Реферат на тему вибрационные приборы

Обновлено: 02.07.2024

В настоящее время проектируют и изготовляют вибрационные приборы следующих типов, генераторы (эталонные, опорные, перестраиваемые и частотные фильтры (полосовые, нижних частот, верхних частот, режекторные, перестраиваемые и др.), частотные детекторы; умножители и делители частоты; модуляторы; трансформаторы; устройства кратковременной памяти (ультразвуковые линии задержки и усилители (параметрические, электроакустические и звукозаписывающую и звуковоспроизводящую аппаратуру; эхолокациоиную аппаратуру; акустооптическую аппаратуру (модуляторы, сканеры, видеоэкраны); вискозиметры; гироскопы, измерители углевых скоростей и ускорений; датчики кажущихся линейных ускорений; измерители угловых и линейных перемещений; измерители сил и моментов; приборы для измерения массовых плотностей жидких и газообразных сред; приборы для измерения температуры; приборы для измерения давлений и многие другие [9, 12, 15].

Из краткого перечисления видно, что многообразие вибрационных приборов чрезвычайно велико. Сведения об этих приборах можно найти в многочисленных научно-технических публикациях, часть из которых указана в списке литературы. Наиболее перспективные и широко распространенные из вибрационных приборов имеют в основе своей конструкции кварцевые резонаторы.

Современные конструкции кварцевых резонаторов обеспечивают суточную нестабильность частоты до будучи устройствами малой мощности, наилучшим образом подходят для микроминиатюризации. Поэтому в настоящее время интенсивно ведутся работы по созданию малых габаритных размеров, способных функционировать в жестких эксплуатационных условиях. Современный уровень развития пьезокварневой техники позволяет изготовлять прецизионные с нестабильностью до за сутки, что близко к теоретическому пределу, обусловленному электрофизическими свойствами кварца.

Развитие техники стабилизации частоты и частотной селекции, так же как и развитие многих других вибрационных приборов, идет по пути создания многокомпонентных интегральных пьезоэлектрических микроэлектронных устройств, в которых конструктивно объединены с микросхемой (микроэлектронные кварцевые генераторы, интегральные пьезоэлектрические фильтры, электронные часы и др.). В целях микроминиатюризации аппаратуры разрабатывают и изготовляют также многоэлектродные и многочастотные В последних на одной общей пластине кварца (пьезоэлементе) расположены на определенном расстоянии две, три пары электродов и более, образующих изолированные друг от друга резонаторы со степенью механической развязки более 40 дБ, что основано на использовании явления захвата (локализации) энергии колебаний сдвига по толщине в подэлектродной области (между парой электродов).

В измерительной технике основное применение находит низкотемпературная модификация кварца — а-кварц, устойчивая до температуры около 573 °С. Кварц относится к числу весьма твердых минералов (твердость 7 по десятибалльной шкале, плотность

В настоящее время производят синтетические кристаллы кварца, практически не уступающие по своим качествам природным. СССР занимает в этом производстве одно из ведущих мест.

Рассматривая каждую пару ионов О как квазичастицу, имеющую заряд можно представить элементарную структурную ячейку кварца в упрощенном виде (рис. 1, а), удобном для демонстрации смещения электрических зарядов в кристалле кварца при его механической деформации (рис. 1,б и в).

Рис. 1. Упрощенная структура ячейки кварца и схема образования пьезоэлектрического эффекта и в)

Предположим, что эта ячейка подвергается воздействию внешней силы в направлении электрической оси X (рис. 1, б). Тогда ион сдвинется внутрь и расположится между ионами О 2 и 6, и анион между ионами и 5. Вследствие этого на одной поверхности возникнет положительный заряд, а на другой — отрицательный, т. е. будет иметь место прямой пьезоэффект. Пользуясь приведенной моделью структурной ячейки, можно объяснить возникновение и обратного пьезоэффекта.

При воздействии на специально обработанный кристалл кварца определенной формы и геометрических размеров (стержень, пластину, линзу и т. п.) переменного электрического поля с частотой, равной или близкой к частоте его собственных механических колебаний, в кристалле возникают резонансные механические колебания. Благодаря прямому пьезоэффекту эти колебания обусловливают весьма интенсивные электрические колебания, которые используют для создания замкнутой электромеханической автоколебательной системы — кварцевого генератора.

Кварцевые резонаторы изготовляют на весьма широкий диапазон частот (от единиц килогерц до сотен мегагерц), для чего применяют кристаллы (пьезоэле-менты) кварца, вырезанные из кристаллического моноблока (монокристалла) под различными углами относительно его кристаллофизических осей.

Вибрационная техника, используется в хим. технологии для осуществления и интенсификации производств. процессов, повышения кач-ва продукции. Ср-ва В. т. - аппараты, машины и др. устройства, исполнительные органы к-рых подвержены преднамеренной вибрации с частотой от 10 Гц до 10 кГц (кинематич., центробежный, электромагн., гидравлич. и др. вибровозбудители) или до 3 МГц (ультразвуковой, магнитострикционный и пьезоэлектрич. вибровозбудители).

Виброобработка одно- и многофазных сред обусловлена возможностью использования различных физических. эффектов, которые возникают под действием вибрации. Осн. эффекты: уменьшение мех. сопротивления материалов при перемещении относительно вибрирующей пов-сти, диссипативные тепловыделения, создание определенных форм относительного движения фаз. Снижение внеш. трения позволяет транспортировать сыпучие и вязкие материалы, интенсифицировать их переработку. Благодаря диссипативным выделениям теплоты обеспечивается высокая однородность температурных полей, напр. при обработке полимерных материалов в экструдерах. При соответствующих видах движения одной фазы относительно другой в одних случаях частицы дисперсных систем (сыпучих материалов, паст, суспензий, эмульсий) направленно перемещаются, повышается насыпная плотность и облегчается регулярная укладка частиц материала (многокомпонентное дозирование) и т.д., в других - из-за лучшего дробления дисперсной фазы увеличивается пов-сть контакта фаз и ускоряется их перемешивание, в результате периодич. нарушения контактов частиц между собой материал разрыхляется и начинает усиленно циркулировать (виброкипение) и т. п. В ряде случаев разл. процессы под вибрационным воздействием происходят более эффективно при использовании ПАВ (напр., виброуплотнение сыпучего материала при введении в него добавок олеата Na).

Под воздействием вибрации перестраиваются и разрушаются структурные связи во многих аморфных материалах, напр. в полимерах, находящихся в вязкотекучем состоянии. При этом ускоряются мех. релаксация (тиксотропное снижение вязкости и упругости) и механодеструкция (частичное уменьшение мол. массы) макромолекул. В результате облегчается, напр., виброформование полимеров (сокращается время переработки, снижаются рабочее давление и расход энергии), повышается кач-во изделий. При наложении на стационарную деформацию сдвига низкочастотных колебаний возникает эффект т. наз. реологич. нелинейности - увеличивается скорость течения полимерного материала (напр., при вибропрессовании порошков) и т.д.

Аппараты и машины, реализующие вибрационное воздействие на материал, представляют собой, как правило, оригинальное оборудование, а в отдельных случаях - типовое, снабженное спец. устройствами, к-рые обеспечивают генерирование вибраций и передачу их исполнительным органам.

В вибрационных дробилках (инерционных конусных, ударно-вибрационных щековых и т.д.) степень помола горнохим. сырья и различных хим. продуктов в неск. раз больше, чем в обычных дробилках. В др. измельчителях (мельницах) используют кинематич. или дебалансные вибровозбудители, под воздействием к-рых мелющие тела (шары) ударом и истиранием измельчают материал от крупных кусков до частиц размером 1-5 мкм.

В бункерах вибровозбудители устанавливают непосредственно на корпусах агрегатов так, чтобы частота, амплитуда и направление вибрации находились в определенном соотношении. Благодаря этому снижается коэф. внеш. трения, что позволяет устранять зависание и сводообразование материалов, ускоряет их истечение.

Установкой в смесителях спец. устройств, вибрирующих с большой частотой (валковые и литьевые машины, вальцевые прессы, экструдеры и др.), достигаются необходимая циркуляция сыпучего материала, интенсивность перемешивания и высокая однородность смесей. Высокоэффективны червячно-осциллирующие смесители - машины, в к-рых вращательное движение червяка совмещается с циклическим продольным возвратно-поступательным движением.

В центрифугах с осевой вибрацией ротора последняя накладывается на его вращательное движение, что обеспечивает требуемые скорость перемещения в роторе осадка, степень обезвоживания и облегчает его выгрузку. В центрифугах с крутильными колебаниями ротора ускоряется центробежная фильтрация и улучшается отделение твердых частиц от жидкости. В фильтрах суспензия подается под вибрирующую фильтровальную перегородку, расположенную горизонтально. При этом фильтрат проходит сквозь ее поры, напр. снизу вверх, а твердые частицы под воздействием вибрации отбрасываются от нее, не проникая в поры, и накапливаются под перегородкой, что облегчает съем осадка.

В вибрационных тепло- и массообменных аппаратах (гетерогенные реакторы, теплообменники, экстракторы, сушилки с кипящим слоем, абсорберы, кристаллизаторы и т.д.), в отличие от аппаратов в традиционном исполнении, применяют насадку, вибрирующую, как правило, в осевом направлении. Вибровозбудители (кинематич. или электромагнитный) обеспечивают вариацию параметров вибрации, что позволяет корректировать режим работы оборудования. Достоинства этих аппаратов: низкие уд. капиталовложения и эксплуатационные расходы, высокая производительность. Так, в экстракторах вибрационного действия по сравнению с обычными аппаратами металлоемкость уменьшается в 1,2-3,0 раза, расход энергии - в 1,5-3,0 раза.

Список литературы

Басов Н.И., Любартович С.А., Любартович В.А., Виброформование полимеров, Л., 1979;

Вибрационные массообменные аппараты, М., 1980;

Вибрации в технике. Справочник, т. 4, под ред. Э.Э. Лавендела, М., 1981;

Варсанофьев В. Д., Кольман-Иванов Э. Э., Вибрационная техника в химической промышленности, М., 1985.

Приборы вибрационной системы предназначаются для измерения частоты переменного тока.

Действие вибрационных приборов основано на использовании явлений электромагнетизма и механического резонанса.

Каждая механическая система, способная совершать колебательные движения, обладает определенной частотой собственных колебаний, которая обусловливается массой в упругостью системы. При резонансе, т. е. при совпадении частот собственных колебаний системы и колебаний внешнего источника, амплитуда колебаний данной механической системы резко увеличивается. Это свойство используется в измерительных приборах вибрационной системы.

Вибрационный частотомер состоит из электромагнита, стального якоря, укрепленного на бруске, и нескольких вибраторов с различной длиной или массой. Концы вибраторов отогнуты под прямым углом, окрашены белой краской и размещены в горизонтальной щели на шкале частотомера. Брусок крепится к пластинчатым прижимам, что обеспечивает некоторую подвижность механической системы.

Если по обмотке электромагнита пропустить переменный ток, то якорь будет сильнее притягиваться к полюсам в те моменты, когда ток имеет наибольшее значение, т. е. два раза за период. Колебания якоря передаются вибраторам. С наибольшей амплитудой будет колебаться вибратор, собственная частота колебаний которого совпадает с частотой колебаний якоря. Цифра на шкале, стоящая против вибратора, колеблющегося с наибольшей амплитудой, укажет частоту тока в сети.

Большинство частотомеров вибрационной системы предназначены для измерения частот 45-55 Гц. Однако встречаются частотомеры, рассчитанные для измерения более высоких частот (до 1550-1650 Гц).

Достоинство приборов вибрационной системы - независимость показаний от напряжения сети.

Недостатки - зависимость показаний от механических вибраций, невозможность измерения высоких частот и прерывность шкалы, вследствие чего затрудняются измерения на промежуточных частотах, когда одновременно колеблется несколько вибраторов.

Эта система характеризуется применением ряда настроенных пластин, имеющих разные периоды собственных колебаний и позволяющих производить измерение частоты благодаря резонансу частоты колеблющейся пластины с измеряемой частотой.


Вибрационные приборы строятся только в качестве частотомеров. На фиг. 339 показано устройство вибрационного частотомера.

Электромагнит, обмотка 1 которого питается от сети переменного тока, расположен над стальной пластиной (якорем) 2, укрепленной на металлической планке 3. На планке расположен ряд стальных язычков 4, настроенных на разные периоды собственных колебаний. Сама планка привернута к плоским пружинам 5. Концы язычков загнуты и окрашены белой краской. При прохождении по обмотке электромагнита переменного тока создается

переменный магнитный поток, который, действуя на якорь 2, заставляет его колебаться. Это колебательное движение будет передаваться планке 3 и язычкам 4.

Хотя все язычки приходят в колебание, но наибольший размах будет совершать тот язычок, у которого собственный период колебания совпал с частотой изменения магнитного потока или, другими словами, совпал с частотой переменного тока.


В прямоугольном вырезе шкалы частотомера видны окрашенные концы язычков. Против каждого язычка на шкале прибора стоит цифра, соответствующая частоте тока в герцах. При работе прибора окрашенный конец резонирующего язычка образует размытую оветлую полосу.

Часть шкалы вибрационного частотомера показана на фиг. 340.


Общий вид вибрационного частотомера дан на фиг. 341.

Обмотка электромагнита частотомера состоит из большого числа витков тонкой проволоки и включается в сеть параллель-но, так же как обмотка вольтметра.

Заканчивая рассмотрение различных систем электроизмерительных приборов, приводим условные обозначения, помещаемые на шкалах приборов (фиг. 342).

Следует отметить, что вибрационные частотомеры в настоящее время применяют мало, их заменяют стрелочные частотомеры, имеющие непрерывную шкалу и удовлетворяющие требованиям ГОСТ.


5 Апрель, 2009 21112 ]]> Печать ]]>

Читайте также: