Реферат на тему солнечная энергия

Обновлено: 05.05.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Содержание

История развития солнечной энергетики

Способы получения электричества и тепла из солнечного излучения

Достоинства использования солнечной энергетики

Недостатки использования солнечной энергетики

Типы фотоэлектрических элементов

Минимальные цены на фотоэлементы (начало 2007 г.)

Сырье, из которого делают солнечные батареи

Солнечная термальная энергетика

Технологии солнечной энергетики

Сферы деятельности человека, где энергия солнца получила наибольшее распространение

Использование солнечной энергии в Республике Беларусь

Итоги развития фотоэлементной отрасли

Преобразование энергии Солнца в энергию химических связей (технология будущего)

Солнечная энергетика

Солнечная энергетика - использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и в перспективе может стать экологически чистой, то есть не производящей вредных отходов.

Ныне солнечная энергетика широко применяется в случаях, когда малодоступность других источников энергии в совокупности с изобилием солнечного излучения оправдывает её экономически.

Поток солнечного излучения, проходящий через площадку в 1 м2, расположенную перпендикулярно потоку излучения на расстоянии одной астрономической единицы от центра Солнца (то есть вне атмосферы Земли), равен 1367 Вт/ м2 (солнечная постоянная). Из-за поглощения атмосферой Земли, максимальный поток солнечного излучения на уровне моря — 1020 Вт/м2. Однако следует учесть, что среднесуточное значение потока солнечного излучения через единичную площадку как минимум в три раза меньше (из-за смены дня и ночи и изменения угла солнца над горизонтом). Зимой в умеренных широтах это значение в два раз меньше. Это количество энергии с единицы площади определяет возможности солнечной энергетики.

Перспективы выработки солнечной энергии также уменьшаются из-за глобального затемнения - антропогенного уменьшения солнечного излучения, доходящего до поверхности Земли.

История развития солнечной энергетики

В далеком 1839 году Александр Эдмон Беккерель открыл фотогальванический эффект.

Спустя 44 года Чарльзу Фриттсу удалось сконструировать первый модуль с использованием солнечной энергии, а основой для него послужил селен, покрытый тончайшим слоем золота. Ученый установил, что такое сочетание элементов позволяет, хоть и в минимальной степени (около 1%), преобразовывать энергию солнца в электричество.

В 1921 году Эйнштейн был удостоен Нобелевской премии. Многие считают, что эту награду великий ученый XX века получил за обоснование сформулированной им теории относительности, но это не так. Оказывается, премию физик получил именно за объяснение законов внешнего фотоэффекта.

Способы получения электричества и тепла из солнечного излучения

1) Получение электроэнергии с помощью фотоэлементов.

2) Гелиотермальная энергетика - нагревание поверхности, поглощающей солнечные лучи и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах).

4) Термовоздушные электростанции - преобразуют солнечной энергию в энергию воздушного потока, направляемого на турбогенератор.

5) Солнечные аэростатные электростанции - генерируют водяной пар внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием. Преимущество - запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.

Достоинства использования солнечной энергетики

1) Общедоступность и неисчерпаемость источника (Солнца).

2) Теоретически, полная безопасность для окружающей среды (однако в настоящее время в производстве фотоэлементов и в них самих используются вредные вещества).

Недостатки использования солнечной энергетики

1) Из-за относительно небольшой величины солнечной постоянной для солнечной энергетики требуется использование больших площадей земли под электростанции (например, для электростанции мощностью 1 ГВт это может быть несколько десятков квадратных километров). Однако, этот недостаток не так велик (например, гидроэнергетика выводит из пользования заметно большие участки земли). К тому же фотоэлектрические элементы на крупных солнечных электростанциях устанавливаются на высоте 1,8—2,5 метра, что позволяет использовать земли под электростанцией для сельско-хозяйственных нужд, например, для выпаса скота.

Проблема нахождения больших площадей земли под солнечные электростанции решается в случае применения солнечных аэростатных электростанций, пригодных как для наземного, так и для морского и для высотного базирования.

2) Поток солнечной энергии на поверхности Земли сильно зависит от широты и климата. В разных местах среднее количество солнечных дней в году может различаться очень сильно.

1) Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках. При этом пик электропотребления приходится именно на вечерние часы. Кроме того, мощность электростанции может резко и неожиданно колебаться из-за смены погоды. Для преодоления этих недостатков нужно или использовать эффективные электрические аккумуляторы (на сегодняшний день это нерешённая проблема), либо строить гидроаккумулирующие станции, которые тоже занимают большую территорию, либо использовать концепцию водородной энергетики, которая также пока далека от экономической эффективности.

Проблема зависимости мощности солнечной электростанции от времени суток и погодных условий решается в случае солнечных аэростатных электростанций.

2) Дороговизна солнечных фотоэлементов. Вероятно, с развитием технологии этот недостаток преодолеют. В 1990—2005 гг. цены на фотоэлементы снижались в среднем на 4 % в год.

3) Недостаточный КПД солнечных элементов.

4) Поверхность фотопанелей нужно очищать от пыли и других загрязнений. При их площади в несколько квадратных километров это может вызвать затруднения.

5) Эффективность фотоэлектрических элементов заметно падает при их нагреве, поэтому возникает необходимость в установке систем охлаждения, обычно водяных.

6) Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться.

1) Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д., а их производство потребляет массу других опасных веществ. Современные фотоэлементы имеют ограниченный срок службы (30—50 лет), и массовое применение поставит в ближайшее же время сложный вопрос их утилизации, который тоже не имеет пока приемлемого с экологической точки зрения решения.

Типы фотоэлектрических элементов:

1) Монокристаллические кремниевые;

2) Поликристаллические кремниевые;

В 2005 году на тонкоплёночные фотоэлементы приходилось 6 % рынка.

В 2006 году - 7 % долю рынка.

За период с 1999 по 2006 годы поставки тонкоплёночных фотоэлементов росли ежегодно в среднем на 80 %.

Минимальные цены на фотоэлементы (начало 2007г.)

1) Монокристаллические кремниевые — 4,30 $/Вт установленной мощности.

2) Поликристаллические кремниевые — 4,31 $/Вт установленной мощности.

3) Тонкоплёночные — 3,0 $/Вт установленной мощности.

Стоимость кристаллических фотоэлементов на 40—50 % состоит из стоимости кремния.

Сырье, из которого делают солнечные батареи

Кремний (основной ресурс для производства большинства типов солнечных батарей) - второй по распространенности элемент на нашей планете. На кремний приходится более четверти общей массы земной коры.

В большинстве случаев это вещество встречается в виде окиси - SiO2, а вот добыть чистый кремний из этого соединения сложно, даже проблематично.

По причине дороговизны кремния, отражающейся на розничной цене солнечных элементов, исследовательские центры на протяжении многих лет работают над поиском достойной альтернативы.

К примеру, можно использовать вместо кремния синтетические волокна, способные под воздействием света генерировать электрический ток.

Солнечная термальная энергетика

Солнечная энергия широко используется как для нагрева воды, так и для производства электроэнергии. Солнечные коллекторы производятся из доступных материалов: сталь, медь, алюминий и т.д., т.е. без применения дефицитного и дорогого кремния. Это позволяет значительно сократить стоимость оборудования, и произведённой на нём энергии.

В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах, составляла $0,09-$0,12 за кВт•ч. Департамент Энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами, снизится до $0,04-$0,05 к 2015-2020 г.

Заинтересованность общества

Не секрет, что в определенной мере заинтересованность общества в этом альтернативном источнике энергии является следствием обеспокоенности людей промышленными и транспортными выбросами парниковых газов – одной из причин глобальных изменений климата. К счастью, регулирующие структуры с каждым годом ужесточают требования по выбросам в атмосферу газов к государствам и отдельным компаниям.

Конечно, здесь важно учитывать большое количество специфических факторов (географическое расположение, климат, политика, рыночная ситуация), однако в США и в некоторых европейских странах много фермеров, доселе занимавшихся выращиванием скота, сегодня переоборудовали пастбища в поля для сборки солнечной энергии. Стратегия такого бизнеса проста – предприимчивые люди не только используют солнечное электричество без ущерба для собственного бюджета, но и продают излишки энергии государственным структурам. К примеру, в Германии службы скупают солнечное электричество у фермеров, частных лиц, а потом продают его населению по низкой цене. Более того, стать участником этого специфического рынка может практически каждый – бизнесмены, устанавливающие фотоэлектрические преобразователи на крыши офисов, владельцы земельных участков. При нынешних ценах стандартная солнечная установка окупается за 8 с лишним лет.

Технологии солнечной энергетики

Более чем за полвека ученые перепробовали огромное количество различных вариантов и способов добычи и использования солнечной энергии. Дорогие и малоэффективные технологии уступали место привлекательным и дешевым разработкам, которые не прекращают совершенствоваться на протяжении многих лет.

1) Активные – вместе с преобразователями задействуются механизмы, электромоторы, помпы. Солнечная энергия используется для нагрева воды, освещения, вентиляции.

2) Пассивные – отличаются от активных отсутствием в контурах систем каких-либо механизмов, движущих частей. Особенностью построения пассивных солнечных структур для организации систем вентиляции, отопления является подбор соответствующих по физическим параметрам строительных материалов, специфическая планировка помещения, размещение окон.

Исходя из выше представленной классификации групп технологий солнечной энергетики, можно охарактеризовать сферы деятельности человека, где энергия солнца получила наибольшее распространение.

Сферы деятельности человека, где энергия солнца получила наибольшее распространеие:

1) Системы естественного освещения - один из методов применения пассивных технологий солнечной энергетики для обустройства офисов и жилых помещений. Суть этого метода заключается в использовании солнечного света в качестве альтернативы электрическим лампам и светильникам. Необходимость построения систем естественного освещения нужно продумывать на начальных стадиях планировки здания, так как здесь очень важную роль играет структура крыши дома, расположение окон. Помимо эстетического и психологического удовлетворения, системы естественного освещения могут помочь владельцам сэкономить на электричестве и выделиться среди когорты ценителей необычных архитектурных решений. Главным недостатком этого метода пассивных технологий солнечной энергетики является сложность разработки и реализации.

3) Солнечные нагревательные установки: В данном случае солнечная энергия используется для нагрева воды в резервуарах, в основном для хозяйственных нужд. Интересно отметить, но первые такие установки начали продаваться в США еще в конце XIX века. Солнечные коллекторы пользовались широкой популярностью среди населения разных стран вплоть до 1920 года, пока не были вытеснены дешевыми и практичными горючими жидкостями (в то время бензину, как промежуточному продукту переработки нефти, еще не успели найти применение).

Сегодня мировым лидером по использованию таких установок является Китай, где солнечные нагреватели занимают 80% сегмента этого специфического рынка. Отмечу, что с технической точки зрения эффективность коллекторов находится на довольно высоком уровне (87%). Солнечные нагревательные преобразователи служат отличными заменителями газовых колонок в быту, обеспечивая потребителей горячей водой для бассейнов и душевых.

Известно, что с помощью особых конструкций коллекторов можно также качать воду из глубоких колодцев, обессоливать ее; сушить фрукты, овощи и даже замораживать продукты.

4) Гелиоконцентраторы: Ученые и инженеры, использующие метод фокусировки солнечных лучей для выработки электричества или тепла, по причине дороговизны и сложности изготовления огромных линз, используют массивы вогнутых зеркал (классические зеркальные панели или листы полированного алюминия). Зеркала являются составной частью гелиоконцентратора – установки, собирающей параллельные солнечные лучи в одной точке. Если в эту точку-фокус поместить трубу с теплоносителем (водой или другой жидкостью), она нагреется.

Использование солнечной энергии в Республике Беларусь

На территорию Беларуси ежедневно попадает порядка 75-100 Вт/м2 солнечной энергии, что в 5-6 раз меньше, чем на территорию пустыни Сахара.

Ввиду малого значения солнечной постоянной, для выработки энергии, которая покрыла бы всю потребность республики, необходимо построить солнечные батареи на территории, равной 3% всей площади страны.

Есть предложения отдать на застройку территорию, пострадавшую от аварии на Чернобыльской АС.

Однако ввиду дороговизны солнечных батарей и неокончательной разработки технологий, идея использования солнечной энергии в Беларуси пока не рассматривается.

Итоги развития фотоэлементной отрасли

Если в 1985г. все установленные мощности мира составляли 21 МВт, то за один только 2006г. было установлено 1744 МВт (по данным компании Navigant consulting), что на 19 % больше, чем в 2005г. В Германии установленные мощности выросли на 960 МВт, что на 16 % больше, чем в 2005г. В Японии установленные мощности выросли на 296,5 МВт. В США установленные мощности выросли на 139,5 МВт (+ 33 %).

К 2005г. суммарные установленные мощности достигли 5 ГВт. Инвестиции в 2005 году в строительство новых заводов по производству фотоэлементов составили 1 млрд. $.

Ввод в строй новых мощностей в 2005г.: Германия - 57 %; Япония - 20 %; США - 7 %; остальной мир - 16 %. Доля стран в суммарных установленных мощностях (на 2004г.): Германия - 39 %; Япония - 30 %; США - 9 %; остальной мир - 22 %.

Производство фотоэлементов в мире выросло с 1656 МВт в 2005г. до 1982,4 МВт. в 2006г. Япония продолжает удерживать мировое лидерство в производстве - 44 % мирового рынка; в Европе производится 31 %. США производят 7 % от мирового производства, хотя в 2000г. эта цифра доходила до 26 %.

К 2010г. установленная мощность установок на фотоэлементах достигнет 3,2—3,9 ГВт, а выручка производителей составит 18,6—23,1 млрд $/год.

Когда установленные мощности фотоэлементов в мире удваиваются, цена электричества, производимого солнечной энергетикой, падает на 20—30 %.

Преобразование энергии Солнца в энергию химических связей (технология будущего)

Данный механизм придуман самой природой и называется фотосинтезом.

Фотосинтез – процесс образования на свету органических веществ из неорганических. Процесс идет в хлоропластах.

Преимущества такого способа получения энергии очевидны:

• наличие избытка субстрата (воды);

• нелимитируемый источник энергии - Солнце;

• продукт (водород) можно хранить, не загрязняя атмосферу;

• водород имеет высокую теплотворную способность (29 ккал/г) по сравнению с углеводородами (3,5 ккал/г);

• процесс идет при нормальной температуре без образования токсических промежуточных продуктов;

• процесс циклический, так как при потреблении водорода регенерируется субстрат - вода.

Данная теория является теорией будущего, и если ей суждено будет сбыться, то человечество навсегда забудет про нехватку энергии.

Вывод

Все еще противоречивая солнечная энергетика только начинает завоевывать страны с рыночной экономикой и развивающиеся государства.

Дороговизна технологий сдерживает этот процесс.

Однако постепенное удешевление установок делает энергию солнца все более привлекательной.

Уверен, успех развития этой отрасли напрямую будет зависеть от того, как быстро мы сможем начать оперировать с энергией Солнца.

Вложенные файлы: 1 файл

РЕФЕРАТСолнце.doc

Солнце. Общие сведения

Солнце — центральная и единственная звезда Солнечной системы, вокруг которой обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль.

Масса Солнца составляет 99,866 % от суммарной массы всей Солнечной системы.

Солнечное излучение поддерживает жизнь на Земле, определяет климат.

Солнечная энергетика — направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и является экологически чистой, то есть не производящей вредных отходов. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии. [2]

История открытия солнечной энергии

Еще в древности люди начали задумываться о возможностях применения солнечной энергии. Согласно легенде, великий греческий ученый Архимед сжег неприятельский флот, осадивший его родной город Сиракузы, с помощью системы зажигательных зеркал. Доподлинно известно, что около 3000 лет назад султанский дворец в Турции отапливался водой, нагретой солнечной энергией. Древние жители Африки, Азии и Средиземноморья получали поваренную соль, выпаривая морскую воду. Однако больше всего людей привлекали опыты с зеркалами и увеличительными стеклами. Настоящий "солнечный бум" начался в XVIII столетии, когда наука, освобожденная от пут религиозных суеверий, пошла вперед семимильными шагами. Первые солнечные нагреватели появились во Франции. Естествоиспытатель Ж. Бюффон создал большое вогнутое зеркало, которое фокусировало в одной точке отраженные солнечные лучи. Это зеркало было способно в ясный день быстро воспламенить сухое дерево на расстоянии 68 метров. Вскоре после этого шведский ученый Н. Соссюр построил первый водонагреватель. Это был всего лишь деревянный ящик со стеклянной крышкой, однако вода, налитая в немудреное приспособление, нагревалась солнцем до 88°С. В 1774 году великий французский ученый А. Лавуазье впервые применил линзы для концентрации тепловой энергии солнца. Вскоре в Англии отшлифовали большое двояковыпуклое стекло, расплавлявшее чугун за три секунды и гранит - за минуту.

Первые солнечные батареи, способные преобразовывать солнечную энергию в механическую, были построены опять-таки во Франции. В конце XIX века на Всемирной выставке в Париже изобретатель О. Мушо демонстрировал инсолятор - аппарат, который при помощи зеркала фокусировал лучи на паровом котле. Котел приводил в действие печатную машину, печатавшую по 500 оттисков газеты в час. Через несколько лет в США построили подобный аппарат мощностью в 15 лошадиных сил.

Паровой котел на солнечной энергии, приводящий в движение печатный станок

Подходили годы, инсоляторы использующие солнечную энергию совершенствовались, но принцип оставался прежним: солнце - вода - пар. Но вот, в 1953 году ученые Национального аэрокосмического агентства США создали настоящую солнечную батарею - устройство, непосредственно преобразующее энергию солнца в электричество.

Еще в 70-х годах 19 века был открыт так называемый фотоэлектрический эффект - явление, связанное с освобождением электронов твердого тела или жидкости под действием электромагнитного излучения. В 30-х годах глава физиков нашей страны академик А. Ф. Иоффе высказал мысль о использовании полупроводниковых фотоэлементов в солнечной энергетике. Правда, рекордный коэффициент полезного действия (КПД) тогдашних материалов не превышал 1 процента, то есть, в электричество превращалась лишь сотая часть световой энергии. После многолетних экспериментов удалось создать фотоэлементы с КПД до 10-15%. Затем американцы построили солнечные батареи современного типа. В 1959 году они были установлены на одном из первых искусственных спутников Земли, и с тех пор все космические станции оснащаются многометровыми панелями с солнечными батареями. Низкий КПД солнечных батарей можно было бы компенсировать большой площадью, например, покрыть всю пустыню Сахару фотоэлементами - и готова мощнейшая солнечная электростанция. Однако кремниевые полупроводники, на основе которых производятся солнечные батареи, очень дорого стоят. И чем выше КПД, тем дороже материалы. Вследствие этого доля солнечной энергии в сегодняшней энергетике невелика. Однако в связи с не бесконечностью ископаемого топлива, доля энергии получаемой солнечными батареями будет неминуемо возрастать. Так же росту использования солнечных батарей способствуют разработки направленные на повышение КПД и понижение их стоимости.

Одно из главных достоинств солнечной энергии - ее экологическая чистота. Правда, соединения кремния могут наносить небольшой вред окружающей среде, однако по сравнению с последствиями сжигания природного топлива такой ущерб - капля в море.

Полупроводниковые солнечные батареи имеют очень важное достоинство - долговечность. При том, что уход за ними не требует от персонала особенно больших знаний. Вследствие этого солнечные батареи становятся все более популярными в промышленности и быту.

Несколько квадратных метров солнечных батарей вполне могут решить все энергетические проблемы небольшой деревушки. В странах с большим количеством солнечных дней - южной части США, Испании, Индии, Саудовской Аравии и прочих - давно уже действуют солнечные электростанции. Некоторые из них достигают довольно внушительной мощности.

Сегодня уже разрабатываются проекты строительства солнечных электростанций за пределами атмосферы - там, где солнечные лучи не теряют своей энергии. Уловленное на земной орбите излучение предлагается переводить в другой тип энергии - микроволны - и затем уже отправлять на Землю. Все это заучит фантастично, однако современная технология позволяет осуществить такой проект в самом близком будущем.

Солнечные батареи на верблюде

Большое количество научных экспериментов и тонких технологий требуют подчас создания огромной температуры. Идеальный вариант - солнечная энергия, способная создавать гигантские температуры на небольшой площади. Самая известная "солнечная печь" действует во французском местечке Одило. Ее подвижные зеркала концентрируют энергию солнца с большой площади на площадке менее одного квадратного метра. Эта площадка находится на небольшой башне перед системой зеркал. В ясные дни в фокусе зеркал удается достигнуть температуры в 3300°С. С ее помощью в Одило создают материалы с особенными свойствами, которые невозможно получить в традиционной металлургии. [11]

Солнечная энергетика открыта уже довольно давно. Но ее долго не рассматривали в качестве крупного источника энергии из-за дороговизны производства. Время шло, и технологии развивались. Солнечные панели подешевели и стали серьезным источником энергии. В прошлом году во всем мире суммарная мощность солнечных электростанций превысила 20 гигаватт! И этот показатель с начала нынешнего века удваивается каждые три года. В стороне только Россия. [4]

Использование энергии солнца

3. Однако встречаются и более серьезные системы. Одна из таких была сооружена в США в штате Нью-Мексико еще в 1978 году и работает до сих пор. Называется - Национальная солнечная установка для тепловых испытаний (NSTTF). Принадлежит она Пентагону и применяется для проверки жаропрочности корпусов военных и гражданских ракет. Состоит NSTTF из 60-метровой башни-мишени и 220 гелиостатов, размером 6х6 метров каждый. Зеркала, подобно архимедовой установке, направляют свои солнечные зайчики в одно полутораметровое пятнышко на верхушке установки, где температура в солнечные дни поднимается до 2 000°С. Всего в 2,5 раза меньше, чем на поверхности Солнца, и в 2 раза выше температуры горения напалма. Установка имеет площадь зеркал 8 500 м2 и тепловую мощность 5 МВт. [5]

4. Республике Корея в 2008 году было установлено 274 мегаватта мощности солнечных панелей. Это сравнимо с мощностью Владивостокской ТЭЦ в том же году.

5. Еще больше прогресс в Японии, где суммарная мощность солнечных электростанций приближается уже к 3 гигаваттам! Кто-то скажет, что в Японии много солнца и нам равняться на них сложно. Но вот вам реальный факт: в Германии установлено уже свыше 5 гигаватт солнечных панелей! А ведь немцы наш северный сосед и получают куда меньше солнца, чем Приморье. [6]

Как работают солнечные панели

Способы получения электричества и тепла из солнечного излучения

1. Получение электроэнергии с помощью фотоэлементов.

2. Преобразование солнечной энергии в электричество с помощью тепловых машин:

3. паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны;

4. двигатель Стирлинга и т. д.

5. гелиотермальная энергетика — Нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах).

6. Термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор).

7. Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество — запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду. [10]

Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века.

Фотоэлемент на основе поликристаллического кремния

Физический принцип работы фотоэлемента

Преобразование энергии в ФЭП основано на фотоэлектрическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.

Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны - энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.

Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП , среди которых наиболее важную роль играет фотопроводимость. Она обусловлена явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.

Солнце играет исключительную роль в жизни Земли. Весь органический мир нашей планеты обязан Солнцу своим существованием. Солнце – это не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра).
С момента появления на земле человек начал использовать энергию солнца. По археологическим данным известно, что для жилья предпочтение отдавали тихим, закрытым от холодных ветров и открытых солнечным лучам местам.

Содержание

Введение
1. Общие сведения о солнце ………………………………………………………………………………
2. Солнце – источник энергии …………………………………………………………………………….
2.1 Исследование солнечной энергии ……………………………………………………………………
2.2 Потенциал солнечной энергии ……………………………………………………………………….
3. Использование солнечной энергии ……………………………………………………………………
3.1 Пассивное использование солнечной энергии …………………………………………………….
3.2 Активное использование солнечной энергии …………………………………………………………
3.2.1 Солнечные коллекторы и их виды ………………………………………………………………….
3.2.2 Солнечные системы ………………………………………………………………………………….
3.2.3 Солнечные тепловые электростанции ………………………………………………………………..
3.3 Фотоэлектрические системы ………………………………………………………………………….
4. Заключение……………………………………………………………………………………………….
5. Список использованных источников ……………………………………………………………………

Прикрепленные файлы: 1 файл

Солнечная энергия и ее использование.doc

Существуют солнечные коллекторы различных размеров и конструкций в зависимости от их применения. Они могут обеспечивать хозяйство горячей водой для стирки, мытья и приготовления пищи, либо использоваться для предварительного нагрева воды для существующих водонагревателей. В настоящее время рынок предлагает множество различных моделей коллекторов.

Простейший вид солнечного коллектора - это "емкостной" или "термосифонный коллектор", получивший это название потому, что коллектор одновременно является и теплоаккумулирующим баком, в котором нагревается и хранится "одноразовая" порция воды. Такие коллекторы используются для предварительного нагрева воды, которая затем нагревается до нужной температуры в традиционных установках, например, в газовых колонках. В условиях домашнего хозяйства предварительно подогретая вода поступает в бак-накопитель. Благодаря этому снижается потребление энергии на последующий ее нагрев. Такой коллектор - недорогая альтернатива активной солнечной водонагревательной системе, не использующая движущихся частей (насосов), требующая минимального техобслуживания, с нулевыми эксплуатационными расходами.

Плоские коллекторы - самый распространенный вид солнечных коллекторов, используемых в бытовых водонагревательных и отопительных системах. Обычно этот коллектор представляет собой теплоизолированный металлический ящик со стеклянной либо пластмассовой крышкой, в который помещена окрашенная в черный цвет пластина абсорбера (поглотителя). Остекление может быть прозрачным либо матовым. В плоских коллекторах обычно используется матовое, пропускающее только свет, стекло с низким содержанием железа (оно пропускает значительную часть поступающего на коллектор солнечного света). Солнечный свет попадает на тепловоспринимающую пластину, а благодаря остеклению снижаются потери тепла. Дно и боковые стенки коллектора покрывают теплоизолирующим материалом, что еще больше сокращает тепловые потери.

Плоские коллекторы делятся на жидкостные и воздушные. Оба вида коллекторов бывают остекленными или неостекленными.

Солнечные трубчатые вакуумированные коллекторы

Традиционные простые плоские солнечные коллекторы были спроектированы для применения в регионах с теплым солнечным климатом. Они резко теряют в эффективности в неблагоприятные дни - в холодную, облачную и ветреную погоду. Более того, вызванные погодными условиями конденсация и влажность приводят к преждевременному износу внутренних материалов, а это, в свою очередь, - к ухудшению эксплуатационных качеств системы и ее поломкам. Эти недостатки устраняются путем использования вакуумированных коллекторов.

Вакуумированные коллекторы нагревают воду для бытового применения там, где нужна вода более высокой температуры. Солнечная радиация проходит сквозь наружную стеклянную трубку, попадает на трубку-поглотитель и превращается в тепло. Оно передается жидкости, протекающей по трубке. Коллектор состоит из нескольких рядов параллельных стеклянных трубок, к каждой из которых прикреплен трубчатый поглотитель (вместо пластины-поглотителя в плоских коллекторах) с селективным покрытием. Нагретая жидкость циркулирует через теплообменник и отдает тепло воде, содержащейся в баке-накопителе.

Вакуум в стеклянной трубке - лучшая из возможных теплоизоляций для коллектора - снижает потери тепла и защищает поглотитель и теплоотводящую трубку от неблагоприятных внешних воздействий. Результат - отличные рабочие характеристики, превосходящие любой другой вид солнечного коллектора.

Фокусирующие коллекторы (концентраторы) используют зеркальные поверхности для концентрации солнечной энергии на поглотителе, который также называется "теплоприемник". Достигаемая ими температура значительно выше, чем на плоских коллекторах, однако они могут концентрировать только прямое солнечное излучение, что приводит к плохим показателям в туманную или облачную погоду. Зеркальная поверхность фокусирует солнечный свет, отраженный с большой поверхности, на меньшую поверхность абсорбера, благодаря чему достигается высокая температура. В некоторых моделях солнечное излучение концентрируется в фокусной точке, тогда как в других лучи солнца концентрируются вдоль тонкой фокальной линии. Приемник расположен в фокусной точке или вдоль фокальной линии. Жидкость-теплоноситель проходит через приемник и поглощает тепло. Такие коллекторы-концентраторы наиболее пригодны для регионов с высокой инсоляцией - близко к экватору и в пустынных районах.

Существуют и другие недорогие технологически несложные солнечные коллекторы узкого назначения - солнечные печи (для приготовления еды) и солнечные дистилляторы, которые позволяют дешево получить дистиллированную воду практически из любого источника.

Они дешевы и просты в изготовлении. Они состоят из просторной хорошо теплоизолированной коробки, выстеленной отражающим свет материалом (например, фольгой), накрытой стеклом и оборудованной внешним отражателем. Кастрюля черного цвета служит поглотителем, нагреваясь быстрее, чем обычная посуда из алюминия или нержавеющей стали. Солнечные печи можно использовать для обеззараживания воды, если доводить ее до кипения.

Бывают ящичные и зеркальные (с отражателем) солнечные печи.

Солнечные дистилляторы обеспечивают дешевую дистиллированную воду, причем источником может служить даже соленая или сильно загрязненная вода. В их основе лежит принцип испарения воды из открытого контейнера. Солнечный дистиллятор использует энергию Солнца для ускорения этого процесса. Состоит он из теплоизолированного контейнера темного цвета с остеклением, которое наклонено с таким расчетом, чтобы конденсирующаяся пресная вода стекала в специальную емкость. Небольшой солнечный дистиллятор - размером с кухонную плиту - в солнечный день может вырабатывать до десяти литров дистиллированной воды.

3.2.2 Солнечные системы

Солнечные системы горячего водоснабжения

Горячее водоснабжение - наиболее распространенный вид прямого применения солнечной энергии. Типичная установка состоит из одного или более коллекторов, в которых жидкость нагревается на солнце, а также бака для хранения горячей воды, нагретой посредством жидкости- теплоносителя. Даже в регионах с относительно небольшим количеством солнечной радиации, например в Северной Европе, солнечная система может обеспечить 50-70% потребности в горячей воде. Больше получить невозможно, разве что с помощью сезонного регулирования. В Южной Европе солнечный коллектор может обеспечить 70-90% потребляемой горячей воды. Нагрев воды с помощью энергии Солнца - очень практичный и экономный способ. В то время, как фотоэлектрические системы достигают эффективности 10-15%, тепловые солнечные системы показывают КПД 50-90%. В сочетании с деревосжигающими печами бытовую потребность в горячей воде можно удовлетворять практически круглый год без применения ископаемых видов топлива.

Термосифонные солнечные системы

Термосифонными называются солнечные водонагревательные системы с естественной циркуляцией (конвекцией) теплоносителя, которые используются в условиях теплой зимы (при отсутствии морозов). В целом это не самые эффективные из солнечных энергосистем, но они имеют много преимуществ с точки зрения строительства жилья. Термосифонная циркуляция теплоносителя происходит благодаря изменению плотности воды с изменением ее температуры. Термосифонная система делится на три основные части:

· плоский коллектор (абсорбер);

· Бак-накопитель для горячей воды (бойлер).

Когда вода в коллекторе (обычно в плоском) нагревается, она поднимается по стояку и поступает в бак-накопитель; на ее место в коллектор со дна бака-накопителя поступает холодная вода. Поэтому необходимо располагать коллектор ниже бака-накопителя и утеплять соединительные трубы.

Такие установки популярны в субтропических и тропических областях.

Солнечные системы подогрева воды

Чаще всего используются для обогрева бассейнов. Несмотря на то, что стоимость такой установки меняется в зависимости от размера бассейна и других специфических условий, если солнечные системы устанавливаются с целью снижения или отказа от потребления топлива или электроэнергии, они за два-четыре года окупаются за счет экономии энергии. Более того, обогрев бассейна позволяет на несколько недель продлить купальный сезон без дополнительных затрат.

В большинстве зданий не составляет труда устроить солнечный обогреватель для бассейна. Он может сводиться к простому черному шлангу, по которому в бассейн подается вода. Для открытых бассейнов нужно всего лишь установить абсорбер. Закрытые бассейны требуют установки стандартных коллекторов, чтобы обеспечить теплую воду и зимой.

Есть и такие установки, которые позволяют зимой использовать тепло, накопленное летом солнечными коллекторами и сохраненное при помощи больших аккумулирующих баков (сезонное аккумулирование). Здесь проблема заключается в том, что количество жидкости, необходимое для обогрева дома, сопоставимо с объемом самого дома. Вдобавок, хранилище тепла необходимо очень хорошо изолировать. Чтобы обычный домашний бак-накопитель сохранил большую часть тепла в течение полугода, его пришлось бы обернуть в слой изоляции толщиной 4 метра. Поэтому выгодно делать объем накопительной емкости очень большим. Из-за этого снижается отношение площади поверхности к объему.

Крупные солнечные установки центрального отопления используются в Дании, Швеции, Швейцарии, Франции и США. Солнечные модули устанавливают прямо на земле. Без хранилища такая солнечная отопительная установка может покрыть около 5% годовой потребности в тепле, так как установка не должна вырабатывать больше, чем минимальное количество потребляемого тепла, включая потери в районной системе отопления (до 20% при передаче). Если есть хранение дневного тепла в ночное время, то солнечная отопительная установка может покрывать 10-12% потребности в тепле, включая потери при передаче, а с сезонным хранением тепла - до 100%. Существует также возможность комбинирования районного отопления с индивидуальными солнечными коллекторами. Районную систему отопления можно отключить на лето, когда горячее водоснабжение обеспечивается Солнцем, и нет потребности в отоплении.

Солнечная энергия в сочетании с другими возобновляемыми источниками.

Хороший результат приносит комбинирование различных возобновляемых источников энергии, например, тепло Солнца в сочетании с сезонным аккумулированием тепла в виде биомассы. Либо, если оставшаяся потребность в энергии очень низка, можно использовать жидкие или газообразные виды биотоплива в сочетании с эффективными котлами в дополнение к солнечному отоплению.

Интересную комбинацию представляют собой солнечное отопление и котлы, работающие на твердой биомассе. Этим же решается и проблема сезонного хранения солнечной энергии. Использование биомассы летом не является оптимальным решением, так как КПД котлов при частичной загрузке невысок, к тому же относительно высоки потери в трубах - а в небольших системах сжигание древесины летом может причинять неудобство. В таких случаях все 100% тепловой нагрузки летом может обеспечиваться за счет солнечного отопления. Зимой, когда количество солнечной энергии незначительно, практически все тепло вырабатывается за счет сжигания биомассы.

В Центральной Европе накоплен большой опыт комбинирования солнечного отопления и сжигания биомассы для производства тепла. Обычно около 20-30% общей тепловой нагрузки покрывает солнечная система, а главная нагрузка (70-80%) обеспечивается биомассой. Это сочетание может применяться и в индивидуальных жилых домах, и в системах центрального (районного) отопления. В условиях Центральной Европы около 10 м 3 биомассы (например, дров) достаточно для отопления частного дома, причем солнечная установка помогает сэкономить до 3 м 3 дров в год.

3.2.3 Солнечные тепловые электростанции

В дополнение к прямому использованию солнечного тепла, в регионах с высоким уровнем солнечной радиации ее можно использовать для получения пара, который вращает турбину и вырабатывает электроэнергию. Производство солнечной тепловой электроэнергии в крупных масштабах достаточно конкурентоспособно. Промышленное применение этой технологии берет свое начало в 1980-х; с тех пор эта отрасль быстро развивалась. В настоящее время энергокомпаниями США уже установлено более 400 мегаватт солнечных тепловых электростанций, которые обеспечивают электричеством 350 000 человек и замещают эквивалент 2,3 млн. баррелей нефти в год. Девять электростанций, расположенных в пустыне Мохаве (в американском штате Калифорния) имеют 354 МВт установленной мощности и накопили 100 лет опыта промышленной эксплуатации. Эта технология является настолько развитой, что, по официальным сведениям, может соперничать с традиционными электрогенерирующими технологиями во многих районах США. В других регионах мира также скоро должны быть начаты проекты по использованию солнечного тепла для выработки электроэнергии. Индия, Египет, Марокко и Мексика разрабатывают соответствующие программы, гранты для их финансирования предоставляет Глобальная программа защиты окружающей среды (GEF). В Греции, Испании и США новые проекты разрабатываются независимыми производителями электроэнергии.

По способу производства тепла солнечные тепловые электростанции подразделяют на солнечные концентраторы (зеркала) и солнечные пруды.


Солнце играет исключительную роль в жизни Земли. Весь органический мир нашей планеты обязан Солнцу своим существованием. Солнце — это не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра).

С момента появления на земле человек начал использовать энергию солнца. По археологическим данным известно, что для жилья предпочтение отдавали тихим, закрытым от холодных ветров и открытых солнечным лучам местам.

Пожалуй, первой известной гелиосистемой можно считать статую Аменхотепа III, относящуюся к XV веку до н. э. Внутри статуи располагалась система воздушных и водяных камер, которые под солнечными лучами приводили в движение спрятанный музыкальный инструмент. В Древней Греции поклонялись Гелиосу. Имя этого бога сегодня легло в основу многих терминов, связанных с солнечной энергетикой.

Проблема обеспечения электрической энергией многих отраслей мирового хозяйства, постоянно растущих потребностей населения Земли становится сейчас все более насущной [1].

Использование солнечной энергии

Солнечная радиация может быть преобразована в полезную энергию, используя так называемые активные и пассивные солнечные системы. Пассивные системы получаются с помощью проектирования зданий и подбора строительных материалов таким образом, чтобы максимально использовать энергию Солнца. К активным солнечным системам относятся солнечные коллекторы. Также в настоящее время ведутся разработки фотоэлектрических систем — это системы, которые преобразовывают солнечную радиацию непосредственно в электричество.

Энергия — это движущая сила любого производства. Тот факт, что в распоряжении человека оказалось большое количество относительно дешевой энергии, в значительной степени способствовало индустриализации и развитию общества.

Пассивное использование солнечной энергии

Пассивные солнечные здания — это те, проект которых разработан с максимальным учетом местных климатических условий, и где применяются соответствующие технологии и материалы для обогрева, охлаждения и освещения здания за счет энергии Солнца. К ним относятся традиционные строительные технологии и материалы, такие как изоляция, массивные полы, обращенные к югу окна. Такие жилые помещения могут быть построены в некоторых случаях без дополнительных затрат. В других случаях возникшие при строительстве дополнительные расходы могут быть скомпенсированы снижением энергозатрат. Пассивные солнечные здания являются экологически чистыми, они способствуют созданию энергетической независимости и энергетически сбалансированному будущему [2].

1 Активное использование солнечной энергии

Активное использование солнечной энергии осуществляется с помощью солнечных коллекторов и солнечных систем.

1.1 Солнечные коллекторы и их виды

В основе многих солнечных энергетических систем лежит применение солнечных коллекторов. Коллектор поглощает световую энергию Солнца и преобразует ее в тепло, которое передается теплоносителю (жидкости или воздуху) и затем используется для обогрева зданий, нагрева воды, производства электричества, сушки сельскохозяйственной продукции или приготовления пищи. Солнечные коллекторы могут применяться практически во всех процессах, использующих тепло.

Типичный солнечный коллектор накапливает солнечную энергию в установленных на крыше здания модулях трубок и металлических пластин, окрашенных в черный цвет для максимального поглощения радиации. Они заключены в стеклянный или пластмассовый корпус и наклонены к югу, чтобы улавливать максимум солнечного света. Таким образом, коллектор представляет собой миниатюрную теплицу, накапливающую тепло под стеклянной панелью. Поскольку солнечная радиация распределена по поверхности, коллектор должен иметь большую площадь.

Существуют солнечные коллекторы различных размеров и конструкций в зависимости от их применения. Они могут обеспечивать хозяйство горячей водой для стирки, мытья и приготовления пищи, либо использоваться для предварительного нагрева воды для существующих водонагревателей. В настоящее время рынок предлагает множество различных моделей коллекторов.

Плоские коллекторы — самый распространенный вид солнечных коллекторов, используемых в бытовых водонагревательных и отопительных системах. Обычно этот коллектор представляет собой теплоизолированный металлический ящик со стеклянной либо пластмассовой крышкой, в который помещена окрашенная в черный цвет пластина абсорбера (поглотителя). Остекление может быть прозрачным либо матовым. В плоских коллекторах обычно используется матовое, пропускающее только свет, стекло с низким содержанием железа (оно пропускает значительную часть поступающего на коллектор солнечного света). Солнечный свет попадает на тепловоспринимающую пластину, а благодаря остеклению снижаются потери тепла. Дно и боковые стенки коллектора покрывают теплоизолирующим материалом, что еще больше сокращает тепловые потери [3].

1.2 Солнечные системы

Солнечные системы горячего водоснабжения

Горячее водоснабжение — наиболее распространенный вид прямого применения солнечной энергии. Типичная установка состоит из одного или более коллекторов, в которых жидкость нагревается на солнце, а также бака для хранения горячей воды, нагретой посредством жидкости-теплоносителя. Даже в регионах с относительно небольшим количеством солнечной радиации, например в Северной Европе, солнечная система может обеспечить 50–70 % потребности в горячей воде. Больше получить невозможно, разве что с помощью сезонного регулирования. В Южной Европе солнечный коллектор может обеспечить 70–90 % потребляемой горячей воды. Нагрев воды с помощью энергии Солнца — очень практичный и экономный способ. В то время, как фотоэлектрические системы достигают эффективности 10–15 %, тепловые солнечные системы показывают КПД 50–90 %. В сочетании с деревосжигающими печами бытовую потребность в горячей воде можно удовлетворять практически круглый год без применения ископаемых видов топлива.

Термосифонные солнечные системы

Термосифонными называются солнечные водонагревательные системы с естественной циркуляцией (конвекцией) теплоносителя, которые используются в условиях теплой зимы (при отсутствии морозов). В целом это не самые эффективные из солнечных энергосистем, но они имеют много преимуществ с точки зрения строительства жилья. Термосифонная циркуляция теплоносителя происходит благодаря изменению плотности воды с изменением ее температуры. Термосифонная система делится на три основные части:

- плоский коллектор (абсорбер);

- Бак-накопитель для горячей воды (бойлер).

Когда вода в коллекторе (обычно в плоском) нагревается, она поднимается по стояку и поступает в бак-накопитель; на ее место в коллектор со дна бака-накопителя поступает холодная вода. Поэтому необходимо располагать коллектор ниже бака-накопителя и утеплять соединительные трубы [4].

1.3 Солнечные тепловые электростанции

В дополнение к прямому использованию солнечного тепла, в регионах с высоким уровнем солнечной радиации ее можно использовать для получения пара, который вращает турбину и вырабатывает электроэнергию. Производство солнечной тепловой электроэнергии в крупных масштабах достаточно конкурентоспособно. Промышленное применение этой технологии берет свое начало в 1980-х; с тех пор эта отрасль быстро развивалась. В настоящее время энергокомпаниями США уже установлено более 400 мегаватт солнечных тепловых электростанций, которые обеспечивают электричеством 350 000 человек и замещают эквивалент 2,3 млн. баррелей нефти в год. Девять электростанций, расположенных в пустыне Мохаве (в американском штате Калифорния) имеют 354 МВт установленной мощности и накопили 100 лет опыта промышленной эксплуатации. Эта технология является настолько развитой, что, по официальным сведениям, может соперничать с традиционными электрогенерирующими технологиями во многих районах США. В других регионах мира также скоро должны быть начаты проекты по использованию солнечного тепла для выработки электроэнергии. Индия, Египет, Марокко и Мексика разрабатывают соответствующие программы, гранты для их финансирования предоставляет Глобальная программа защиты окружающей среды (GEF). В Греции, Испании и США новые проекты разрабатываются независимыми производителями электроэнергии.

Существуют следующие виды солнечных концентраторов:

1. Солнечные параболические концентраторы

2. Солнечная установка тарельчатого типа

3. Солнечные электростанции башенного типа с центральным приемником [5].

В настоящее время используется лишь ничтожная часть солнечной энергии из-за того, что существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве. Однако не следует сразу отказываться от практически неистощимого источника чистой энергии: по утверждениям специалистов, гелиоэнергетика могла бы одна покрыть все мыслимые потребности человечества в энергии на тысячи лет вперед. Возможно, также повысить КПД гелиоустановок в несколько раз, а разместив их на крышах домов и рядом с ними, мы обеспечим обогрев жилья, подогрев воды и работу бытовых электроприборов даже в умеренных широтах, не говоря уже о тропиках. Для нужд промышленности, требующих больших затрат энергии, можно использовать километровые пустыри и пустыни, сплошь уставленные мощными гелиоустановками. Но перед гелиоэнергетикой встает множество трудностей с сооружением, размещением и эксплуатацией гелиоэнергоустановок на тысячах квадратных километров земной поверхности. Поэтому общий удельный вес гелиоэнергетики был и останется довольно скромным, по крайней мере, в обозримом будущем.

1. Поиски жизни в Солнечной системе: Перевод с английского. М.: Мир, 1998 г.

2. Жуков Г. Ф. Общая теория энергии.//М: 1995., с. 11–25

3. Видяпин В. И., Журавлева Г. П. Физика. Общая теория.//М: 2005,с. 166–174

4. Дагаев М. М. Астрофизика.//М:2007.

5. Тимошкин С. Е. Солнечная энергетика и солнечные батареи. М., 2009.

Основные термины (генерируются автоматически): коллектор, солнечная энергия, горячая вода, система, солнечная радиация, солнечный свет, Активное использование, предварительный нагрев воды, солнечный коллектор, черный цвет.

Похожие статьи

Способы получения электрики и тепла из солнечного излучения

солнечная энергия, солнечное излучение, коллектор, фотоэлемент, элемент, окружающая среда, солнечная энергетика, горячее водоснабжение, солнечная тепловая энергия, солнечная электростанция.

Анализ эффективности съёма энергии солнца в системе.

В статье рассмотрены перспективы использования солнечной энергии на территории России и Омской области в частности, применение зарубежных разработок. Ключевые слова: солнечная энергетика, коллекторы, СЭС, СФЭУ, применение.

Отопление с использованием солнечных коллекторов в городе.

Основные термины (генерируются автоматически): солнечный коллектор, RUCELF, солнечная энергия, коллектор, горячая вода, трубка, кВт, горячее водоснабжение, солнечная радиация, тепло.

солнечный коллектор, солнечная энергия, контроллер.

Гибридные солнечные коллекторы | Статья в журнале.

солнечная панель, солнечный коллектор, гибридный солнечный коллектор, солнечная энергия, гибридная система, горячее водоснабжение, солнечная батарея, общий КПД, вырабатываемая тепловая энергия.

Эффективность преобразования солнечной энергии

солнечная энергия, солнечная панель, солнечный коллектор, солнечная энергетика, автор работы, горячее водоснабжение, солнечная батарея, тепловая энергия, окружающая среда, автор.

Аккумулирование энергии солнца Мировым океаном

Мировой океан — крупнейший естественный коллектор солнечного излучения. Между верхними теплыми слоями воды, поглощающими солнечное излучение, и более холодными

Эффективность съёма энергии солнца в системе солнечный коллектор — солнечная панель.

Эффективность съёма энергии солнца в системе солнечный.

Гафаров А. А., Смородин Г. С., Копейкин Д. А. Эффективность съёма энергии солнца в системе солнечный коллектор — солнечная панель

Очень ценные и наиболее подходящие регионы для развития и использования солнечного излучения представлены чуть ниже

Перспективы использования солнечной энергии для отопления.

солнечная энергия, отопление дома, коллектор, солнечная батарея, кВт, дом, Россия, Европа, солнечная радиация, горячая вода.

Повышение энергоэффективности систем теплоснабжения.

Ключевые слова: теплоснабжение, горячее водоснабжение, солнечная радиация, солнечная энергия, солнечный коллектор. В районах республики с большим числом солнечных дней и жарким климатом целесообразно использование солнечной энергии для целей.

Читайте также: