Реферат на тему текстовые задачи

Обновлено: 05.07.2024

Горскин Денис Михайлович

Кирилова Татьяна Леонидовна

Оглавление

1. Общие подходы к решению задач 5

2. Задачи на движение 6

2.1. Движение велосипедистов и автомобилистов 7

2.2. Движение лодки по течению и против течения 9

2.3. Движение объектов навстречу друг к другу 11

3. Задачи на работу и производительность 12

3.1. Задачи на работу 13

4. Концентрация, сплавы и смеси 18

Список литературы 24

Введение


Математика проникает почти во все области деятельности человека, что положительно сказалось на темпе роста научно-технического прогресса. В связи с этим было решено включить в итоговую аттестацию в форме Единого Государственного Экзамена (ЕГЭ) предмет математики, где особое внимание уделяется текстовым задачам.

Изучение текстовых задач происходит в основной школе, но рассматриваются они недостаточно глубоко, таким образом, приобретённые в основной школе навыки и знания решения текстовых задач со временем теряются. Исходя из этого, для того, чтобы достойно сдать ЕГЭ, а именно, верно решить текстовые задачи, нам необходимо рассмотреть классификации этих задач, систематизировать и ликвидировать пробелы в знаниях по математике.

При решении каждой задачи мы производим небольшое математическое исследование, с помощью которого проверяется наша сообразительность и способность к логическому мышлению.


  1. выбор неизвестных;

  2. составление уравнений или систем уравнений, а в некоторых случаях — систем неравенств;

  3. нахождение неизвестных или нужной комбинации неизвестных;

  4. отбор решений, подходящих по смыслу задачи.

Бывают случаи, когда число уравнений совпадает с числом неизвестных, но и нередки задачи, в которых число неизвестных больше числа уравнений. Если при этом мы использовали все условия задачи, то необходимо прочитать внимательно ещё раз условие и понять требование задачи, т. к. может оказаться, что надо отыскать не все неизвестные, а всего лишь их соотношение.

Таким образом, из вышесказанного, целью своей работы я ставлю – рассмотреть методы работы над задачами, определить виды текстовых задач и методы их решения, которые входят в Единый Государственный Экзамен (ЕГЭ).

Объектом исследования являются текстовые задачи Открытого банка заданий по математике.

Предметом исследования являются методы решения текстовых задач, включённых в Открытый банк заданий по математике.

Для решения цели будут поставлены и раскрыты следующие задачи:


  1. Определить общие подходы к решению текстовых задач;

  2. Рассмотреть типы задач и составить модель решения каждого типа соответственно;

  3. Выявить наиболее рациональные решения текстовых задач.

1. Общие подходы к решению задач


  1. сбор информации из текста в виде схемы или таблицы, если условие её задачи содержит в изобилии;

  2. выбор неизвестных;

  3. составление системы уравнений или неравенств, выражающих заданные в условии ограничения на неизвестные;

  4. нахождение нужного неизвестного или нужной комбинации неизвестных.

При составлении нами соотношений немаловажную роль играет обыкновенный здравый смысл, так как некоторые соотношения в условии между неизвестными могут содержаться в неявном виде. Число станков не может быть дробным; если лодка движется против течения, то значит её собственная скорость больше, чем скорость течения – понимание таких определённо простых вещей необходимо учитывать при решении задач, но иногда удобнее зафиксировать некоторые из них уже на этапе составления уравнений.

На этапе решения системы мы часто сталкиваемся с тем, что уравнений оказывается меньше, чем неизвестных. В подобных ситуациях нам наиболее выгоднее перейти к относительным величинам, например, вместо объема бассейна (в м 3 ) и производительности насоса (в м 3 /час) ввести относительную производительность в долях бассейна, перекачиваемых за час; вместо пути (в км) и скоростей (в км/час) ввести относительные скорости, выраженные в долях пути, проходимых за час, и т.п.

Чтобы убедится в правильности решения задачи, можно проверить результаты методом подстановки в исходную систему, что поможет выявить ошибки, возникшие в процессе решения системы.

2. Задачи на движение


Системы уравнений, которые составляются на основании условий задач на движение, как правило, содержать такие величины, как скорости движущихся объектов, расстояние, время, ускорение, а также скорость течения воды (движение по реке).

Решая подобные задачи для различных типов движения нам необходимо определить некоторые особенности.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Управление образования Администрации г.Глазова

Муниципальное бюджетное общеобразовательное учреждение

Реферат на тему

«Решение текстовых задач

Выполнил учитель математики

II категории Масьярова Н.В.

Рецензент учитель высшей

Категории Шихова Н.В.

Методы решения текстовых задач . ……………………………………3

Сущность алгебраического метода решения текстовых задач . ……..5

Решение текстовых задач алгебраическим методом по Г.Г.Левитасу ………..…………………………………………………………………. 9

Решение текстовых задач алгебраическим методом с помощью таблицы ……………………………………………………………….…11

Умение решать задачи является одним из основных показателей уровня математического развития, глубины освоения учебного материала. Ребенок с первых дней занятий в школе встречается с задачей. Сначала и до конца обучения в школе математическая задача неизменно помогает ученику вырабатывать правильные математические понятия, глубже выяснять различные стороны взаимосвязей в окружающей его жизни, дает возможность применять изучаемые теоретические положения. Текстовые задачи - традиционно трудный для значительной части школьников материал. Однако, в школьном курсе математики ему придается большое значение, так как такие задачи способствуют развитию логического мышления, речи и других качеств продуктивной деятельности обучающихся.

Как обучать детей нахождению способа решения текстовой задачи? Этот вопрос - центральный в методике обучению решения задач. Для ответа на него в литературе предложено немало практических приемов, облегчающих поиск способа решения задачи. Однако теоретические положения относительного нахождения пути решения задачи остаются мало разработанными.

Текстовые задачи являются важным средством обучения математике. С их помощью учащиеся получают опыт работы с величинами, постигают взаимосвязи между ними, получают опыт применения математики к решению практических (или правдоподобных) задач.

МЕТОДЫ РЕШЕНИЯ ТЕКСТОВЫХ ЗАДАЧ

Существует несколько методов решения текстовых задач. Это арифметический, алгебраический, комбинированный, графический, логический и др.

Наиболее часто используются два метода решения задач: арифметический и алгебраический.

Арифметический метод решения текстовых задач позволяет развивать умение анализировать задачные ситуации, строить план решения с учетом взаимосвязей между известными и неизвестными величинами (с учетом типа задачи), истолковывать результат каждого действия в рамках условия задачи, проверять правильность решения с помощью составления и решения обратной задачи, то есть, формировать и развивать важные общеучебные умения.

Арифметический метод решения текстовых задач приучают детей к первым абстракциям, позволяют воспитывать логическую культуру, могут способствовать созданию благоприятного эмоционального фона обучения, развитию у школьников эстетического чувства применительно к решению задачи (красивое решение) и изучению математики, вызывая интерес сначала к процессу поиска решения задачи, а потом и к изучаемому предмету.

Использование арифметического метода решения задач развивает смекалку и сообразительность, умение ставить вопросы, отвечать на них, то есть, развивает естественный язык, готовит школьников к дальнейшему обучению.

Но арифметический метод решения задач является трудоёмким. Не каждый ученик может решить более сложную задачу этим методом.

Алгебраический метод решения задач алгоритмичен, в какой-то степени универсален, так как подходит для большинства задач. Хотя и он вызывает некоторые трудности при решении задач.

Первая трудность состоит в математизации предложенного текста, т.е. в составлении математической модели, которая может представлять собой уравнение, неравенство или их систему, диаграмму, график, таблицу, функцию и т.д.

Для того, чтобы перевести содержание задачи на математический язык, учащемуся необходимо тщательно изучить и правильно истолковать его, формализовать вопрос задачи, выразив искомые величины через известные величины и введенные переменные.

Вторая трудность - составление уравнений и неравенств, связывающих данные величины и переменные, которые вводит учащийся.

Третья трудность - это решение полученной системы уравнений или неравенств желательно наиболее рациональным способом.

Цель работы : Выявление наиболее оптимального способа решения текстовых задач.

Задачи работы:

1. Рассмотреть сущность алгебраического метода решения текстовых задач.

2. Изучить типичные методические ошибки учителя при работе с текстовыми задачами.

3. Проанализировать решение текстовых задач алгебраическим методом по Г.Г. Левитасу.

4. Рассмотреть анализ и решение текстовых задач с использованием таблиц.

5. Проанализировать практическое применение методики обучения решению текстовых задач алгебраическим способом.

Объект работы : Процесс обучения решению текстовых задач.

Предмет работы : Содержание текстовых задач и особенности обучения их решению на уроках математики.

Методы исследования:

1. Анализ литературы по теме.

2. Изучение практического опыта применения методики обучения решению текстовых задач алгебраическим методом.

3. Анализ и результаты собственного опыта при решении текстовых задач с помощью таблицы.

СУЩНОСТЬ АЛГЕБРАИЧЕСКОГО МЕТОДА РЕШЕНИЯ ТЕКСТОВЫХ ЗАДАЧ

Под алгебраическим методом решения задач понимается такой метод решения, когда неизвестные величины находятся в результате решения уравнения или системы уравнений, решения неравенства или системы неравенств, составленных по условию задачи. Иногда алгебраическое решение задачи бывает очень сложным.

При решении задач алгебраическим методом основная мыслительная деятельность сосредотачивается на первом этапе решения задачи: на разборе условия задачи и составлении уравнений или неравенств по условию задачи.

Вторым этапом является решение составленного уравнения или системы уравнений, неравенства или системы неравенств.

Третьим важным этапом решения задач является проверка решения задачи, которая проводится по условию задачи.

В связи с внедрением в школьную программу элементов высшей математики, с ускоренным развитием и внедрением во все сферы вычислительной математики большое значение имеет формирование у учащихся не отдельных специфических навыков, а тех умений и навыков, которые имеют дальнейшее приложение. К числу этих умений и навыков относятся умения и навыки, которые формируются в процессе решения задач алгебраическим методом.

Типичные методические ошибки учителя пр и работе с текстовыми задачами

Ошибка 1. Пропуск этапа анализа условия задачи.

Ошибка 2. Пропуск этапа поиска решения.

Пропуск этого этапа ведет к недопониманию учащимися сущности эвристической деятельности, и как результат, к возникновению трудностей при самостоятельном решении задач. В практике обучения традиционной является ситуация, когда учитель вызывает к доске учащегося, который знает, как решить задачу. Однако при личностно ориентированном обучении основная забота учителя должна быть связана с теми, кто испытывает затруднения при самостоятельном решении задач.

Тем же учащимся, которые без учителя могут решать задачи, необходимо подбирать задания, усиливающие их умения и способствующие их развитию (составить задачи на основе справочных данных; рассмотреть другие способы решения предложенной задачи; составить граф-схемы других уравнений по задаче и др.)

Ошибка 3. Пропуск этапа исследования решения.

Зачем нужен этот этап? На этапе исследования выясняем, соответствует ли полученный ответ условию задачи (правдоподобность результата); есть ли другие способы решения; что полезного можно извлечь на будущее из решенной задачи. Последний вопрос позволяет рассматривать каждую задачу как звено в общем умении решать задачи, что ведет к накоплению опыта по решению задач.

Ошибка 4. Смешение этапов анализа и поиска решения.

Чтобы этого избежать, надо точно знать, какую цель мы преследуем на каждом этапе. Цель этапа анализа условия - выявить все имеющиеся связи между данными и искомыми величинами, чему помогает составление таблицы (схемы, рисунка). Цель этапа поиска решения - выбрать метод решения (алгебраический или арифметический) и составить план решения. Цели этапов разные, значит, и смешивать эти этапы никак нельзя.

На этапе анализа условия задачи:

1. разбиваем условие задачи на части;

2. выясняем, какие величины характеризуют описываемый в условии процесс;

3. выясняем, какие величины известны, а какие требуется найти;

4. устанавливаем связи между величинами.

На этапе поиска решения выясняем, что можно найти по данным задачи, и поможет ли это дальнейшему решению.

Если для решения задачи выбран алгебраический метод, то поиск ведем по следующим этапам:

1. определяем условия, которые могут быть основанием для составления уравнения, и выбираем одно из них;

2. составляем схему уравнения, соответствующего выбранному условию;

3. определяем, какие величины можно обозначить за х; выбираем одну из них;

4. определяем, какие величины нужно выразить через х, и находим условия, которые позволяют это сделать.

Завершается этап поиска составлением плана решения задачи.

Ошибка 5. На этапе анализа условия фиксируются не все связи между величинами.

Надо стараться зафиксировать как можно больше таких связей. Почему это важно? Упустив какую-нибудь связь, мы можем потерять:

а) условие для составления уравнения;

б) возможность одну величину выразить через другие;

в) предусмотреть несколько способов решения Чаплыгин В.Ф. Некоторые методические соображения по решению текстовых задач // Математика в школе. - 2000. - №4. - С.29. .

Ошибка 6. Поиск решения задачи алгебраическим методом начинается с выбора переменной.

И насколько спокойнее и увереннее чувствует себя наш ученик, если у него есть карточка по проведению анализа и поиска решения задач; он смог составить по условию задачи таблицу; найти несколько условий для составления уравнений; записать схему уравнения для выбранного условия. Ученик знает, что за х можно обозначить любую из неизвестных величин, и, если не получится уравнение по одной схеме, то можно попробовать составить его по другой схеме.

Ошибка 7. Постановка частных, подсказывающих вопросов учащимся.

Задавая вопросы, учитель не должен вести учащихся к своему решению; нужно рассмотреть все пути решения, выслушать и обсудить все варианты.

РЕШЕНИЕ ТЕКСТОВЫХ ЗАДАЧ АЛГЕБРАИЧЕСКИМ МЕТОДОМ

ПО Г.Г.ЛЕВИТАСУ

Доктор педагогических наук. Профессор. Автор 20 книг и более 250 печатных научных трудов по методике преподавания математики.

Левитас Г.Г. использует следующий способ обучения школьников алгебраическому методу решения текстовых задач.

Для решения текстовой задачи мы переводим её на математический язык, т.е. создаём её математическую модель. Овладение навыками математического моделирования, по мнению Левитас, -- едва ли не самое важное, чему мы учим детей на уроках математики. Одна из причин неуспеха, как пишет Левитас Г.Г., состоит в неправильном порядке обучения методу алгебраического решения текстовых задач, а именно в неправильном порядке их перевода на язык математики.

Ведь как вообще совершается перевод с одного языка на другой? Иногда он идёт синхронно. Вы читаете лёгкий для перевода текст и тут же излагаете его на другом языке. Именно так переводит учитель математики лёгкие для него текстовые задачи из школьного курса. Он сразу видит, что именно выгодно принять за х, что нужно выразить через х, каким будет уравнение. И учит детей работать именно в таком порядке. И действительно, лёгкие для школьника задачи он решает именно так.

Но вот встретилась задача потруднее. Что обозначать через х? Какие именно неизвестные величины выражать через х? Как составлять уравнение?

Текстовые задачи традиционно считаются одними из самых сложных. Это можно объяснить тем, что если задачи другого рода можно решить с помощью алгоритмов, то решение текстовых задач требуетанализировать текст, выделять главное в условии, составлять план решения, а также переводить условие задачи на математический язык уравнений, неравенств, графических образов, т.е. составлять математическую модель.

Рассмотрение текстовых задач удобно проводить, разбивая их на классы. В основу такого разбиения обычно кладут вид физического процесса, в терминах которого описана задача: движение, работа, смешивание веществ и т.п.При решении любых задач, прежде всего, нужно грамотно прочитать условие, последовательно остановиться на каждой строчке, и попытаться выразить условие в качестве какого-то уравнения.

В КИМ-ах по математике имеется много задач практической направленности.В связи с этим возникает необходимость глубже рассмотреть задачи на проценты, графики реальных зависимостей, текстовые задачи с построением математических моделей реальных ситуаций.

Задачи на смеси имеют практическую направленность. Умение выполнять процентные вычисления и расчеты необходимо всем, так как с процентами мы сталкиваемся в повседневной жизни.

Задачи на смеси, растворы и сплавы называют еще задачами на процентное содержание или концентрацию.При решении задач данного типа используются следующие допущения:

1. Все получающиеся смеси и сплавы однородны;

3.Данный закон выполняется и для отдельных составляющих частей сплава.

Определение. Процентным содержанием (концентрацией или массовой долей) вещества в смеси называется отношение его массы к общей массе всей смеси.

Задачи на смеси можно разделить на два вида:

1. Задаются, например, две смеси с массами m 1 и m 2 и с концентрациями в них некоторого вещества. Смеси сливают. Требуется определить массу этого вещества в новой смеси и его новую концентрацию.

2. Задается некоторый объем смеси и от этого объема начинают отливать определенное количество смеси, а затем доливать такое же или другое количество смеси с такой же концентрацией данного вещества или с другой концентрацией. Эта операция проводится несколько раз.

Задачи на смешение растворов разных концентраций.

Решим типовую задачу в общем виде и выведем формулу.

Задача: Имеются два куска сплава меди с цинком. Процентное содержание меди в них p 1 % и р 2 % соответственно. В каком отношении нужно взять массы этих сплавов, чтобы, переплавив взятые куски вместе, получить сплав, содержащий p% меди?

Кроме различных понятий, предложений и доказательств в любом математическом курсе есть задачи. В обучении математике младших школьников преобладают такие, которые называют арифметическими, текстовыми, сюжетными. Эти задачи сформулированы на естественном языке (поэтому их называют текстовыми); в них обычно описывается количественная сторона каких-то явлений, событий (поэтому их часто называют арифметическими или сюжетными); они представляют собой задачи на разыскание искомого и сводятся к вычислению неизвестного значения некоторой величины (поэтому их иногда называют вычислительными).

Решение текстовых задач при начальном обучении математике является средством формирования многих математических понятий, умений строить математические модели реальных явлений, а также средством развития мышления детей. Поэтому учителю надо знать не только различные методические подходы к обучению детей решению текстовых задач, но и как устроены такие задачи и уметь решать их различными методами и способами.

• Структура текстовой задачи. Методы и способы решения текстовых задач

Опр.1. Текстовая задача – есть описание на естественном языке некоторого явления (ситуации, процесса) с требованием дать количественную характеристику какого-либо компонента этого явления, установить наличие или отсутствие некоторого отношения между компонентами или определить вид этого отношения.

Структура текстовой задачи состоит из утверждения и требования. Утверждения задачи называют условиями (или условием). В задаче обычно не одно условие, а несколько элементарных условий. Они представляют собой количественные и качественные характеристики объектов задачи и отношений между ними. Требований в задаче может быть несколько. Они могут быть как в вопросительной, так и утвердительной форме.

Условия и требования взаимосвязаны. Систему взаимосвязанных условий и требований называют высказывательной моделью задачи. Чтобы понять, какова структура задачи, надо выявить ее условия и требования, отбросив все лишнее, второстепенное, не влияющее на ее структуру. Иными словами, надо построить высказывательную модель задачи.

Условия задачи: 1) Две девочки бегут навстречу друг другу. 2) Движение они начали одновременно. 3) Расстояние, которое они пробежали – 420м.4) Одна девочка пробежала на 60м больше, чем другая. 5) Девочки встретились через 30с. 6) Скорость движения одной девочки больше скорости другой.

Требования задачи: 1) С какой скоростью бежала первая девочка. 2) С какой скоростью бежала вторая девочка.

По отношению между условиями и требованиями различают следующие виды задач.

Определенные задачи – в них условий столько, сколько необходимо и достаточно для выполнений требований (В букете 5 красных роз, а белых на 3 розы меньше. Сколько всего роз в букете?).

Недоопределенные задачи – в них условий недостаточно для получения ответа (Из зала вынесли сначала 12 стульев, потом еще 5. Сколько стульев осталось в зале?).

Переопределенные задачи – в них имеются лишние условия (Возле дома росло 5 яблонь, 2 вишни и 3 березы. Сколько фруктовых деревьев росло возле дома?).

• результат, т.е. ответ на требование задачи;

• процесс нахождения этого результата: а) как метод нахождения результата; б) как последовательность тех действий, который выполняет решающий.

Основными методами решения текстовых задач являются арифметический и алгебраический.

Решить задачу арифметическим методом – это значит найти ответ на требование задачи посредством выполнения арифметических действий над числами. Одну и туже задачу можно решить различными арифметическими методами.

• 43=12 (м) – столько было ткани

• 122=6 (к) – сшили из 12м ткани

• 42=2 (раза) – больше ткани идет на платье, чем на кофту

• 32=6 (к) – можно сшить из этой ткани

Решить задачу алгебраическим методом – это значит найти ответ на требование задачи, составив и решив уравнение или систему уравнений. Если для одной и той же задачи можно составить различные уравнения (системы уравнений), то это означает, что данную задачу можно решить различными алгебраическими способами.

Обозначим через х(г) массу шерсти, израсходованную на шапку. Тогда на шарф будет израсходовано (х+100)г, а на свитер ((х+100)+400)г. Так как на все три вещи израсходовано 1200г, то можно составить уравнение: х+(х+100)+((х+100)+400)=1200. Решив данное уравнение, получим х=200, т.е. если на шапку ушло 200г шерсти, то на шарф – 200+100=300(г), а на свитер (200+100)+400=700(г).

Обозначим через х(г) массу шерсти, израсходованную на шарф. Тогда на шапку будет израсходовано (х-100)г, а на свитер (х+400)г. Так как на все три вещи израсходовано 1200г, то можно составить уравнение: х+(х-100)+(х+400)=1200. Решив данное уравнение, получим х=300, т.е. если на шарф ушло 300г шерсти, то на шапку – 300-100=200(г), а на свитер 300+400=700(г).

Обозначим через х(г) массу шерсти, израсходованную на свитер. Тогда на шарф будет израсходовано (х-400)г, а на шапку ((х-400)-100)г. Так как на три вещи израсходовано 1200г, то можно составить уравнение: х+(х-400)+((х-400)-100)=1200. Решив данное уравнение, получим х=700(г), т.е. если на свитер ушло 700г шерсти, то на шарф – (700-400=300)г, а на шапку ((700-400)-100=200)г.

• Этапы решения текстовой задачи и приемы их выполнения

Деятельность по решению задачи арифметическим методом включает следующие основные этапы: анализ задачи; поиск и составление плана решения задачи; осуществление плана решения задачи; проверка решения задачи.

Название этапа Цель этапа Приемы выполнения этапа
Анализ задачи Понять в целом ситуацию, описанную в задаче; Выделить условия и требования; Назвать известные и искомые объекты, выделить все отношения (зависимости) между ними • Задать специальные вопросы и ответить на них • Перефразировка текста задачи • Построение вспомогательной модели задачи
Поиск и составление плана решения задачи Установить связь между данными и искомыми объектами, наметить последовательность действий • Разбор задачи по тексту (от условия к требованию; от требования к условию) • Разбор по вспомогательной модели
Осуществление плана решения задачи Найти ответ на требование задачи, выполнив все действия в соответствии с планом • Запись решения по действиям (с пояснением; без пояснения; с вопросами) • Запись решения в виде выражения
Проверка решения задачи Установить правильность или ошибочность выполненного решения • Установление соответствия между результатом и условиями задачи • Решение задачи другим способом

Рассмотрим подробнее приемы выполнения этапов решения задачи.

Анализ задачи.

Первый прием - Специальные вопросы.

• О чем задача, т.е. о каком процессе (явлении, ситуации) идет речь в задаче, какими величинами характеризуется этот процесс?

• Что в задаче известно о названных величинах?

• Что неизвестно о названных величинах?

• Что требуется найти в задаче?

О чем задача? Задача о движении двух мальчиков и собаки. Она характеризуется для каждого участника движения скоростью, временем и пройденным расстоянием.

Что известно о названных величинах? В задаче известно, что: а) мальчики идут в одном направлении; б) до начала движения расстояние между мальчиками было 2км; в) скорость первого мальчика (идущего впереди) 4 км/ч; г) скорость второго мальчика (идущего позади) 5км/ч; д) скорость, с которой бежит собака, 8км/ч; е) время движения собаки – это время, за которое второй мальчик догонит первого.

Что неизвестно о названных величинах? В задаче неизвестно: за какое время второй мальчик догонит первого; с какой скоростью происходит сближение мальчиков; расстояние, которое пробежала собака.

Что требуется найти в задаче? В задаче требуется найти, какое расстояние пробежит собака за время, за которое второй мальчик догонит первого.

Второй прием – Перефразировка текста задачи.

Данный прием заключается в замене описания некоторой ситуации в задаче другим, сохраняющим все отношения, связи, качественные характеристики, но более явно их выражающим. Это достигается в результате отбрасывания несущественной, излишней информации, замены описания некоторых понятий соответствующими терминами и, наоборот; преобразование текста задачи в форму, удобную для поиска плана решения. Особенно эффективно использование данного приема в сочетании с разбиением текста на смысловые части. Результатом перефразировки должно быть выделение основных ситуаций.

Третий прием – Построение вспомогательной модели задачи.

Вспомогательная модель задачи служит формой фиксации анализа текстовой задачи и является основным средством поиска плана ее решения. В качестве вспомогательной модели задачи выступают: рисунок или схематический рисунок; чертеж или схематический чертеж; таблица. Чаще всего используют схематический чертеж или таблицу.

После построения вспомогательной модели необходимо проверить:

• Все ли объекты задачи и их величины показаны на модели.

• Все ли отношения между ними отражены.

• Все ли числовые данные приведены.

• Есть ли вопрос (требование) и правильно ли он указывает искомое?

Пример. Построим вспомогательную модель рассмотренной выше задачи. В данной задаче вспомогательной моделью целесообразно выбрать таблицу.

Участники движения Скорость Время Расстояние
Первый мальчик 4км/ч Одинаковое -
Второй мальчик 5км/ч На 2 км больше 1-го мальчика
Собака 8км/ч ?км

Поиск и составление плана решения задачи.

Первый прием – Разбор задачи по тексту.

Разбор задачи проводится виде цепочки рассуждений, которая может начинаться как от данных задачи, так и от ее вопросов.

При разборе задачи от данных к вопросу в тексте задачи выделяется два данных и на основе знания связи между ними (полученные при анализе задачи) определяется, какое неизвестное может быть найдено по этим данным, и с помощью какого арифметического действия. Затем, считая это неизвестное данным, вновь выделяется два взаимосвязанных данных и определяется неизвестное, которое может быть найдено по ним и с помощью какого действия и т.д. Данный процесс продолжается до тех пор, пока не будет выяснено, какое действие приводит к получению искомого в задаче объекта.

Разбор текста задачи от данных к вопросу:

Известно, что 6ч турист проехал на поезде, который шел со скоростью 56км/ч. По этим данным можно узнать расстояние, которое проехал турист за 6ч – для этого нужно скорость умножить на время (566=336). Зная пройденную часть расстояния и то, что оставшееся расстояние в 4 раза больше, можно найти, чему оно равно (3664=1344). Зная, сколько километров турист проехал и сколько ему осталось ехать. Можем найти весь путь, выполнив сложение найденных расстояний (336+1344=1680). Итак, первым действием будем находить расстояние, которое турист проехал на поезде, вторым действием – расстояние, которое ему осталось проехать и третьим – весь путь туриста.

При разборе задачи от вопроса к данным нужно обратить внимание на вопрос задачи и установить (на основе информации, полученной при анализе задачи), что достаточно узнать для ответа на этот вопрос. Для этого нужно обратиться к условиям и выяснить, есть ли для этого необходимые данные. Если таких данных нет или есть только одно данное, то установить, что нужно знать, что бы найти недостающее данное (недостающие данные), и т.д. Потом составляется план решения.

Пример. Решим задачу, описанную в предыдущем примере, используя данный прием.

Разбор текста задачи от вопроса к данным:

В задаче требуется узнать весь путь туриста, который состоит из двух частей. Значит, чтобы найти ответ на вопрос задачи достаточно знать, сколько километров турист проехал, и сколько километров ему осталось проехать. И то и другое неизвестно. Чтобы найти пройденный путь, достаточно знать время и скорость, с которой ехал турист – это в задаче известно. Умножив скорость на время, узнаем путь, который турист проехал (566=336). Оставшийся путь можно найти, увеличив пройденный путь в 4 раза (3364=1344). Итак, вначале можно узнать пройденный путь, затем оставшийся, после чего сложением найти весь путь туриста.

Второй прием – Поиск плана решения задачи по вспомогательной модели.

Пример. Покажем, как можно осуществить поиск плана решения задачи о движении мальчиков и собаки (см. выше) по вспомогательной модели (таблице).

Из таблицы видно, что для того, чтобы найти расстояние, которое пробежала собака достаточно знать ее скорость и время движения. Скорость известна, а время движения собаки такое же, как у мальчиков. Чтобы найти это время, нужно знать какое расстояние было между мальчиками и скорость их сближения. Расстояние известно, а скорость сближения мальчиков можно найти, так как скорость каждого известна. Скорость сближения мальчиков найдем разностью, так как они двигаются в одном направлении (5-4=1). Затем узнаем, сколько времени понадобилось, чтобы второй мальчик догнал первого, для этого расстояние между мальчиками разделим на скорость их сближения (21=2). И наконец, мы можем узнать расстояние, которое пробежала собака за это время, для этого ее скорость умножим на время движения собаки (82=16). Итак, вначале найдем скорость движения мальчиков, затем время движения всех участников (оно одинаковое), а потом расстояние, которое пробежала собака.

Осуществление плана решения задачи.

Первый прием – Запись плана решения задачи по действиям (с пояснениями, без пояснений, с вопросами).

Пример. Приведем различные приемы записи решения задачи про движение туриста.

• 566=336(км) – турист проехал за 6ч

• 3364=1344(км) – осталось проехать туристу

• 336+1344=1680(км) – весть путь туриста

• Сколько километров проехал турист на поезде? 566=336(км)

• Сколько километров осталось проехать туристу? 3364=1344(км)

• Каков весь путь туриста? 336+1344=1680(км)

Второй прием – Запись решения задачи в виде выражения.

Запись решения в этой форме осуществляется поэтапно. Сначала записываются отдельные шаги в соответствии с планом, затем составляется выражение и находится его значение. Так как обычно это значение записывают, поставив после числового выражения знак равенства, то запись становится числовым равенством, в левой части которого – выражение, составленное по условию задачи, а в правой – его значение, которое позволяет сделать вывод о выполнении требований задачи.

Пример. Рассмотрим предыдущую задачу.

• 566 (км) – турист проехал за 6ч

• 5664 (км) – осталось проехать туристу

• 566+5664 =1680(км) – весть путь туриста

Пояснения к действиям можно не записывать, а давать их в устной форме, тогда запись решения задачи примет вид: 566+5664 =1680(км).

Проверка решения задачи.

Прием первый – Установление соответствия между результатом и условиями задачи.

Для этого найденный результат вводится в текст задачи и на основе рассуждений устанавливается, не возникает ли противоречия.

Пример. Проверим, используя данный прием, правильность решения задачи о движении туриста.

Мы установили, что турист должен был проехать 180км. Пусть этот результат будет одним из данных задачи. Как известно, за 6ч турист проедет 336км (56=336) и ему останется проехать 1680-336=1344(км). Согласно условию задачи это расстояние должно быть в 4 раза больше того, что он проехал на поезде. Разделив 1344 на 336, получим 4. Следовательно, противоречий с условиями задачи не возникает. Значит, задача решена верно.

Второй прием – Решение задачи другим способом.

Пусть при решении каким-то способом получен некоторый результат. Если решение задачи другим способом приводит к тому же результату, то можно сделать вывод о том, что задача решена верно. Например, если задача решена арифметическим методом, то правильность ее решения можно проверить, решив задачу алгебраическим методом.

Не следует думать, что без проверки нет решения текстовой задачи. Правильность ее решения обеспечивается, прежде всего, четкими и логичными рассуждениями на всех других этапах решения задачи.

Рассматриваемые в таких задачах величины состоят из частей. В некоторых из них части представлены явно, в других эти части надо суметь выделить, приняв подходящую величину за 1 часть и определить, из каких таких частей состоят другие величины, о которых идет речь в задаче.

При решении таких задач арифметическим методом чаще всего используют вспомогательные модели, выполненные с помощью отрезков или прямоугольников.

Решение: В задаче речь идет о массе ягод и массе сахара, необходимых для варки варенья. Известно, что всего ягод 10кг и что на две части ягод надо три части сахара. Требуется найти массу сахара, чтобы сварить варенье из 10кг ягод.

Вспомогательная модель будет иметь вид:

По условию задачи 10кг ягод составляют 2 части, следовательно, на 1 часть приходится 102=5(кг). Сахара надо взять три таких части, получаем, что 53=15(кг).

В рассмотренной выше задаче части представлены явно. Рассмотрим пример задачи, в которой части нужно суметь выделить.

Решение: В задаче речь идет о двух кусках ткани одинаковой длины. От первого отрезали 18м, от второго 25м. После этого в первом куске осталось вдвое больше ткани, чем во втором. Требуется найти первоначальную длину кусков ткани.

Вспомогательная модель будет иметь вид:

• Решение задач на движение

Задачи на движение решаются на основании зависимости между тремя величинами, характеризующими движение: скоростью, расстоянием и временем. Во всех случаях речь идет о равномерном прямолинейном движении.

Итак, движение, рассматриваемое в текстовых задачах, характеризуют три величины: пройденный путь (расстояние) (s), скорость (v), время (t). Основное отношение (зависимость) между ними выражается формулой: s=vt.

Читайте также: