Реферат на тему способы записи алгоритмов

Обновлено: 05.07.2024

С появлением ЭВМ появилась необходимость интенсифицировать потоки информации человек – компьютер – человек. Но для повышения эффективности применения человеком компьютера как инструмента нужны общая мысль, общие понятия. Простые алгоритмы типа деления столбиком известны каждому школьнику из курса математики, и, казалось бы, нет более знакомой вещи в математике, чем алгоритмы. С появлением науки Информатики появился новый метод – алгоритмизация- процесс составления алгоритмов решения задачи.

Алгоритмический стиль мышления позволяет связать воедино функционирование информации в конкретной среде с требованиями её машинной обработки. Алгоритмическое мышление помогает формировать навыки:

уметь планировать структуру действий, необходимых для достижения заданной цели при помощи фиксированного набора средств;

строить информационные структуры для описания объектов и средств;

организовывать поиск информации, необходимой для решения поставленной задачи;

своевременно обращаться к ЭВМ при решении задач из любой области;

формировать навыки анализа информации, умение структурировать ее.

Развитие системного, логического мышления школьников, привитие навыков оперирования формальными понятиями и объектами, характерными для углублённого взаимодействия с компьютером - развитие алгоритмического стиля мышления - должно быть обеспечено школьным образованием.

Вышесказанное обосновывает актуальность данной темы.

Работа состоит из введения, трех глав, заключения и списка использованной литературы. Общий объем работы составляет 13 страниц.

1. Алгоритмизация

В современном мире человеку приходится решать задачи с использованием компьютера. Решение любой задачи предполагает наличие алгоритма, т.е. точного предписания последовательности действий, приводящих к получению результата. На основе алгоритма составляется программа, т.е. запись алгоритма решения задачи в виде, пригодном для исполнения его на компьютере.

Отсюда следует, что сущность процесса решения задачи с помощью компьютера - это разработка алгоритма. Процесс составления алгоритмических предписаний называется алгоритмизацией.

Роль алгоритмизации в жизни современного общества определяется не только техническими аспектами ее использования. Алгоритмический подход неотделим от повседневной жизни людей, от их обычной работы.

В подавляющем большинстве случаев результат деятельности человека зависит от того, насколько четко он знает алгоритмическую сущность своих действий: что делать в каждый момент, в какой последовательности, каким должен быть итог действий.

Это в определенной степени зависит от его умения составлять и использовать алгоритмы.

2. Понятие алгоритма и его свойства

Одним из фундаментальных понятий в информатике является понятие алгоритма. Чтобы понять смысл этого понятия, требуется его всесторонний анализ. Что такое алгоритм? Для ответа на этот вопрос сделаем экскурс в историю.

Алгоритм может быть предназначен для выполнения его человеком или автоматическим устройством. Создание алгоритма, пусть даже самого простого, - процесс творческий. Он доступен исключительно живым существам, а долгое время считалось, что только человеку. В XII в. был выполнен латинский перевод его математического трактата, из которого европейцы узнали о десятичной позиционной системе счисления и правилах арифметики многозначных чисел.

Именно эти правила в то время называли алгоритмами. В дальнейшем алгоритмом стали называть описание любой последовательности действий, которую следует выполнить для решения заданной задачи.

В настоящее время понятие алгоритма не ограничивается решением только математических задач, смысл его гораздо шире. Каждый компьютер работает по заранее заданному алгоритму, значит, по программе. Алгоритм нужно понять как последовательность действий, как множество упорядоченных операций, список операций, выполняющихся в определенном порядке. Это понятие в настоящее время применяется широко. Существует много определений, приведем одно из них.

Таким образом, алгоритм – это последовательность действий для решения поставленной задачи. Решение любой задачи можно разложить на последовательность простых операций. Чтобы выполнить алгоритм на компьютере, нужно написать его в виде программы.

Такими свойствами являются:

Дискретность (прерывность, раздельность) – алгоритм должен представлять процесс решения задачи как последовательное выполнение простых (или ранее определенных) шагов. Каждое действие, предусмотренное алгоритмом, исполняется только после того, как закончилось исполнение предыдущего.

Определенность – каждое правило алгоритма должно быть четким, однозначным и не оставлять места для произвола. Благодаря этому свойству выполнение алгоритма носит механический характер и не требует никаких дополнительных указаний или сведений о решаемой задаче.

Результативность (конечность) – алгоритм должен приводить к решению задачи за конечное число шагов.

Массовость – алгоритм решения задачи разрабатывается в общем виде, то есть, он должен быть применим для некоторого класса задач, различающихся только исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма.

Второе правило – для работы алгоритма требуется память. В памяти размещаются входные данные, с которыми алгоритм начинает работать, промежуточные данные и выходные данные, которые являются результатом работы алгоритма. Память является дискретной, т.е. состоящей из отдельных ячеек. Поименованная ячейка памяти носит название переменной. В теории алгоритмов размеры памяти не ограничиваются, т. е. считается, что мы можем предоставить алгоритму любой необходимый для работы объем памяти.

Практическая работа с алгоритмами (программирование) начинается именно с реализации этих правил. В языках программирования распределение памяти осуществляется декларативными операторами (операторами описания переменных). В языке Бейсик не все переменные описываются, обычно описываются только массивы. Но все равно при запуске программы транслятор языка анализирует все идентификаторы в тексте программы и отводит память под соответствующие переменные.

Третье правило – дискретность. Алгоритм строится из отдельных шагов (действий, операций, команд). Множество шагов, из которых составлен алгоритм, конечно.

Четвертое правило – детерменированность. После каждого шага необходимо указывать, какой шаг выполняется следующим, либо давать команду остановки.

Пятое правило – сходимость (результативность). Алгоритм должен завершать работу после конечного числа шагов. При этом необходимо указать, что считать результатом работы алгоритма.

Таким образом, выполняя алгоритм, исполнитель может не вникать в смысл того, что он делает, и вместе с тем получать нужный результат. В таком случае говорят, что исполнитель действует формально, т.е. отвлекается от содержания поставленной задачи и только строго выполняет некоторые правила, инструкции.

Итак, алгоритм – неопределяемое понятие теории алгоритмов. Алгоритм каждому определенному набору входных данных ставит в соответствие некоторый набор выходных данных, т.е. вычисляет (реализует) функцию. При рассмотрении конкретных вопросов в теории алгоритмов всегда имеется в виду какая-то конкретная модель алгоритма.

Используются следующие способы представления алгоритма:

- на естественном языке;

- в виде схемы (блок-схемы);

- на алгоритмическом языке;

- на языке программирования.

Блок-схема - это графический способ представления алгоритма, каждое действие при этом изображается в виде последовательности связанных блоков.

Алгоритмический язык - это система обозначений и правил для единообразной и точной записи алгоритмов и их исполнения. Алгоритмический язык состоит из совокупности слов, назначение и смысл которых задан раз и навсегда. Такие слова принято называть служебными.

Язык программирования - это совокупность средств и правил представления алгоритмов в виде, приемлемом для компьютера.

К понятию алгоритма примыкает понятие исполнителя алгоритма, то есть, кто (что) будет осуществлять выполнения алгоритма. Ее можно поручить субъекту или объекту, который не обязан вникать в существо дела, а возможно, и не способен его понять. Такой субъект или объект принято называть формальным исполнителем.

Примером формального исполнителя может служить стиральная машина-автомат, которая неукоснительно исполняет предписанные ей действия, даже если вы забыли положить в нее порошок. Человек тоже может выступать в роли формального исполнителя, но в первую очередь формальными исполнителями являются различные автоматические устройства, и компьютер в том числе.

Каждый алгоритм создается в расчете на вполне конкретного исполнителя. Те действия, которые может совершать исполнитель, называются его допустимыми действиями. Совокупность допустимых действий образует систему команд исполнителя. Алгоритм должен содержать только те действия, которые допустимы для данного исполнителя.

3. Исполнитель алгоритмов

Исполнитель алгоритма – это человек и автомат, и животное в клетке, и станок с программным управлением, и робот-манипулятор (в частности, им может бытьпроцессор ЭВМ), умеющий выполнять некоторый вполне определенный набор действий.

hello_html_m5ea21862.jpg

Каждый исполнитель работает или обитает в определенных условиях, среде; и может выполнять определенный набор действий. Анализ примеров различных алгоритмов показывает, что запись алгоритма распадается на отдельные указания исполнителю выполнить некоторое законченное действие. Каждое такое указание называется командой.

Команды алгоритма выполняются одна за другой. После каждого шага исполнения алгоритма точно известно, какая команда должна выполнятся следующей. Совокупность команд, которые могут быть выполнены исполнителем, называется системой команд исполнителя (СКИ).

Система команд. Каждый исполнитель может выполнять команды только из некоторого строго заданного списка-системы команд исполнителя. Для каждой команды должны быть заданы условия применимости (в каких состояниях среды может быть выполнена команда) и описанырезультаты выполнения команды. После вызова команды исполнитель совершает соответствующееэлементарное действие.

Как бы ни были разнообразны возможности исполнителя, они всегда ограничены. Прежде чем составлять алгоритм решения задачи, нужно узнать, какие действия предполагаемый исполнитель может выполнять.

Упрощенно исполнителя можно представить себе как некоторое устройство управления соединенное с набором инструментов. Устройство управления понимает алгоритм и организует их выполнение, командуя соответствующими инструментами.

Выполняя алгоритм, исполнитель может не вникать в смысл того, что он делает и, тем не менее, получать нужный результат. В таком случае говорят, что исполнитель действует формально, т.е. отвлекается от содержания поставленной задачи и только выполняет строгой последовательности все действия.

Построение алгоритма для решения задачи какой-либо области требует от человека глубоких знаний в этой области, связано с тщательным анализом поставленной задачи, сложными рассуждениями. На поиски алгоритма решения некоторых задач ученые затрачивают многие годы. Но решение задачи по уже созданному готовому алгоритму не требует каких-либо рассуждений и сводится к строгому выполнению команд алгоритма. В этом случаи исполнение алгоритма можно поручить не человеку, а машине.

Представление информационного процесса в форме алгоритма позволяет поручить его автоматическое исполнение различным техническим устройствам, среди которых особое место занимает компьютер. При этом говорят, что компьютер исполняет программу (последовательность команд), реализующую алгоритм на каком-либо языке программирования.

На основании вышеизложенного сделаем краткие выводы.

Любой человек постоянно встречается с множеством задач: от самых простых и хорошо известных до очень сложных. Для множества из них существуют определенные правила (инструкции, предписания), объясняющие исполнителю, как решать данную задачу. Эти правила человек может изучить заранее или сформулировать сам в процессе решения. Чем более точно и однозначно будут описаны правила решения задач, тем быстрее человек овладеет ими и будет эффективнее их применять. Такие правила принято называть алгоритмами.

Таким образом, алгоритм - это четкая последовательность действий, направленная на достижение поставленной цели или решения задачи.

Существуют несколько общих свойств алгоритмов, позволяющих отличать алгоритмы от других инструкций: это дискретность, определенность, результативность, массовость.

К понятию алгоритма примыкает понятие исполнителя алгоритма, то есть, кто (что) будет осуществлять выполнения алгоритма.

Исполнитель алгоритма – это человек и автомат, и животное в клетке, и станок с программным управлением, и робот-манипулятор, умеющий выполнять некоторый вполне определенный набор действий.

Исполнителя характеризуют: среда; элементарные действия; система команд; отказы.

Список использованной литературы

1. Алгоритм. Способы описания алгоритма. Учебно-методическое пособие для учителей информатики / Сост. Е.А.Пархоменко, Ю.В.Сюбаева – Коломна: Лицей, 2005. – 33 с.

2. Голицына О.Л. Основы алгоритмизации и программирования: Учеб. Пособие / О.Л.Голицына, И.И.Попов. – М.: ИНФРА-М, 2004. – 432 с.

3. Кузнецов А.А. Основы информатики. Учеб. для общеобразоват. учеб. заведений / А.А.Кузнецов, Н.В.Апатова. - М.: Дрофа, 2000. - 176 с.

4. Кушнеренко А.Г. Основы информатики и ВТ: Учеб. для 10-11 кл. - 4-е изд. / А.Г.Кушнеренко и др. - М: Просвещение, 1996. - 224 с.

Выделяют три наиболее распространенные на практике способа записи алгоритмов:

  • словесный (запись на естественном языке);
  • графический (запись с использованием графических символов);
  • программный (тексты на языках программирования).

Словесный способ записи алгоритмов

Словесный способ – способ записи алгоритма на естественном языке. Данный способ очень удобен, если нужно приближенно описать суть алгоритма. Однако при словесном описании не всегда удается ясно и точно выразить логику действий.

В качестве примера словесного способа записи алгоритма рассмотрим алгоритм нахождения площади прямоугольника

где S – площадь прямоугольника; а, b – длины его сторон.

Очевидно, что a, b должны быть заданы заранее, иначе задачу решить невозможно.

Словестный способ записи алгоритма выглядит так:

  • Начало алгоритма.
  • Задать численное значение стороны a.
  • Задать численное значение стороны b.
  • Вычислить площадь S прямоугольника по формуле S=a*b.
  • Вывести результат вычислений.
  • Конец алгоритма.

Графический способ описания алгоритмов

Для более наглядного представления алгоритма используется графический способ. Существует несколько способов графического описания алгоритмов. Наиболее широко используемым на практике графическим описанием алгоритмов является использование блок-схем. Несомненное достоинство блок схем – наглядность и простота записи алгоритма.

Каждому действию алгоритма соответствует геометрическая фигура (блочный символ). Перечень наиболее часто употребляемых символов приведен в таблице:

Название символа Обозначение
и пример заполнения
Пояснения
Пуск-останов Начало, завершение алгоритма или подпрограммы
Ввод-вывод данных Ввод исходных данных или вывод результатов
Процесс Внутри прямоугольника записывается действие, например, расчетная формула
Решение
Проверка условия, в зависимости от которого меняется направление выполнения алгоритма
Модификация i=1 to 20 do
Организация цикла
Предопределенный процесс Использование ранее созданных подпрограмм
Комментарий Пояснения

  • блок Процесс обозначает вычислительный процесс и применяется для обозначения действия или последовательности действий, изменяющих значения переменных или данных
  • блок Решение обозначает проверку условия
  • блок Модификация используется для организации циклических (повторяющихся) действий.

Модификация

  • блок Предопределенный процесс используется для указания обращений к ранее созданным алгоритмам и программам, в том числе и библиотечным подпрограммам.
  • блок Ввод-Вывод. При решении задачи на компьютере ввод исходных данных может осуществляться различными способами, например, с клавиатуры, с жесткого диска, с флэш-карты т. д. Задание численных значений исходных данных называется вводом, а отображение результатов расчета на экране монитора или с помощью принтера на бумаге – выводом. Если ввод-вывод не привязан к конкретному устройству, то обозначается параллелограммом. Если необходимо указать конкретное устройство ввода или вывода, то используются специальные геометрические фигуры.

В качестве примера графического способа описания алгоритмов с помощью блок-схем запишем алгоритм нахождения площади прямоугольника:

помощью блок-схем запишем алгоритм

Внутри каждого блока записывается соответствующее действие. Последовательность выполнения задается соединительной линией со стрелочкой.

Последовательность выполнения сверху вниз и слева направо принята за основную.

Если в алгоритме не нарушается основная последовательность, то стрелочки можно не указывать. В остальных случаях последовательность выполнения блоков обозначается стрелочкой обязательно. В нашем примере основная последовательность выполнения – сверху вниз.

Программный способ записи алгоритмов

Способ записи алгоритмов с помощью блок-схем нагляден и точен для понимания сути алгоритма, тем не менее, алгоритм предназначен для исполнения на компьютере, а язык блок-схем компьютер не воспринимает. Поэтому алгоритм должен быть записан на языке, понятном компьютеру с абсолютно точной и однозначной записью команд.

Таким образом, алгоритм должен быть записан на каком-то промежуточном языке, с точными и однозначными правилами и отличном от естественного языка и языка блок-схем, но понятном компьютеру. Такой язык принято называть языком программирования.

Программный способ записи алгоритма – это запись алгоритма на языке программирования, позволяющем на основе строго определенных правил формировать последовательность предписаний, однозначно отражающих смысл и содержание алгоритма, с целью его последующего исполнения на компьютере.

Запись алгоритма на языке программирования называется компьютерной программой.

Алгоритм может иметь различные формы представления. Рассмотрим три наиболее распространенных из них, иллюстрируя примером алгоритма нахождения корней квадратного уравнения.

Первая и самая простая – это вербальная или словесно-формульная форма. В ней алгоритмические действия описываются словами и, при необходимости, формулами. Для выбранного примера описание алгоритма может иметь следующий вид.

1. Сначала необходимо вычислить дискриминант уравнения D = b2 — 4ac;

2. Если дискриминант имеет неотрицательное значение, то корни уравнения — вещественные: ;

3. Если дискриминант отрицательный, то корни комплексно сопряженные: .

Словесно-формульная форма является естественной для человека, но, в сложных случаях, не дает четкого представления о последовательности действий и может обладать неоднозначностью их интерпретации. Она обычно используется при разработке алгоритмов как исходная.

Заголовок алгоритма содержит его имя, а также описание входных (арг) и выходных (рез) данных с указанием их идентификаторов и типов. Далее аналогично описываются промежуточные данные алгоритма. Начало и конец алгоритмических действий обозначены служебными словами нач и кон. Рассматриваемый в качестве примера алгоритм очень простой и со-держит только операторы присваивания и одну структурную конструкцию – бинарное ветвление. Она оформляется служебными словами: если, то, иначе, все.

Представление алгоритма на псевдокоде допускает разные уровни абстракции и поэтому может быть использовано как при разработке алгоритма путем постепенной детализации, так и для его окончательного представления.

Третий широко распространенной формой представления алгоритмов является язык блок-схем. По корректности он занимает промежуточное положение между словесно-формульным описанием и представлением на псевдокоде. Достоинством его является визуальная наглядность графического изображения. Каждая структурная конструкция имеет стандартное графическое изображение. Некоторые из них представлены в таблице 23.1. Отдельные действия представляются в виде прямоугольников, последовательность их выполнения показываются стрелками (линиями потока).

Алгоритм решения квадратного уравнения представлен блок-схемой на рис. 23.3. Бинарное ветвление в ней представляется ромбовидной фигурой. В зависимости от значения записанного в ней логического выражения (условия) выполняется та или иная ветвь вычисления.

Блок-схемы допускают различные уровни детализации представляемых алгоритмических действий и поэтому очень удобны при разработке алгоритмов. Будучи дополнены комментариями с описаниями данных, они дают достаточно полное представлении об алгоритме.

Существуют и другие формы представления алгоритмов, имеющие более ограниченное использование, но они в данном пособии не рассматриваются. Упомянутые выше формы будут более подробно представлены ниже при описании конкретных алгоритмических структур.

1. Алгоритм – это понятное и точное представление исполнителю совершить последовательность действий, направленных на решение поставленной задачи или достижение указанной цели.

2. Можно выделить три разновидности алгоритмов: вычислительные, информационные и управляющие. Первые, как правило, работают с простыми видами данных (числа, вектора, матрицы), но зато процесс вычисления может быть длинным и сложным. Информационные алгоритмы, напротив, реализуют сравнительно небольшие процедуры обработки (например, поиск элементов, удовлетворяющих определенному признаку), но для больших объемов информации. Наконец, управляющие алгоритмы непрерывно анализируют информацию, поступающую от тех или иных источников, и выдают результирующие сигналы, управляющие работой тех или иных устройств. Для этого вида алгоритмов очень существенную роль играет их быстродействие, т.к. управляющие сигналы всегда должны появляться в нужный момент времени.

Каждый алгоритм – это правила, описывающие процесс преобразования исходных данных в необходимый результат. Заметим, что данное важное свойство в некоторых книгах приводят как определение алгоритма.

3. Для того чтобы произвольное описание последовательности действий было алгоритмом, оно должно обладать следующими свойствами.

· Дискретность

Каждая команда алгоритма должна быть понятна тому, кто исполняет алгоритм; в противном случае эта команда и, следовательно, весь алгоритм в целом не могут быть выполнены. Данное требование можно сформулировать более просто и конкретно. Составим полный список команд, который умеет делать исполнитель алгоритма, и назовем его системой команд исполнителя (СКИ).

Требования использовать при составлении алгоритмов только те команды, которые входят в СКИ, связано с тем, что исполнение алгоритма осуществляется формально, без возможности вникнуть в суть команд и проанализировать их.

· Определенность (Детерминированность)

Команды, образующие алгоритм (или, можно сказать, входящие в СКИ), должны быть предельно четкими и однозначными. Их результат не может зависеть от какой-либо дополнительной информации извне алгоритма. Сколько бы раз вы не запускали программу, для одних и тех же исходных данных всегда будет получаться один и тот же результат.

Определенность также предполагает, что данные, необходимые для выполнения очередной команды алгоритма, получены на одном из предыдущих шагов алгоритма.

· Корректность

Любой алгоритм создан для решения той или иной задачи, поэтому нам необходима уверенность, что это решение будет правильным для любых допустимых исходных данных. Указанное свойство алгоритма принято называть его корректностью. В связи с обсуждаемым свойством большое значение имеет тщательное тестирование алгоритма перед его использованием. Как показывает опыт, грамотная и всесторонняя отладка для сложных алгоритмов часто требует значительно больших усилий, чем собственно разработка алгоритмов. При этом важно не столько количество проверенных сочетаний входных данных, сколько количество их типов. Например, можно сделать сколько угодно проверок для положительных значений аргумента алгоритма, но это никак не будет гарантировать корректную его работу в случае отрицательной величины аргумента.

· Массовость

Алгоритм имеет смысл разрабатывать только в том случае, когда он будет применяться многократно для различных наборов исходных данных. Например, если составляется алгоритм обработки текстов, то вряд ли целесообразно ограничить его возможности только русскими буквами – стоит предусмотреть также латинский алфавит, цифры, знаки препинания и т.д. Тем более что обобщение особых трудностей не вызывает.

Таковы основные свойства алгоритмов. Если их внимательно проанализировать, то становиться очевидным, что исполнитель алгоритма не нуждается в какой либо фантазии и сообразительности. Боле того, для выполнения алгоритма совсем не требуется его понимание, а правильный результат может быть получен путем формального и чисто механического следования содержанию алгоритма.

Из возможности формального исполнения алгоритма следует очень важное следствие: поскольку осознавать содержание алгоритма не требуется, его исполнение вполне можно доверить автомату или ЭВМ. Таким образом, составление алгоритма является обязательным этапом автоматизации любого процесса. Как только разработан алгоритм, машина может исполнять его лучше человека – быстрее и, что очень важно, не ошибаясь.

4. Основными способами записи алгоритмов являются:

· на алгоритмическом языке;

· на языке программирования высокого уровня.

5. Основными алгоритмическими структурами (ОАС) является следование, развилка и цикл. В более сложных случаях используются суперпозиции (вложения) ОАС.

На схемах СЕРИЯ обозначает один или несколько любых операторов; ЛВ – логическое выражение (если его значение ИСТИНА, переход происходит по ветви Да, иначе НЕТ). На схеме цикла с параметром использованы обозначения: ПЦ – параметр цикла, НЗ – начальное значение параметра цикла, КЗ – конечное значение параметра цикла, Ш – шаг изменения параметра цикла.

Чаще всего алгоритмы предполагают обработку некоторых величин. Величина - это элемент данных с точки зрения их смыслового (семантического) содержания или обработки. При разработке алгоритма данные можно разбить по смыслу на входные – аргументы, выходные – результаты, и промежуточные. Исходные (входные) – это данные, известные перед выполнением задачи, из условия. Выходные данные – результат решения задачи. Переменные, которые не являются ни аргументом, ни результатом алгоритма, а используются только для обозначения вычисляемого промежуточного значения, называются промежуточными. Чаще всего требуется указать имена и типы данных – целый, вещественный, логический и символьный, либо структурированный, базирующийся на одном из названных.

Ветвления играют в алгоритмах очень большую роль, поскольку предусматривают корректную реакцию на самые разнообразные ситуации, возникающие в процессе обработки информации. Благодаря этой структуре алгоритм приобретает способность выбирать один из существующих вариантов работы, наиболее подходящих к сложнейших в данный момент ситуации. В частном случае речь может идти о выполнении или игнорировании при определенных условиях того или иного участка алгоритма.

Значение ветвления в современном программном обеспечении трудно переоценить. Достаточно вспомнить элементы управления, такие, как меню, радиокнопки, флажки проверки или списки. Именно они дают возможность пользователю чувствовать себя за компьютером свободно и комфортно и выбирать те режимы работы, которые ему нужны.

Приведем также полную форму ветвления в различных алгоритмических языках.

IF THEN операторы ELSE операторы ENDIF

IF THEN оператор ELSE оператор

if ( ) оператор; else оператор;

Командой повторения , или циклом , называется такая форма организации действий в алгоритме, при которой выполнение одной и той же последовательности команд повторяется до тех пор, пока истинно некоторое логическое выражение.

Для организации цикла необходимо выполнить следующие действия:

· перед началом цикла задать начальное значение параметров (переменных, используемых в логическом выражении, отвечающем за продолжение или завершение цикла);

· внутри цикла изменять переменную (или переменные), которая сменит значение логического выражения, за счет которого продолжается цикл, на противоположное (для того чтобы цикл в определенный момент завершился);

· вычислять логическое выражение – проверять условие продолжения или окончания цикла;

· выполнять операторы внутри цикла;

управлять циклом, т.е. переходить к его началу, если он не закончен, или выходить из цикла в противоположном случае.

Различают циклы с известным числом повторений (цикл с параметром) и итерационные (с пред- и пост- условием).

Опишем схематично, как выполняется каждый из циклов.

Цикл с предусловием:

а) вычисляет значение логического выражения;

в) выполняется тело цикла;

Цикл с постусловием:

а) выполняется тело цикла;

б) вычисляется значение логического выражения;

Замечание. Таким образом, цикл с послесловием организован, в организован, в частности, в алгоритмических языках Pascal и QBasic. В языке С переход к повторению вычислений, как и в цикле с предусловием, осуществляется в случае истинности логического выражения.

Цикл с параметром:

а) вычисляются значения выражений, определяющие начальное значение параметра цикла;

б) параметру цикла присваивается начальное значение;

в) параметр цикла сравнивается с конечным значением;

г) если параметр цикла превосходит (при положительном шаге) конечное значение параметра цикла (или, наоборот, меньше конечного значение параметра цикла при отрицательном шаге), переход к п. з), иначе к следующему пункту;

Читайте также: