Реферат на тему техническое обслуживание и ремонт двигателя

Обновлено: 30.06.2024

Техническое обслуживание проводят на месте установки без демонтажа и разборки. В объем ТО входят: очистка электродвигателя от пыли и грязи; проверка исправности заземления, крепления электродвигателя и его элементов, степени нагрева и уровня вибрации и шума, надежности контактных соединений; измерение сопротивления изоляции и устранение обнаруженных неисправностей. У двигателей с фазным ротором проверяют состояние контактных колец и щеточного механизма.

Сроки ТО электродвигателей зависят от характеристики помещений и рабочих машин, с которыми они работают. ТО электродвигателей серий 4А, Д, АО2СХ проводят 1 раз в три месяца, кроме электродвигателей, установленных на зернодробилках, молотилках, прессах, измельчителях кормов (пыльные влажные помещения), для которых ТО осуществляют 1 раз в полтора месяца. Такую же периодичность обслуживания имеют электродвигатели, работающие на открытом воздухе или под навесом. Для двигателей молочных вакуум-насосов и пастеризаторов (особо сырые помещения) ТО выполняют 1 раз в два месяца.

Периодичность ТО для электродвигателей серии АО2, установленных в сухих и влажных, а также сырых помещениях, для электродвигателей, используемых в пыльных и особо сырых помещениях, определена в соответствии с ППРЭ - системе планово-предупредительных ремонтов электрооборудования.

Текущий ремонт (ТР) электродвигателей

Проводят либо на месте их установки, либо на пункте технического обслуживания, в мастерской и т.д. Текущие ремонты на месте установки электрооборудования выполняют специализированные выездные бригады.

В соответствии с ППРЭ в объем текущего ремонта электродвигателя входят: очистка от пыли и грязи, отсоединение от питающих проводов и заземления, демонтаж на месте установки и разборка, очистка обмотки, измерение сопротивления изоляции обмотки и при необходимости сушка обмотки, промывка подшипников, проверка и их замена при необходимости, ремонт или замена поврежденных выводных проводов обмотки и клеммной панели, коробки выводов, сборка, смазка подшипников, испытание на холостом ходу, покраска и, при необходимости, установка электродвигателя на рабочее место, центровка с рабочей машиной и испытание под нагрузкой.

У электродвигателей с фазным ротором проверяют состояние контактных колец, при необходимости выполняют их проточку и шлифовку, регулируют щеточный механизм и, если нужно, заменяют щетки.

При сушке обмоток электродвигателя удаляется влага из пор и трещин обмотки, но сами трещины и поры в лаковой пленке сохраняются. Значит, сохраняется вероятность довольно быстрого увлажнения обмотки электродвигателя при его "дыхании" в процессе эксплуатации, а следовательно, и вероятность пробоя. Устранение пор и трещин лаковой пленки проводников обмотки позволяет избежать ее увлажнения на длительный срок. Трещины и поры могут быть устранены только пропиткой обмотки в лаке.

Пропитка обмотки повышает ее надежность, но усложняет технологию ремонта, требует наличия пропиточных ванн, емкостей для хранения лака и т.д. Кроме того, увеличивается время нахождения электродвигателя в ремонте, оно может оказаться больше времени простоя между рабочими циклами. В этом случае потребуется замена ремонтируемого электродвигателя на резервный. Поэтому необходимо в каждом конкретном случае перед текущим ремонтом проводить тщательную диагностику состояния электродвигателя и на основе полученных данных решать вопрос об объеме и месте проведения ремонта.

Периодичность текущих ремонтов электродвигателей серий 4А, Д, АО2СХ в соответствии с ППРЭ составляет 24 месяца, за исключением электродвигателей, установленных на молочных вакуум-насосах и пастеризаторах в особо сырых помещениях, в которых влажность превышает 98%, в этом случае периодичность текущих ремонтов составляет 18 месяцев.

Периодичность ТР электродвигателей серии А02 составляет 24 месяца для сухих, влажных (влажность до 75%) и сырых помещений и 18 месяцев для пыльных и особо сырых помещений (влажность до 98%), исключая электродвигатели зернодробилок, молотилок, прессов, измельчителей кормов, для которых периодичность-12 месяцев. Такую же периодичность ТР имеют электродвигатели серии АО2, работающие на открытом воздухе или под навесом.

Система ППРЭ определяет периодичность обслуживания и ремонта применительно к помещению и рабочей машине, для которых электродвигатель используют. Влияние режима работы электродвигателя на изменение характеристики изоляции обмотки при определении периодичности ТО и ТР не учитывается. Кроме того, ППРЭ не учитывает срок эксплуатации электродвигателя. В соответствии с ППРЭ одинаковую периодичность имеют новый электродвигатель, впервые подвергавшийся ТО или ТР, и электродвигатель, уже неоднократно прошедший ТО и ТР. Не оговаривается периодичность ТО и ТР электродвигателей, установленных на рабочие машины после капитального ремонта или модернизации.

В этих условиях возрастает значение диагностики электрооборудования и роль руководителей электротехнической службы хозяйства при составлении месячных и годовых графиков ТО и ТР электрооборудования.

Качественно выполненная диагностика электрооборудования хозяйства позволит скорректировать сроки проведения технического обслуживания и текущего ремонта электрооборудования. При помощи диагностики можно выявить и вывести из работы для ремонта (модернизации) или для списания электрооборудование, выработавшее свой ресурс и имеющее предельно допустимые параметры надежности. В результате ликвидируется опасность внезапного отказа электрооборудования и аварийной остановки технологического процесса.

Модернизация своевременно выведенного в ремонт электрооборудования позволит повысить его надежность и, как следствие, обеспечить непрерывность технологического процесса сельскохозяйственного производства. В результате диагностики может быть принято решение об удлинении сроков между проведением ТО и ТР для электрооборудования, имеющего высокие параметры надежности, что позволит экономить затраты на проведение технического обслуживания электрооборудования.

Рассмотрим меры повышения эксплуатационной надежности электродвигателей.

Основные причины выхода из строя электродвигателей, используемых в сельскохозяйственном производстве: несоответствие тяжелым условиям среды; несоответствие или отсутствие защиты от неполнофазных режимов работы и аварийных перегрузок; недостаточный уровень эксплуатации.

Для устранения первой причины принимают следующие меры: выпускают электродвигатели повышенной надежности; модернизируют электродвигатели старых серий при ремонте; выносят электродвигатели за пределы влажной агрессивной среды.

Повышая надежность электродвигателей, заводы выпускают узкоспециализированные исполнения для условий сельскохозяйственного производства. Электродвигатели второй серии сельскохозяйственного исполнения АО2СХ хорошо себя оправдали в эксплуатации.

При работе в животноводческих помещениях срок службы электродвигателей сельскохозяйственного исполнения достигает 6. 8 лет, а второй серии общепромышленного исполнения - всего 1. 2 года.

В четвертой серии электродвигателей общепромышленного исполнения использованы те же изоляционные и активные материалы, что и в двигателях АО2СХ. Поэтому электродвигатели серий 4А и А02СХ работают с одинаковой надежностью. Отличие выпускаемых электродвигателей специализированного исполнения 4АСХ заключается только в анодировании или никелировании крепежных частей двигателя и более качественной окраске.

Модернизированные электродвигатели четвертой серии 4АМ обладают повышенной надежностью. Отечественная электропромышленность совместно со странами социалистического содружества приступила к выпуску новой серии двигателей АИ (интернациональной), характеристики и надежность которых еще более повышены.

Таким образом, современные электродвигатели общепромышленного исполнения относятся к универсальным, так как их можно использовать в особо сырых, с химически активной средой животноводческих помещениях, в которых содержание влажности составляет 80. 100%, аммиака - 2. 140 мг/м3, сероводорода - 10. 90 и углекислого газа - 0,03. 0,88 мг/м3, запыленность - до 240 г/м3.

В сельскохозяйственном производстве используют разнообразные серии электродвигателей, в том числе и старые - А, АО и А2, АО2.

При капитальных и текущих ремонтах старые серии электродвигателей желательно модернизировать. Обычно электромашиностроительные заводы при изготовлении электродвигателей применяют двукратную пропитку обмоток. Электроремонтные заводы иногда отступают от технологии ремонта и применяют только однократную пропитку обмотки, что заметно снижает надежность двигателей. В качестве простейшей модернизации электродвигателей при их ремонте можно считать применение не двух, - а трехкратной пропитки.

Трехкратная пропитка обмоток лаком, модифицированным ингибиторами

Это предложение В.И. Чарыкова - первый вид простейшей модернизации, повышающей надежность электродвигателей при текущем ремонте. Ингибитор, диффундируя в лаковую пленку и заполняя ее поры, препятствует проникновению влаги. Для исследований применяли хроматные и БДН ингибиторы, разработанные ЧИМЭСХ под руководством О.И. Голяницкого. Лучшие результаты были получены при использовании БДН ингибитора - это смесь диэтиланилина, бензотриазола и паранитрофенола, растворенная в ацетоне. При пропитке обмотки использовали эмаль ГФ-92ХС, модифицированную путем добавления 6% (от массы эмали) ингибитора.

Лобовые части обмотки статора обрабатывают краскораспылителем или окунают в специальные растворы (электродвигатели малой мощности).

Экспериментальные данные показали, что после двух месяцев эксплуатации сопротивление изоляции обмоток электродвигателей, пропитанных модифицированной эмалью, оказалось в 4 раза выше, чем сопротивление изоляции электродвигателей, пропитанных немодифицированной эмалью ГФ-92ХС.

Капсулирование лобовых частей электродвигателей

Это второй вид модернизации старых серий. Предложенный ВНИИ механизации и электрификации сельского хозяйства Нечерноземной зоны РФ способ капсулирования обмоток при помощи эпоксидных смол ввиду сложности технологии капсулирования можно применять только на ремонтных заводах при капитальных ремонтах двигателей.

Кроме того, следует учесть, что двигатель с капсулированной эпоксидным компаундом обмоткой становится неремонтопригодным.

Предложенный А.Е. Немировским способ капсулирования лобовых частей обмоток при помощи эластомеров на основе синтетического каучука применяют при текущих ремонтах электродвигателей даже в мастерских совхозов и колхозов.

При эксплуатации капсулированных электродвигателей в течение стойлового периода сопротивление изоляции обмоток было не ниже 500 МОм. Исследования показали, что срок службы капсулированных электродвигателей достигает 8 лет в тяжелых условиях животноводческих помещений. Опыт эксплуатации электродвигателей показывает необходимость усиления изоляции выводных концов при помощи липкой полихлорвиниловой ленты, лака или капсулирования.

В.В. Усовым предложено применение лобовых охладителей обмоток мощных электродвигателей старых серий

Суть способа заключается в нанесении на лобовые части обмотки слоя изоляционного лака. Затем на обмотку укладывают алюминиевые сегменты, плотно охватывающие обмотку и плотно прилегающие к пакету статора. В результате герметизируется (капсулируется) не только обмотка, но и резко возрастает ее теплоотдача. Опыты показали, что срок службы электродвигателей также может достигать 8 лет, при этом мощность двигателя может быть увеличена на одну ступень. Недостаток способа заключается в его сложности.

Для повышения эксплуатационной надежности электродвигателей практиковали выносить их в специальные помещения, расположенные рядом с фермами, что требует больших дополнительных расходов кабельной продукции. Поэтому данный способ повышения эксплуатационной надежности целесообразно осуществлять при строительстве новых объектов, заранее учитывая при проектировании технологию производства, расход электротехнических материалов, надежность электрооборудования и экономические показатели.

При монтаже электродвигателей в помещении необходимо учитывать обеспечение надежности их работы. Так, существующие системы крышной вентиляции животноводческих комплексов по откорму крупного рогатого скота в основном выполнены таким образом, что на электродвигатель постоянно стекает влага, поступающая в помещение из окружающей среды через вентиляционную трубу, отчего наблюдается значительный выход электродвигателей из строя. Смещение электродвигателя относительно вентиляционной трубы (вентилятора) резко сократило аварийность данных электродвигателей.

К числу эффективных профилактических мероприятий, предотвращающих возможное увлажнение изоляции, относится создание микроклимата внутри оболочки электродвигателя путем подогрева обмоток электродвигателя в период его нерабочего состояния. При токовом методе подогрева и сушке электродвигателей непосредственно на рабочем месте обмотки подключают через: конденсаторы (рис.1, а), однотиристорное устройство (рис.1, б), двухтиристорное устройство (рис.1, с).

Рисунок 1. - Принципиальные схемы подогрева обмоток электродвигателя при помощи:

а - конденсаторов С; 6 - однотиристорного устройства; в - двухтиристорного устройства.

Обмотки могут быть подключены и к вторичной обмотке понижающего трансформатора, например сварочного. Ток в обмотке электродвигателя должен быть таким, чтобы температура электродвигателя превышала температуру окружающей среды на 5. 10° С, что препятствует проникновению внутрь изоляции влаги и ее агрессивных примесей. При таком подогреве электродвигателя улучшается коэффициент мощности электроустановки фермы в целом. Необходимо отметить, что при несколько завышенной мощности (на 25. 30%) электродвигателя и подключении батареи конденсаторов к клеммам он может не отключаться от сети в случае потери фазы и работать в режиме однофазного питания, сохраняя непрерывный технологический процесс (например, доение).

Кроме того, индивидуальные конденсаторные батареи, соединенные в звезду, можно использовать в качестве элемента реле защиты от потери фазы для двигателей, однофазный режим которых недопустим (рис.52). Емкость фаз индивидуальных батарей конденсаторов (ИБК), соединенных треугольником, для электродвигателей единой серии основного общепромышленного исполнения мощностью до 10 кВт определяют из

Рисунок 2. - Схема с использованием конденсаторов для защиты от потери фазы.

следующих выражений: С =1,3(1 + + 2Рн); С = 3,0 (1+Рн); С = 3,7(1 + + Рн), С = 3,5(3 + РН) при частоте вращения соответственно 3000; 1500; 1000; 750 об/мин.

При мощности электродвигателей выше 10 кВт С=10 + РН при частоте вращения 3000, 1500 и 1000 об/мин и С = 30 + 2Рн - при 750 об/мин (Рн измеряют в киловаттах, С - в микрофарадах).

Емкость фаз ИБК для электродвигателей исполнения А02СХ должна быть увеличена на 35% по сравнению с вычисленной по приведенным выражениям. При использовании ИБК в период нерабочих пауз необходимо соблюдать особую предосторожность, так как электродвигатель хотя и неподвижен, но находится под напряжением. Кроме того, необходимо периодически контролировать емкость ИБК, а также эффективность компенсации коэффициента мощности.

Периодичность противосыростных мероприятий зависит от места установки электрооборудования и его исполнения.

При применении тиристорных устройств по двум фазным проводам протекает несинусоидальный ток. Исследованиями установлено, что при токе нагрева от однополярного устройства, составляющем 0,1% номинального тока питающего трансформатора, в смежных электроприемниках начинают наблюдаться вибрации, дребезжание систем контакторов и пускателей. При больших токах нагрева наблюдаются отказы контакторов, пускателей и реле, а также ослабление крепления и нарушение центровки электродвигателей.

В двухтиристорных устройствах импульсы тока двухполярны и в составляющих тока нагрева отсутствуют четные гармоники и постоянная составляющая. Поэтому даже при токе нагрева, соизмеримом с номинальным током питающего трансформатора, в режимах работы смежных электроприемников не наблюдается отрицательных явлений. Нормирование качества электроэнергии у приемников зависит от коэффициента несинусоидальности.

Одно из главных условий долговечной работы электрических машин - выбор аппаратуры управления электродвигателями и их защиты в соответствии с Правилами устройства электроустановок.

Список использованных источников

2. Ерошенко Г.П. Пястолов А.А. Курсовое и дипломное проектирование по эксплуатации электрооборудования - М.: Агропромиздат, 1988 - 160 с.

Техническое обслуживание (ТО) электродвигателей

Техническое обслуживание проводят на месте установки без демонтажа и разборки. В объем ТО входят: очистка электродвигателя от пыли и грязи; проверка исправности заземления, крепления электродвигателя и его элементов, степени нагрева и уровня вибрации и шума, надежности контактных соединений; измерение сопротивления изоляции и устранение обнаруженных неисправностей. У двигателей с фазным ротором проверяют состояние контактных колец и щеточного механизма.

Сроки ТО электродвигателей зависят от характеристики помещений и рабочих машин, с которыми они работают. ТО электродвигателей серий 4А, Д, АО2СХ проводят 1 раз в три месяца, кроме электродвигателей, установленных на зернодробилках, молотилках, прессах, измельчителях кормов (пыльные влажные помещения), для которых ТО осуществляют 1 раз в полтора месяца. Такую же периодичность обслуживания имеют электродвигатели, работающие на открытом воздухе или под навесом. Для двигателей молочных вакуум-насосов и пастеризаторов (особо сырые помещения) ТО выполняют 1 раз в два месяца.

Периодичность ТО для электродвигателей серии АО2, установленных в сухих и влажных, а также сырых помещениях, для электродвигателей, используемых в пыльных и особо сырых помещениях, определена в соответствии с ППРЭ – системе планово-предупредительных ремонтов электрооборудования.

Текущий ремонт (ТР) электродвигателей

Проводят либо на месте их установки, либо на пункте технического обслуживания, в мастерской и т.д. Текущие ремонты на месте установки электрооборудования выполняют специализированные выездные бригады.

В соответствии с ППРЭ в объем текущего ремонта электродвигателя входят: очистка от пыли и грязи, отсоединение от питающих проводов и заземления, демонтаж на месте установки и разборка, очистка обмотки, измерение сопротивления изоляции обмотки и при необходимости сушка обмотки, промывка подшипников, проверка и их замена при необходимости, ремонт или замена поврежденных выводных проводов обмотки и клеммной панели, коробки выводов, сборка, смазка подшипников, испытание на холостом ходу, покраска и, при необходимости, установка электродвигателя на рабочее место, центровка с рабочей машиной и испытание под нагрузкой.

У электродвигателей с фазным ротором проверяют состояние контактных колец, при необходимости выполняют их проточку и шлифовку, регулируют щеточный механизм и, если нужно, заменяют щетки.

При сушке обмоток электродвигателя удаляется влага из пор и трещин обмотки, но сами трещины и поры в лаковой пленке сохраняются. Значит, сохраняется вероятность довольно быстрого увлажнения обмотки электродвигателя при его "дыхании" в процессе эксплуатации, а следовательно, и вероятность пробоя. Устранение пор и трещин лаковой пленки проводников обмотки позволяет избежать ее увлажнения на длительный срок. Трещины и поры могут быть устранены только пропиткой обмотки в лаке.

Пропитка обмотки повышает ее надежность, но усложняет технологию ремонта, требует наличия пропиточных ванн, емкостей для хранения лака и т.д. Кроме того, увеличивается время нахождения электродвигателя в ремонте, оно может оказаться больше времени простоя между рабочими циклами. В этом случае потребуется замена ремонтируемого электродвигателя на резервный. Поэтому необходимо в каждом конкретном случае перед текущим ремонтом проводить тщательную диагностику состояния электродвигателя и на основе полученных данных решать вопрос об объеме и месте проведения ремонта.

Периодичность текущих ремонтов электродвигателей серий 4А, Д, АО2СХ в соответствии с ППРЭ составляет 24 месяца, за исключением электродвигателей, установленных на молочных вакуум-насосах и пастеризаторах в особо сырых помещениях, в которых влажность превышает 98%, в этом случае периодичность текущих ремонтов составляет 18 месяцев.

Периодичность ТР электродвигателей серии А02 составляет 24 месяца для сухих, влажных (влажность до 75%) и сырых помещений и 18 месяцев для пыльных и особо сырых помещений (влажность до 98%), исключая электродвигатели зернодробилок, молотилок, прессов, измельчителей кормов, для которых периодичность-12 месяцев. Такую же периодичность ТР имеют электродвигатели серии АО2, работающие на открытом воздухе или под навесом.

Система ППРЭ определяет периодичность обслуживания и ремонта применительно к помещению и рабочей машине, для которых электродвигатель используют. Влияние режима работы электродвигателя на изменение характеристики изоляции обмотки при определении периодичности ТО и ТР не учитывается. Кроме того, ППРЭ не учитывает срок эксплуатации электродвигателя. В соответствии с ППРЭ одинаковую периодичность имеют новый электродвигатель, впервые подвергавшийся ТО или ТР, и электродвигатель, уже неоднократно прошедший ТО и ТР. Не оговаривается периодичность ТО и ТР электродвигателей, установленных на рабочие машины после капитального ремонта или модернизации.

В этих условиях возрастает значение диагностики электрооборудования и роль руководителей электротехнической службы хозяйства при составлении месячных и годовых графиков ТО и ТР электрооборудования.

Качественно выполненная диагностика электрооборудования хозяйства позволит скорректировать сроки проведения технического обслуживания и текущего ремонта электрооборудования. При помощи диагностики можно выявить и вывести из работы для ремонта (модернизации) или для списания электрооборудование, выработавшее свой ресурс и имеющее предельно допустимые параметры надежности. В результате ликвидируется опасность внезапного отказа электрооборудования и аварийной остановки технологического процесса.

Модернизация своевременно выведенного в ремонт электрооборудования позволит повысить его надежность и, как следствие, обеспечить непрерывность технологического процесса сельскохозяйственного производства. В результате диагностики может быть принято решение об удлинении сроков между проведением ТО и ТР для электрооборудования, имеющего высокие параметры надежности, что позволит экономить затраты на проведение технического обслуживания электрооборудования.

Рассмотрим меры повышения эксплуатационной надежности электродвигателей.

Основные причины выхода из строя электродвигателей, используемых в сельскохозяйственном производстве: несоответствие тяжелым условиям среды; несоответствие или отсутствие защиты от неполнофазных режимов работы и аварийных перегрузок; недостаточный уровень эксплуатации.

Для устранения первой причины принимают следующие меры: выпускают электродвигатели повышенной надежности; модернизируют электродвигатели старых серий при ремонте; выносят электродвигатели за пределы влажной агрессивной среды.

Повышая надежность электродвигателей, заводы выпускают узкоспециализированные исполнения для условий сельскохозяйственного производства. Электродвигатели второй серии сельскохозяйственного исполнения АО2СХ хорошо себя оправдали в эксплуатации.

При работе в животноводческих помещениях срок службы электродвигателей сельскохозяйственного исполнения достигает 6. 8 лет, а второй серии общепромышленного исполнения - всего 1. 2 года.

В четвертой серии электродвигателей общепромышленного исполнения использованы те же изоляционные и активные материалы, что и в двигателях АО2СХ. Поэтому электродвигатели серий 4А и А02СХ работают с одинаковой надежностью. Отличие выпускаемых электродвигателей специализированного исполнения 4АСХ заключается только в анодировании или никелировании крепежных частей двигателя и более качественной окраске.

Модернизированные электродвигатели четвертой серии 4АМ обладают повышенной надежностью. Отечественная электропромышленность совместно со странами социалистического содружества приступила к выпуску новой серии двигателей АИ (интернациональной), характеристики и надежность которых еще более повышены.

Таким образом, современные электродвигатели общепромышленного исполнения относятся к универсальным, так как их можно использовать в особо сырых, с химически активной средой животноводческих помещениях, в которых содержание влажности составляет 80. 100%, аммиака - 2. 140 мг/м3, сероводорода - 10. 90 и углекислого газа - 0,03. 0,88 мг/м3, запыленность - до 240 г/м3.

В сельскохозяйственном производстве используют разнообразные серии электродвигателей, в том числе и старые - А, АО и А2, АО2.

При капитальных и текущих ремонтах старые серии электродвигателей желательно модернизировать. Обычно электромашиностроительные заводы при изготовлении электродвигателей применяют двукратную пропитку обмоток. Электроремонтные заводы иногда отступают от технологии ремонта и применяют только однократную пропитку обмотки, что заметно снижает надежность двигателей. В качестве простейшей модернизации электродвигателей при их ремонте можно считать применение не двух, - а трехкратной пропитки.

Трехкратная пропитка обмоток лаком, модифицированным ингибиторами

Это предложение В.И. Чарыкова - первый вид простейшей модернизации, повышающей надежность электродвигателей при текущем ремонте. Ингибитор, диффундируя в лаковую пленку и заполняя ее поры, препятствует проникновению влаги. Для исследований применяли хроматные и БДН ингибиторы, разработанные ЧИМЭСХ под руководством О.И. Голяницкого. Лучшие результаты были получены при использовании БДН ингибитора - это смесь диэтиланилина, бензотриазола и паранитрофенола, растворенная в ацетоне. При пропитке обмотки использовали эмаль ГФ-92ХС, модифицированную путем добавления 6% (от массы эмали) ингибитора.

Лобовые части обмотки статора обрабатывают краскораспылителем или окунают в специальные растворы (электродвигатели малой мощности).

Экспериментальные данные показали, что после двух месяцев эксплуатации сопротивление изоляции обмоток электродвигателей, пропитанных модифицированной эмалью, оказалось в 4 раза выше, чем сопротивление изоляции электродвигателей, пропитанных немодифицированной эмалью ГФ-92ХС.

Капсулирование лобовых частей электродвигателей

Это второй вид модернизации старых серий. Предложенный ВНИИ механизации и электрификации сельского хозяйства Нечерноземной зоны РФ способ капсулирования обмоток при помощи эпоксидных смол ввиду сложности технологии капсулирования можно применять только на ремонтных заводах при капитальных ремонтах двигателей.

Кроме того, следует учесть, что двигатель с капсулированной эпоксидным компаундом обмоткой становится неремонтопригодным.

Предложенный А.Е. Немировским способ капсулирования лобовых частей обмоток при помощи эластомеров на основе синтетического каучука применяют при текущих ремонтах электродвигателей даже в мастерских совхозов и колхозов.

При эксплуатации капсулированных электродвигателей в течение стойлового периода сопротивление изоляции обмоток было не ниже 500 МОм. Исследования показали, что срок службы капсулированных электродвигателей достигает 8 лет в тяжелых условиях животноводческих помещений. Опыт эксплуатации электродвигателей показывает необходимость усиления изоляции выводных концов при помощи липкой полихлорвиниловой ленты, лака или капсулирования.

В.В. Усовым предложено применение лобовых охладителей обмоток мощных электродвигателей старых серий

Суть способа заключается в нанесении на лобовые части обмотки слоя изоляционного лака. Затем на обмотку укладывают алюминиевые сегменты, плотно охватывающие обмотку и плотно прилегающие к пакету статора. В результате герметизируется (капсулируется) не только обмотка, но и резко возрастает ее теплоотдача. Опыты показали, что срок службы электродвигателей также может достигать 8 лет, при этом мощность двигателя может быть увеличена на одну ступень. Недостаток способа заключается в его сложности.

Для повышения эксплуатационной надежности электродвигателей практиковали выносить их в специальные помещения, расположенные рядом с фермами, что требует больших дополнительных расходов кабельной продукции. Поэтому данный способ повышения эксплуатационной надежности целесообразно осуществлять при строительстве новых объектов, заранее учитывая при проектировании технологию производства, расход электротехнических материалов, надежность электрооборудования и экономические показатели.

При монтаже электродвигателей в помещении необходимо учитывать обеспечение надежности их работы. Так, существующие системы крышной вентиляции животноводческих комплексов по откорму крупного рогатого скота в основном выполнены таким образом, что на электродвигатель постоянно стекает влага, поступающая в помещение из окружающей среды через вентиляционную трубу, отчего наблюдается значительный выход электродвигателей из строя. Смещение электродвигателя относительно вентиляционной трубы (вентилятора) резко сократило аварийность данных электродвигателей.

К числу эффективных профилактических мероприятий, предотвращающих возможное увлажнение изоляции, относится создание микроклимата внутри оболочки электродвигателя путем подогрева обмоток электродвигателя в период его нерабочего состояния. При токовом методе подогрева и сушке электродвигателей непосредственно на рабочем месте обмотки подключают через: конденсаторы (рис.1, а), однотиристорное устройство (рис.1, б), двухтиристорное устройство (рис.1, с).


Рисунок 1. - Принципиальные схемы подогрева обмоток электродвигателя при помощи:

а - конденсаторов С; 6 - однотиристорного устройства; в - двухтиристорного устройства.

Обмотки могут быть подключены и к вторичной обмотке понижающего трансформатора, например сварочного. Ток в обмотке электродвигателя должен быть таким, чтобы температура электродвигателя превышала температуру окружающей среды на 5. 10° С, что препятствует проникновению внутрь изоляции влаги и ее агрессивных примесей. При таком подогреве электродвигателя улучшается коэффициент мощности электроустановки фермы в целом. Необходимо отметить, что при несколько завышенной мощности (на 25. 30%) электродвигателя и подключении батареи конденсаторов к клеммам он может не отключаться от сети в случае потери фазы и работать в режиме однофазного питания, сохраняя непрерывный технологический процесс (например, доение).

Кроме того, индивидуальные конденсаторные батареи, соединенные в звезду, можно использовать в качестве элемента реле защиты от потери фазы для двигателей, однофазный режим которых недопустим (рис.52). Емкость фаз индивидуальных батарей конденсаторов (ИБК), соединенных треугольником, для электродвигателей единой серии основного общепромышленного исполнения мощностью до 10 кВт определяют из


Рисунок 2. - Схема с использованием конденсаторов для защиты от потери фазы.

следующих выражений: С =1,3(1 + + 2Рн); С = 3,0 (1+Рн); С = 3,7(1 + + Рн), С = 3,5(3 + РН) при частоте вращения соответственно 3000; 1500; 1000; 750 об/мин.

При мощности электродвигателей выше 10 кВт С=10 + РН при частоте вращения 3000, 1500 и 1000 об/мин и С = 30 + 2Рн - при 750 об/мин (Рн измеряют в киловаттах, С - в микрофарадах).

Емкость фаз ИБК для электродвигателей исполнения А02СХ должна быть увеличена на 35% по сравнению с вычисленной по приведенным выражениям. При использовании ИБК в период нерабочих пауз необходимо соблюдать особую предосторожность, так как электродвигатель хотя и неподвижен, но находится под напряжением. Кроме того, необходимо периодически контролировать емкость ИБК, а также эффективность компенсации коэффициента мощности.

Периодичность противосыростных мероприятий зависит от места установки электрооборудования и его исполнения.

При применении тиристорных устройств по двум фазным проводам протекает несинусоидальный ток. Исследованиями установлено, что при токе нагрева от однополярного устройства, составляющем 0,1% номинального тока питающего трансформатора, в смежных электроприемниках начинают наблюдаться вибрации, дребезжание систем контакторов и пускателей. При больших токах нагрева наблюдаются отказы контакторов, пускателей и реле, а также ослабление крепления и нарушение центровки электродвигателей.

В двухтиристорных устройствах импульсы тока двухполярны и в составляющих тока нагрева отсутствуют четные гармоники и постоянная составляющая. Поэтому даже при токе нагрева, соизмеримом с номинальным током питающего трансформатора, в режимах работы смежных электроприемников не наблюдается отрицательных явлений. Нормирование качества электроэнергии у приемников зависит от коэффициента несинусоидальности.

Одно из главных условий долговечной работы электрических машин – выбор аппаратуры управления электродвигателями и их защиты в соответствии с Правилами устройства электроустановок.

1. Пястолов А.А. Ерошенко Г.П. Эксплуатация электрооборудования – М.: Агропромэнерго, 1990 – 287 с.

2. Ерошенко Г.П. Пястолов А.А. Курсовое и дипломное проектирование по эксплуатации электрооборудования – М.: Агропромиздат, 1988 – 160 с.

Двигатель — это агрегат, преобразующий какой-либо вид энергии в механическую работу. На отечественных легковых автомобилях устанавливаются поршневые двигатели внутреннего сгорания, в которых тепловая энергия, получаемая при сгорании топлива внутри цилиндров двигателя, преобразуется в механическую работу, используемую для передвижения автомобиля. Для обеспечения нормальной работы двигатель внутреннего сгорания имеет следующие механизмы и системы:
- кривошипно-шатунный механизм;

Содержание

1.Введение
2.Устройство КШМ
3. Неисправности КШМ и способы их устранения
4. Инструменты применяемые при выполнении технического обслуживания и ремонта КШМ.
5 .Техническое обслуживание и ремонт КШМ.
6. Техника Безопасности при ремонте

Вложенные файлы: 1 файл

Курсовая.docx

Реферат

Выполнил обучающийся гр. 326

Макаров Е.С.

Проверил преподаватель

Попов С.С.

Содержание

1.Введение

2.Устройство КШМ

3. Неисправности КШМ и способы их устранения

4. Инструменты применяемые при выполнении технического обслуживания и ремонта КШМ.

5 .Техническое обслуживание и ремонт КШМ.

6. Техника Безопасности при ремонте

1. Введение

Двигатель — это агрегат, преобразующий какой-либо вид энергии в механическую работу. На отечественных легковых автомобилях устанавливаются поршневые двигатели внутреннего сгорания, в которых тепловая энергия, получаемая при сгорании топлива внутри цилиндров двигателя, преобразуется в механическую работу, используемую для передвижения автомобиля. Для обеспечения нормальной работы двигатель внутреннего сгорания имеет следующие механизмы и системы:

- кривошипно-шатунный механизм;

- газораспределительный механизм;

- систему охлаждения;

- систему смазки;

- систему питания;

- систему зажигания.

На легковых автомобилях отечественного производства применяются четырехтактные двигатели, а на мотоциклах и моторных лодках — двухтактные

Кривошипно-шатунный механизм преобразует прямолинейное возвратно-поступательное движение поршней, воспринимающих силу давления газов, во вращательное движение коленчатого вала.

Условно элементы КШМ (кривошипно-шатунного механизма) можно разделить на две группы: неподвижные и подвижные.

К неподвижным элементам относятся блок цилиндров, головка блока цилиндров, картер с подшипниками коленчатого вала и поддоном, соединяющие их детали. Все это образует остов двигателя.

Подвижными элементами механизма являются поршень, поршневые кольца, поршневой палец, шатун с подшипниками, коленчатый вал с маховиком, соединяющие их детали.

Поршни, поршневые кольца и поршневые пальцы в сборе образуют поршневую группу.

2. Устройство КШМ.

Схема КШМ:

1.Вкладыш (подшипник скольжения).
2.Втулка верхней головки шатуна.
3.Поршневые кольца.
4.Поршень.
5.Поршневой палец.
6.Стопорное кольцо.
7.Шатун.
8.Коленчатый вал.
9.Крышка шатунного подшипника (крышка вкладыша)

Поршень.

Поршень имеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или на оборот,- нагнетание давления за счет возвратно-поступательного движения.

Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки,где размещаются поршневе кольца (компресионные и маслосъемные ). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удале нию излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки, обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.

Шатун.

Коленчатый вал.

Изготовлен из стали или чугуна высокой прочности. Коленчатый вал состоит из шатунных и коренных шеек, соединенных щеками и вращающихся в подшипниках скольжения. Щеки создают противовес шатунным шейкам. Основная функция коленчатого вала состоит в восприятии усилия от шатуна для преобразования его в крутящий момент. Внутри щек и шеек вала предусмотрены отверстия для подачи под давлением масла системой смазки двигателя.

Маховик устанавливается на конце коленчатого вала. На сегодняшний день находят широкое применение двухмассовые маховики, имеющие вид, упруго соединенных между собой дисков. Зубчатый венец маховика принимает непосредственное участие в запуске двигателя через стартер.

Блок и головка блока цилиндров.

Блок цилиндров и головка блока цилиндра отливается из чугуна ( реже – сплавов алюминия). В блоке цилиндров предусмотрены рубашки охлаждения, постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные - выпускные каналы, специальные резьбовые отверстия для свечей системы зажигания, втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованное крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.

3. Неисправности КШМ и способы их устранения.

Неисправность ступицы шкива коленчатого вала
Ослаблено крепление гидротрансформатора
Ослаблены или пережаты приводные
ремни
Неисправна система выпуска отработавших газов
Трещина в маховике
Увеличен зазор в коренном подшипнике
Увеличен зазор в шатунном подшипнике

Заменить шкив коленчатого вала
Затянуть болты крепления гидротрансформатора
Заменить или натянуть приводные ремни согласно нормам
Проверить и при необходимости отремонтировать систему выпуска
отработавших газов
Осмотреть и при необходимости заменить маховик
Заменить коренной подшипник
Заменить шатунный ПОДШИПНИК

Легкий стук прогретого
двигателя

Детонация двигателя
Ослаблено крепление гидротрансформатора
Утечка выхлопных газов в системе выпуска отработавших газов
Увеличенный зазор в подшипника шатуна

Проверить качество топлива
Проверить и установить необходимый угол опережения зажигания
Затянуть болты крепления гидротрансформатора
Проверить и затянуть болты крепления, при необходимости заменить прокладку
Заменить подшипник шатуна

Стук при запуске, который
длится несколько секунд

Моторное масло низкого качества или не соответствует климатическим условиям эксплуатации неисправен регулировочный механизм зазора в приводе клапана (гидротолкатель)
Увеличенное осевое перемещение коленчатого вала

Увеличенный зазор в переднем коренном подшипнике

Проверить масло, при необходимости заменить новым, соответствующим климатическим условиям
Прочистить, проверить и в случае необходимости заменить гидротолкатель
Заменить упорный подшипник коленчатого вала

Заменить передний коренной подшипник

Стук прогретого двигателя в
режиме холостого хода

Ослаблены или изношены приводные ремни
Неисправен генератор или компрессор системы кондиционирования воздуха
Моторное масло не соответствует климатическим условиям эксплуатации
Увеличенный зазор в соединении поршень -поршневой палец
Увеличен зазор между цилиндром и поршнем

Натянуть, при необходимости заменить приводные ремни
Осмотреть, при необходимости заменить (отремонтировать) генератор или компрессор
Проверить масло, при необходимости заменить новым, соответствующим климатическим условиям
эксплуатации
Заменить поршень и (или) поршневой палец
Заменить поршень, при необходимости расточить цилиндр и хонинговать

Назначение электродвигателей…………………………………. 4

Устройство и принцип действия………………………………….6

Техническое обслуживание электродвигателей………………….8

Текущий ремонт электродвигателей………………………………9

Трехкратная пропитка обмоток лаком, модифицированным ингибиторами. 13

Капсулирование лобовых частей электродвигателей……………14

Работа электрика по обслуживанию электрооборудования сводится к поддержанию работоспособного и безопасного состояния электрических машин, пускозащитных аппаратов, устройств освещения, сигнализации и автоматики, что все и называется электрооборудованием, а также проводов, кабелей, разъемов, зажимов, электромонтажных изделий и т. д.

В состав устройств могут входить различные элементы, например, резисторы, конденсаторы, полупроводниковые приборы. Электрик должен быть знаком со всеми этими элементами, аппаратами и устройствами, но при работе он встречает много вопросов и затруднений, особенно в молодом возрасте, когда мало опыта. Полезно все эти вопросы, и затруднения не спеша проанализировать с книгой, но таких книг пока недостаточно.

Целью данной работы является знакомство с электрооборудованием и электродвигателями, составляющими часть электроустановок (их устройством), назначением, а также мерами безопасности, безотказности, увеличения срока службы. В этом смысле имеет большое значение знание всех отказов при работе в различных частях электроустановки, поисков и методов устранения отказов, что подробно представлено ниже.

Практически во всех областях деятельности современного общества применяется электрическая энергия.

Энергия — общая количественная мера различных форм движения материи. Для любого вида энергии можно назвать материальный объект, который является ее носителем. Так, механической энергией обладают вода, ветер, заведенная пружина; тепловой — нагретый газ, пар, горячая вода. Носителем электрической энергии является особая форма материи — электромагнитное поле.

Электрическая энергия получается путем преобразования других видов энергии (механической, тепловой, химической, ядерной и др.) и обладает ценными свойствами: относительно несложно, с малыми потерями передается на большие расстояния, легко дробится и преобразуется в нужный вид энергии (механическую, тепловую, световую, химическую и др.).

Наибольшая часть электроэнергии для нужд народного хозяйства вырабатывается на тепловых электростанциях (ТЭС). Здесь химическая энергия органического топлива (угля, мазута, торфа, газа) при его сжигании в паровых котлах превращается в тепловую энергию нагретого водяного пара. Пар под высоким давлением поступает в паровую турбину, где его энергия преобразуется в механическую. Турбины приводят в действие электрические генераторы, преобразующие механическую энергию в электрическую.

Следует отметить, что электродвигатели являются основным источником и потребителями электроэнергии. Учитывая быстрое истощение запасов органического топлива и неблагоприятное воздействие ТЭС на окружающую среду, существует необходимость в экономических разработках электропривода.

Электропривод—это совокупность устройств, приводящих в движение производственные машины и установки при помощи электрических двигателей.

Электропривод состоит из одного или нескольких двигателей, передаточного механизма, необходимого для передачи движения от двигателя к рабочей машине (зубчатого редуктора, ременной передачи и т. п.), и устройства управления, служащего для пуска, остановки и регулирования привода. В большинстве случаев работа электроприводов автоматизируется, начиная с относительно простых операций дистанционного пуска и остановки и кончая выполнением функций регулирования и управления сложными взаимосвязанными комплексами различных производственных механизмов.

Автоматическое управление электроприводами, составляющее основу автоматизированного производства, дает возможность увеличить производительность силовой установки. В соответствии с Основными направлениями экономического и социального развития РБ на 2006— 2010 годы и на период до 2016 года выработка электроэнергии в 1990 г. Должна составить 1910—2000 млрд кВт • ч.

Для ускорения научно-технического прогресса большое значение имеет автоматизация производственных процессов, осуществляемая на базе электротехники и электроники. К 2007 г. предусматривается резко повысить уровень автоматизации производства (в среднем в 2 раза). В промышленности намечено ввести 5,1 тыс. автоматизированных систем управления технологическими процессами.

Предполагается создание и освоение новых поколений электронных вычислительных машин (ЭВМ) всех классов от супер-ЭВМ до персональных для школьного обучения. Применение микропроцессоров и микроЭВМ позволяет создавать гибкие автоматизированные системы управления технологическими процессами, электроприводом и электродвигателями, что дает возможность обеспечивать оптимальное выполнение производственных программ. Прокопчик

Назначение электродвигателей

Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического регулирования и управления, в быту.

Электрические машины преобразуют механическую энергию в электрическую, и наоборот. Машина, преобразующая механическую энергию в электрическую, называются генератором. Преобразование электрической энергии в механическую - осуществляется двигателями.

Любая электрическая машина может быть использована как в качестве генератора, так и в качестве электродвигателя. Это свойство электрической машины изменять направление преобразуемой ею энергии называется обратимостью машины. Электрическая машина может быть также использована для преобразования электрической энергии одного рода тока ( частоты, числа фаз переменного тока, напряжения постоянного тока ) в энергию другого рода тока. Такие электрические машины называются преобразователями.

В работе будут описаны принципы и характеристики работы двигателей электропривода, согласно заданной темы и выполненных работ по изучению основ электропривода.

В зависимости от рода тока электроустановки, в которой должна работать электрическая машина, они делятся на машины постоянного и переменного тока.

Машины переменного тока могут быть как однофазными, так и много фазными. Наиболее широкое применение нашли трехфазные синхронные и асинхронные машины, а также коллекторные машины переменного тока, которые допускают экономичное регулирование частоты вращения в широких пределах

В настоящее время асинхронные двигатели являются наиболее распространенными электрическими машинами. Они потребляют около 50% электроэнергии, вырабатываемой электростанциями страны. Такое широкое распространение асинхронные электродвигатели получили из-за своей конструктивной простоты, низкой стоимости, высокой эксплуатационной надежности. Они имеют относительно высокий КПД: при мощностях более 1кВт кпд=0,7:0,95 и только в микродвигателях он снижается до 0,2-0,65.

Устройство и принцип действия AD.

Устройство асинхронного двигателя. Двигатель состоит из двух основных частей, разделенных воздушным зазором: неподвижного статора 6 и вращающегося ротора 3. Каждая из этих частей имеет сердечник и обмотку.

При этом обмотка 2 статора включается в сеть и является как бы первичной, а обмотка 4 ротора - вторичной, так как энергия в нее поступает из обмотки статора за счет магнитной связи между этими обмотками (подобно трансформатору).

Существуют два основных типа асинхронных двигателей: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Последние, иногда называют двигателями с контактными кольцами. Оба типа двигателей имеют одинаковую конструкцию статора и различаются конструкцией ротора.

Статор асинхронного двигателя состоит из корпуса, сердечника и обмотки. Корпус статора служит для соединения всех частей двигателя в единую конструкцию. В небольших двигателях в корпус устанавливают обмотку.

При этом обмотка 2 статора включается в сеть и является как бы первичной, а обмотка 4 ротора - вторичной, так как энергия в нее поступает из обмотки статора за счет магнитной связи между этими обмотками (подобно трансформатору).

Существуют два основных типа асинхронных двигателей: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Последние - иногда называют двигателями с контактными кольцами. Оба типа двигателей имеют одинаковую конструкцию статора и различаются конструкцией ротора.

Статор асинхронного двигателя состоит из корпуса, сердечника и обмотки. Корпус и статор служит для соединения всех частей двигателя в единую конструкцию. В небольших двигателях корпус

отливают из алюминиевого сплава, стали или чугуна, а в крупных машинах делают сварным. В корпус статора запрессован сердечник 2, который с целью уменьшения по-терь от вихревых токов собирается из изолированных друг от друга лаком листов электрической стали (рис. 8.7,6). В пазы сердечника уложены проводники обмотки статора, которая выполняется из медного провода. Основным элементом обмотки является секция, которая может иметь' один или несколько витков.

Активные стороны секций укладывают в пазы сердечника статора, например сторону / укладывают в первый паз, а сторону 4 секции — в четвертый паз. Секции соединяют между собой в катушки, из которых состоят обмотки каждой фазы. Начала С1, С2, С3 и концы С4, С5, С6 фазных обмоток присоединяют к зажимам коробки выводов (рис. 8.9, а). Для упрощения переключения схем У и д зажимы обмотки статора располагают в порядке, указанном на рис. 8.9, а.

Ротор асинхронного двигателя состоит из сердечника 3 обмотки 4 и вала 5. Вал ротора устанавливается в подшипниках, запрессованных в подшипниковых щитах 7, прикрепленных болтами к корпусу статора, и служит для передачи вращающего момента производственному механизму. Сердечник ротора имеет цилиндрическую форму и собирается из листов электротехнической стали.

В двигателях с короткозамкнутым ротором обмотка ротора состоит из ряда алюминиевых стержней (располагаемых в пазах сердечника ротора), замкнутых по торцам кольцами. В этих двигателях мощностью до 400 кВт обмотку ротора выполняют заливкой его пазов под давлением расплавленным алюминием.

Асинхронные двигатели - наиболее распространенный вид электрических машин, потребляющих в настоящее время около 40% всей вырабатываемой электроэнергии. Их установленная мощность постоянно возрастает. Асинхронный двигатели широко применяются в приводах металлообрабатывающих, деревообрабатывающих и других видов станков, кузнечно-прессовых, ткацких, швейных, грузоподъемных, землеройных машин, вентиляторов, насосов, компрессоров, центрифуг, в лифтах, в ручном электроинструменте, в бытовых приборах и т.д. Практически нет отрасли техники и быта, где не использовались бы асинхронные двигатели.

Потребности народного хозяйства удовлетворяются главным образом двигателями основного исполнения единых серий общего назначения, т.е. применяемых для привода механизмов, не предъявляющих особых требований к пусковым характеристикам, скольжению, энергетическим показателям, шуму и т.п. Вместе с тем в единых сериях предусматривают также электрические и конструктивные модификации двигателей, модификации для разных условий окружающей среды, предназначенные для удовлетворения дополнительных специфических требований отдельных видов приводов и условий их эксплуатации. Модификации создаются на базе основного исполнения серий с максимально возможным использованием узлов и деталей этого исполнения.

В некоторых приводах возникают требования, которые не могут быть удовлетворены двигателями единых серий. Для таких приводов созданы специализированные двигатели, например электробуровые, краново-металлургические и др.

Читайте также: