть определенный предел, после которого дальнейшее наращивание объема памяти не приводит к увеличению скорости работы. Объясняется это довольно просто, всегда есть определенный объем данных, требуемый для работы. Он разный в каждый момент времени и зависит от используемых программ и настроек. Когда объем памяти установленный в 3D-ускорителе превышает объем данных требуемых для работы, то дальнейшее увеличения объема видеопамяти не приводит к ускорению работы.

6.Тип видеопамяти -- сейчас используется несколько типов оперативной памяти применяющиеся в видеокартах. В современных видеокартах может применяться как DDR так и специально разработанная для использования в видеокартах память типа GDDR. Мы не будем вдаваться в технические моменты, отметим только, что чем более современный тип памяти, тем выше скорость ее работы. Самая быстрая на сегодняшний день это GDDR5, но она и самая дорогая, поэтому применяется в видеокартах верхнего ценового сегмента. Наиболее массовой является GDDR3.

7.Ширина шины памяти -- имеет большое влияние на пропускную способность памяти и следовательно на общую производительность видеокарты. Определяется числом бит данных передаваемых за один цикл. Чем ширина шины памяти больше, тем выше скорость работы. В очень дешевых видеокартах ширина шины обычно 64 или 128 бит, а в топовых 256 бит и выше.

8.Версия DirectX -- интерфейс программирования приложений, обеспечивающий взаимодействие программ с железом компьютера и активно используется при создании компьютерных игр. В зависимости от версии DirectX поддерживаемой видеокартой, будут доступны различные режимы

3. Принцип работы видеокарты

Центральный процессор, работающий в связке с программным обеспечением, посылает информацию об изображении на видеокарту. Видеокарта решает, как расположить пиксели на экране, чтобы создать правильное изображение. После чего она посылает подготовленную информацию на монитор через соединительный кабель.

Создание изображения из двоичных данных является достаточно требовательным процессом. Например, чтобы сделать 3-х мерное изображение, графическая карта в первую очередь создает структуру изображения из прямых линий, затем проводит растрирование (заполнение пикселями), изображения, добавляет освещение, структуру и цвет. Для быстро изменяющихся видеоигр компьютер должен пройти этот процесс приблизительно шестьдесят раз в секунду. Без графической карты, чтобы выполнить необходимые вычисления, нагрузка на процессор была бы слишком большой, что бы приводило к зависанию картинки на мониторе, или другим системным сбоям.

Для выполнения своей функции графическая карта, использует четыре основных составляющих её компонента:

1.Порт соединения с материнской платой (AGP, PCI-E) для передачи данных и управления.

2.Процессор (GPU), чтобы решить, что сделать с каждым пикселем на экране.

3.Память (VRAM), чтобы держать информацию о каждом пикселе и временно хранить сформированные изображения.

4.Вывод на монитор (VGA, DVI), чтобы видеть окончательный результат.

Видеосистема не всегда была неотъемлемой частью компьютеров. Последние существовали уже тогда, когда еще не было телевидения в его сегодняшнем понимании. Первые процессоры в качестве выходных устройств использовали принтеры, которые позволяли получить твердую копию выходного результата, что тоже очень важно в нашем переменчивом мире.

Стандартными средствами для отображения текста являются дисплеи, работающие с картами символов. Специальная область памяти зарезервирована для хранения символа, который предстоит изобразить на экране. И программы пишут текст на экран, заполняя символами эту область памяти. Экран чаще всего представляется матрицей 80 на 25 символов.

Образ каждого символа, который появляется на экране, хранится в специальной микросхеме ПЗУ. Эта память относится к видеоцепям компьютера.

Каждый символ на экране формируется множеством точек. Несколько видеостандартов, используемых IBM и другими фирмами, отличаются количеством точек, используемых при формировании символов.

Программы, заносящие информацию на экран, должны знать, какую память они должны использовать для этого. Нужную информацию можно получить, прочтя информацию из специального байта памяти - флага видеорежима. Он предназначается для указания: какого вида адаптер дисплея установлен внутри компьютера и используется в настоящее время. Он позволяет компьютеру знать, с каким дисплеем - монохромным или цветным он имеет дело.

Подобные документы

Мониторы на электронно-лучевых трубках. Типы матриц жидкокристаллического монитора. Проекторы на основе DLP- технологии. Принцип действия лазерных проекторов. Типы видеокарт компьютера. Интерфейсы программирования приложений. Виды видео интерфейсов.

курсовая работа [1,3 M], добавлен 25.03.2015

История PC-совместимых персональных компьютеров с адаптером Monochrome Display Adapter. Устройство и основные характеристики видеокарты. Разъёмы для подключения устройств вывода. Описание видеокарт 3DMark, Metro 2033 Benchmark, Unigine Tropics Demo.

курсовая работа [7,9 M], добавлен 11.12.2014

История видеокарт, их назначение и устройство. Принципы обеспечения работы графического адаптера. Характеристики и интерфейс видеокарт. Сравнительный анализ аналогов производства компаний NVIDIA GeForce и AMD Radeon. Направления их совершенствования.

контрольная работа [295,6 K], добавлен 04.12.2014

Факторы, влияющие на производительность графической подсистемы. Пропускная способность видеоконтроллера. Шины PCI и AGP, их основные преимущества и недостатки. Характеристики наиболее распространенных видеокарт. Графические адаптеры будущего.

реферат [27,0 K], добавлен 12.06.2009

Принцип работы и пользовательские характеристики клавиатуры. Взаимосвязь размера экрана, размера зерна и разрешения экрана. Основные виды видеокарт. Принцип работы мыши. Программная поддержка сканеров. Назначение джойстика, светового пера и дигитайзера.

реферат [941,8 K], добавлен 18.10.2009

Роль компьютера в жизни человека. Критерии выбора компьютера для игр и для работы с документами: корпус системного блока, процессоры и их количество, тактовая частота ядра, оперативная память, видеокарта, жесткий диск. Исследование школьных компьютеров.

курсовая работа [37,3 K], добавлен 17.12.2014

Характеристика работы видеокарты - устройства, преобразующего графический образ в форму, предназначенную для вывода на экран монитора. Понятие контроллера, буфера кадра и памяти текстур. Проведение тестов синтетических испытаний и на производительность.

Видеока́рта (известна также как видеоада́птер графи́ческая пла́та, графи́ческая ка́рта, графи́ческий ускори́тель) (англ. videocard) — устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора.

Содержание

1 Введение
2 История развития
3 Устройство
3 Характеристики
4 Поколения 3D-ускорителей
5 Интерфейс
6 Шейдер
7 Заключение
8 Литература

Работа содержит 1 файл

Реферат.doc

2 История развития

4 Поколения 3D-ускорителей

Видеока́рта (известна также как видеоада́птер графи́ческая пла́та, графи́ческая ка́рта, графи́ческий ускори́тель) ( англ. videocard) — устройство, преобразующее изображение , находящееся в памяти компьютера , в видеосигнал для монитора .

Обычно видеокарта является платой расширения и вставляется в разъём расширения, универсальный ( PCI-Express , PCI , ISA , VLB , EISA , MCA ) или специализированный ( AGP ), но бывает и встроенной (интегрированной) в системную плату (как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ ).

Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический микропроцессор , который может производить дополнительную обработку, разгружая от этих задач центральный процессор компьютера. Например, все современные видеокарты Nvidia и AMD ( ATi ) поддерживают приложения OpenGL на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные способности графического процессора для решения неграфических задач

История развития

Первая видеокарта для компьютеров архитектуры IBM PC была представлена миру в 1981 году и получила название MDA (Monochrome Display Adapter). Это чудо инженерной мысли вообще не поддерживало графический режим и работало только с текстовыми данными. Видеоадаптер выводил на дисплей до 25 строк, каждая из которых вмещала 80 символов. При этом тексту можно было назначить один из пяти атрибутов: обычный, подчеркнутый, яркий, мигающий или инверсный. Задавать шрифт было нельзя, цвет букв также не поддавался изменению — эти параметры зависели исключительно от модели монитора.

Монохромная палитра, текстовый режим. примитив? Только не для 1981 года.

Следующим этапом в развитии графических плат стало появление IBM CGA (Color Graphics Adapter). Видеоадаптер поддерживал четыре палитры по четыре цвета. Кроме того, он умел работать в графическом режиме, то есть на монитор отныне выводился не только текст, но и пиксельные картинки. При работе с графикой максимальное поддерживаемое разрешение составляло 320х200 точек, а для монохромной палитры это значение возрастало до 640х200. В графическом режиме использовалось не более 4 цветов одновременно. Следом за CGA последовала его усовершенствованная версия — EGA (Enhanced Graphics Adapter). Этот адаптер поддерживал 64-цветную палитру и мог обеспечить одновременно 16 цветов при разрешении 640x350.

Примечательно, что видеокарты, совместимые с описанными выше стандартами, использовали для взаимодействия с монитором цифровой интерфейс. Последующие видеоадаптеры поддерживали более высокие разрешения и большее количество цветов. При этом из-за возросшего количества информации цифровая передача данных уступила место аналоговой.

На смену EGA пришел адаптер VGA (Video Graphics Array), обеспечивающий 16 цветов при разрешении 640х480 или 256 цветов в режиме 320х200. Ну, а в 1987 году настала эпоха SVGA. Примечательно, что термином SVGA обозначались все режимы, превышающие VGA. У производителей попросту не было четкого стандарта, которому бы соответствовала их продукция. Путаница была устранена только через три года, когда организация VESA (Video Enhanced Standards Association) ввела документ, описывающий режимы SVGA. Он несколько раз дополнялся, а в конечной его версии, датированной 1995 годом, описаны основные режимы работы, вплоть до разрешения 1600х1200 пикселей и цветопередачи True Color (16,7

3dfx Voodoo 2 — 3D-ускоритель, ставший в свое время

настоящей иконой для ценителей трехмерных игр.

Важно осознавать то, что все ранние графические карты служили одной лишь цели — они преобразовывали информацию, получаемую от процессора, в доступный для монитора вид. Никаких расчетов эти видеокарты не производили. Цвет пикселей каждого кадра определял центральный процессор — по тем временам это было серьезным испытанием для ЦП. С появлением первых 3D-движков ситуация только ухудшилась — пресловутые игры стали отнимать огромное количество ресурсов. Разумеется, существовали серьезные видеоадаптеры, которые использовались в профессиональном ПО, вроде САПР. Но к компьютерам простых пользователей они имели очень отдаленное отношение.

Все это привело к появлению графических ускорителей — видеокарт, способных обрабатывать некоторые графические функции на аппаратном уровне. К примеру, подобные устройства могли самостоятельно рассчитывать цвета отображаемых пикселей при рисовании линий или курсора, при перетаскивании окон и заливке отдельных участков изображения. Отныне видеокарта занималась не только преобразованием сигнала — она принимала непосредственное участие в процессе построения изображения.

На рубеже 1994-95 годов разработчики стали активно задумываться о том, как ускорить игровые 3D-движки. В результате на сцену вышли так называемые 3D-ускорители. Эти устройства могли работать только в тандеме с видеоадаптером, уже установленным в ПК. При запуске трехмерных приложений 3D-ускорители обрабатывали объемные моделей, преобразуя их в двумерный вид. Результаты отправлялись видеокарте, которая при необходимости дополняла кадр различными объектами (например, интерфейсом) и передавала его на монитор. Со временем видеоадаптеры и 3D-ускорители слились воедино, и вот тогда-то видеокарты наконец обрели свой нынешний вид.

Современная видеокарта состоит из следующих частей:

- графический процессор (Graphics processing unit — графическое процессорное устройство) — занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор , производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало чем уступают центральному процессору компьютера, и зачастую превосходят его как по числу транзисторов, так и по вычислительной мощности, благодаря большому числу универсальных вычислительных блоков. Однако, архитектура GPU прошлого поколения обычно предполагает наличие нескольких блоков обработки информации, а именно: блок обработки 2D-графики, блок обработки 3D-графики, в свою очередь, обычно разделяющийся на геометрическое ядро (плюс кэш вершин) и блок растеризации (плюс кэш текстур) и др.

- видеоконтроллер — отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно больше, чем внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается ещё и RAMDAC. Современные графические адаптеры (ATI, nVidia) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.

- видеопамять — выполняет роль кадрового буфера , в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR , DDR2 , GDDR3 , GDDR4 и GDDR5 . Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE. В случае использования архитектуры UMA в качестве видеопамяти используется часть системной памяти компьютера.

- цифро-аналоговый преобразователь ( ЦАП , RAMDAC — Random Access Memory Digital-to-Analog Converter) — служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Возможный диапазон цветности изображения определяется только параметрами RAMDAC. Чаще всего RAMDAC имеет четыре основных блока — три цифроаналоговых преобразователя, по одному на каждый цветовой канал (красный, зелёный, синий, RGB), и SRAM для хранения данных о гамма-коррекции. Большинство ЦАП имеют разрядность 8 бит на канал — получается по 256 уровней яркости на каждый основной цвет, что в сумме дает 16,7 млн цветов (а за счёт гамма-коррекции есть возможность отображать исходные 16,7 млн цветов в гораздо большее цветовое пространство). Некоторые RAMDAC имеют разрядность по каждому каналу 10 бит (1024 уровня яркости), что позволяет сразу отображать более 1 млрд цветов, но эта возможность практически не используется. Для поддержки второго монитора часто устанавливают второй ЦАП. Стоит отметить, что мониторы и видеопроекторы, подключаемые к цифровому DVI выходу видеокарты, для преобразования потока цифровых данных используют собственные цифроаналоговые преобразователи и от характеристик ЦАП видеокарты не зависят.

- видео - ПЗУ (Video ROM) — постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы и т. п. ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор. Хранящийся в ПЗУ видео-BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, а также содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы (в зависимости от применяемого метода разделения ответственности между драйвером и BIOS). На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ ( EEPROM , Flash ROM ), допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы.

- система охлаждения — предназначена для сохранения температурного режима видеопроцессора и видеопамяти в допустимых пределах.

Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.

Характеристики

- ширина шины памяти , измеряется в битах — количество бит информации, передаваемой за такт. Важный параметр в производительности карты.

- объём видеопамяти , измеряется в мегабайтах — объём собственной оперативной памяти видеокарты.

Видеокарты, интегрированные в набор системной логики материнской платы или являющиеся частью ЦПУ, обычно не имеют собственной видеопамяти и используют для своих нужд часть оперативной памяти компьютера (UMA — Unified Memory Access).

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Изначально персональные компьютеры IBM PC комплектовались видеоадаптером MDA с монохромным дисплеем. Этот адаптер имел небольшую разрешающую способность, не мог отражать графическую информацию и был монохромным. Через некоторое время небольшая фирма Hercules Computer Technology выпустила монохромный видеоадаптер Hercules, который имел возможность вывода графики и имел большую разрешающую способностью

CGA стал первым цветным видеоадаптером фирмы IBM. Он уже обеспечивал возможность отображать цветную графическую и текстовую информацию, но имел слишком маленькую разрешающую способность. Затем IBM выпустила два, наиболее распространенных в настоящее время видео- адаптера EGA и VGA. Они созданы на другой элементной базе и имеют лучшую, чем у CGA, разрешающую способность при большем числе отображаемых цветов.

В последнее время различные фирмы -- производители видеоадаптеров выпустили большое количество плат, превосходящим по своим возможностям VGA. Эти платы, которые можно объединить под общим названием Super VGA, не имеют пока единого стандарта.

Фирма IBM начала выпуск нового видеоадаптера XGA, который, как предполагается, станет новым стандартом для компьютеров на базе процессоров Intel 386/486. Видеоадаптер содержит встроенный графический процессор, значительно увеличивающий его возможности и скорость работы. XGA аппаратно поддерживает перерисовку изображений в окнах экрана. При обмене данными между видеопамятью и основной памятью сам XGA вместо центрального процессора реализует управление шиной данных, что позволяет быстро передавать изображение на экран.

Следует также отметить, что предусмотрена совместимость видеоадаптеров VGA и XGA на уровне регистров. Базовая конфигурация XGA содержит 512 Кбайт видеопамяти, что обеспечивает разрешение 1024*768 пикселов при 16 цветах. Увеличение объема видеопамяти до 1Мбайта при той же разрешающей способности позволяет получить 256 цветов.

АРХИТЕКТУРА ВИДЕОАДАПТЕРОВ EGA И VGA

Видеоадаптеры EGA и VGA условно делятся на шесть логических блоков, описание которых приведены ниже:

1. Видеопамять. В видеопамяти размещаются данные, отображаемые адаптером на экране дисплея. Для EGA и VGA видеопамять обычно имеет объем 256 Кбайт, на некоторых моделях SVGA и XGA объем видеопамяти может быть увеличен до 2Мбайт. Видеопамять находится в адресном пространстве процессора и программы могут непосредственно производить с ней обмен данными. Физически видеопамять разделена на четыре банка, или цветовых слоя, использующих совместное адресное пространство.

2. Графический контроллер. Посредством его происходит обмен данными между центральным процессором и видеопамятью. Аппаратура графического контроллера позволяет производить над данными, поступающими в видеопамять и расположенными в регистрах-защелках простейшие логические операции.

3. Последовательный преобразователь. Выбирает из видеопамяти один или несколько байт, преобразует их в поток битов, затем передает их контроллеру атрибутов.

4. Контроллер ЭЛТ. Контроллер генерирует временные синхросигналы, управляющие ЭЛТ.

5. Контроллер атрибутов. Преобразует информацию о цветах из формата. в котором она хранится в видеопамяти, в формат, необходимый для ЭЛТ.

6. Синхронизатор. Управляет всеми временными параметрами видеоадаптера. Синхронизатор также управляет доступом процессора к цветовым слоям видеоадаптера.

Видеопамять адаптеров EGA и VGA разделена на четыре банка, или на четыре цветовых слоя. Эти банки размещаются в одном адресном пространстве таким образом, что по каждому адресу расположено четыре байта (по одному байту в каждом банке). Какой из банков памяти используется для записи или чтения данных процессором, определяется при помощи установки нескольких регистров адаптера.

Так как все четыре банка находятся в одном адресном пространстве, то процессор может производить запись во все четыре банка за один цикл записи. Благодаря этому некоторые операции, например заполнение экрана, происходят с большей скоростью. В том случае, когда запись во все четыре банка не требуется, можно разрешать или запрещать запись во все четыре банка при помощи регистра разрешения записи цветового слоя.

Для операции чтения в каждый момент времени может быть разрешен с помощью регистра выбора читаемого цветового слоя только один цветовой слой.

В большинстве режимов видеоадаптера видеопамять разделена на несколько страниц. При этом одна из них является активной и отображается на экране. При помощи функций BIOS или программирования регистров видеоадаптера можно переключать активные страницы видеопамяти. Вывод информации может производиться как в активную, так и в неактивные страницы видеопамяти.

В текстовых режимах на экране могут отображаться только текстовые символы. Стандартные текстовые режимы позволяют выводить на экран 25 строк по 40 или 80 символов. Для кодирования каждого знакоместа экрана используется два байта: первый из них содержит ASCII код отображаемого символа, второй -- атрибуты символа. ASCII коды символов экрана располагаются в нулевом цветовом слое, а их атрибуты -- в первом цветовом слое. Атрибуты определяют цвет символа и цвет фона. Благодаря такому режиму хранения информации достигается значительная экономия памяти. При отображении символа на экране происходит преобразование его из формата ASCII в двумерный массив пикселов, выводимых на экран. Для этого преобразования используется таблица трансляции символов (таблица знакогенератора). Таблица знакогенератора хранится во втором слое видеопамяти. При непосредственном доступе к видеопамяти нулевой и первый цветовые слои отображаются на общее адресное пространство с чередованием байтов из слоев. Коды символов имеют четные адреса, а их атрибуты -- нечетные.

При установке текстовых режимов работы видеоадаптеров EGA и VGA BIOS загружает таблицы знакогенератора из ПЗУ во второй цветовой слой видеопамяти. В последствие таблицы используются при отображении символов на экране. Благодаря этому можно легко заменить стандартную таблицу знакогенератора своей собственной. Это широко применяется при русификации компьютеров.

EGA и VGA обеспечивают возможность одновременной загрузки соответственно четырех и восьми таблиц знакогенераторов в память. Каждая таблица содержит описание 256 символов. Одновременно активными могут быть одна или две таблицы знакогенератора. Это дает возможность одновременно отображать на экране до 512 символов. При этом один бит из байта атрибутов указывает, какая из активных таблиц знакогенератора используется при отображении данного символа. Номера активных таблиц знакогенератора определяются регистром выбора знакогенератора.

EGA поддерживает два размера для матриц символов: 8х8 и 8х14 пикселов. Один из этих наборов символов автоматически загружается BIOS в видеопамять при выборе текстового режима. Так как VGA имеет большую разрешающую способность, то его матрица символа имеет размеры 9х16. На каждый символ отводится 32 байта. Первая таблица имеет в видеопамяти адреса: 0000h--1FFFh, вторая: 2000h--3FFFh, . , восьмая: E000h--FFFFh.

Каждый символ, отображаемый на экране в текстовом режиме, определяется не только своим ASCII кодом, но и байтом атрибутов. Атрибуты задают цвет символа, цвет фона, а также некоторые другие параметры. Биты D0--D2 байта атрибутов задают цвет символа, D4--D6 цвет фона. Если активной является одна таблица знакогенератора, то D3 используется для управления интенсивностью цвета символа, что позволяет увеличить количество воспроизводимых цветов до 16. Если одновременно определены две таблицы знакогенератора, то D3 задает таблицу знакогенератора, которая будет использована для отображения данного символа. Бит D7 выполняет две различные функции в зависимости от состояния регистра режима контроллера атрибутов. Данный бит либо управляет интенсивностью цвета фона, увеличивая количество отображаемых цветов до 16, либо разрешением гашения символа, в результате чего символ на экране будет мигать. По умолчанию данный бит управляет разрешением гашения символа.

Видеопамять в графических режимах:

Распределение видеопамяти в графических режимах работы адаптеров отличается от распределения видеопамяти в текстовых режимах. Ниже рассмотрена структура распределения видеопамяти отдельно для каждого графического режима.

Это режимы низкого разрешения (320х200), используются 4 цвета. Поддерживаются видеоадаптерами CGA, EGA и VGA. У EGA и VGA видеоданные расположены в нулевом цветовом слое, остальные слои не используются. Для совместимости с CGA отображение видеопамяти на экране не является непрерывным: первая половина видеопамяти (начальный адрес В800:0000) содержит данные относительно всех нечетных линий экрана, а вторая (начальный адрес В800:2000) -- относительно всех четных линий. Каждому пикселу соответствует два бита видеопамяти. За верхний левый пиксел экрана отвечают биты D7 и D6 нулевого байта видеопамяти. В режимах 4 и 5 имеются два набора цветов: стандартный и альтернативный: 00 - черный; 01 - светло-синий (зеленый); 10 - малиновый (красный); 11 - ярко-белый (коричневый).

Режим 6 является режимом наибольшего разрешения для CGA (640х200). Видеоадаптеры EGA и VGA используют для хранения информации только нулевой слой. Как и в режимах 4 и 5 первая половина видеопамяти отвечает за нечетные линии экрана, а вторая половина -- за четные. В данном режиме на один пиксел отводится один бит видеопамяти. Если значение бита равно 0, то пиксел имеет черный цвет, а если единице -- то белый.

Режимы 0Dh и 0Еh.

Разрешающая способность в режиме 0Dh составляет 320х200, а в режиме 0Eh 640х200 пикселов. Данный режим поддерживается только видеоадаптерами EGA и VGA . Для хранения видеоданных используются все четыре цветовых слоя. Адресу видеопамяти соответствуют четыре байта, которые вместе определяют восемь пикселов. Каждому пикселу соответствуют четыре бита -- по одному из каждого цветового слоя. Четыре бита на пиксел, используемые в данных режимах, позволяют отображать 16 различных цветов. Запись в каждый из этих цветовых слоев можно разрешить или запретить при помощи разрешения записи цветового слоя. Управление доступом к цветовым плоскостям осуществляется при помощи регистров: Адресный регистр графического контроллера, порт вывода для этого регистра 3CEh; биты 0--3 содержат адрес регистра, остальные не используются. Регистр цвета: для доступа к этому регистру значение адресного регистра должно быть 00h, адрес порта вывода для этого регистра 3CFh; биты 0--3 определяют значение для соответствующей плоскости, остальные не используются. Регистр разрешения цвета: для доступа к этому регистру значение адресного регистра должно быть 01h, адрес порта вывода для этого регистра 3CFh; биты 0--3 означают разрешение соответствующего слоя, а остальные не используются. Регистр выбора плоскости для чтения: для доступа к этому регистру значение адресного регистра должно быть 04h, адрес порта вывода для этого регистра 3CFh; биты 0--2 содержат номер плоскости для чтения, а остальные не используются.

Графический контроллер осуществляет обмен данными между видеопамятью и процессором. Он может выполнять над данными, поступающими в видеопамять, простейшие логические операции: И, ИЛИ, ИСКЛЮЧАЮЩЕЕ ИЛИ, циклический сдвиг. Таким образом, видеоадаптер может выполнять часть работы по обработке видеоданных. Хотя процессор может читать данные только из одного цветового слоя, запись данных в регистры-защелки происходит из всех цветовых слоев. Эту особенность можно использовать для быстрого копирования областей экрана.

Во время цикла чтения данных из видеопамяти , графический контроллер может выполнять операцию сравнения цветов. В отличие от обычной операции чтения. когда читается только один цветовой слой, при операции сравнения цветов графический контроллер имеет доступ ко всем четырем слоям одновременно. В случае совпадения вырабатывается определенный сигнал.

Это устройство запоминает данные, читаемые из видеопамяти в течении цикла регенерации, преобразует их в последовательный поток бит, а затем передает их контроллеру атрибутов.

Контроллер атрибутов в графических режимах управляет цветами. Значениям цветовых атрибутов ставится в соответствие определенный цвет при помощи таблицы цветовой палитры. Эта таблица ставит в соответствие четырем битам из видеопамяти шесть битов цветовой информации. Для ЕGA эта информация поступает непосредственно на дисплей, а для VGA -- преобразуется в соответствии с таблицей цветов тремя ЦАП в RGB-сигнал и передается на дисплей.

Контроллер ЭЛТ выполняет следующие функции: вырабатывает сигналы управления работой ЭЛТ, определяет формат экрана и символов текста, определяет форму курсора, управляет световым пером, управляет скроллингом содержимого экрана.

Читайте также: