Реферат на тему распределение

Обновлено: 07.07.2024

Гамма-распределения, график функции распределения числа дефектных изделий. Определение квантиля порядка. Распределения Пирсона, Стьюдента, Фишера и Пуассона. Центральная предельная теорема. Экспоненциальные и логарифмически нормальные распределения.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 24.11.2010
Размер файла 123,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

1. Распределения случайных величин и функции распределения

2. Преобразования случайных величин

4. Распределения Пирсона, Стьюдента и Фишера

5. Центральная предельная теорема (общий случай)

6. Логарифмически нормальные распределения

7. Экспоненциальные распределения

9. Распределение Пуассона

1. Распределения случайных величин и функции распределения

Распределение числовой случайной величины - это функция, которая однозначно определяет вероятность того, что случайная величина принимает заданное значение или принадлежит к некоторому заданному интервалу.

Первое - если случайная величина принимает конечное число значений. Тогда распределение задается функцией Р(Х=х), ставящей каждому возможному значению х случайной величины Х вероятность того, что Х = х.

Второе - если случайная величина принимает бесконечно много значений. Это возможно лишь тогда, когда вероятностное пространство, на котором определена случайная величина, состоит из бесконечного числа элементарных событий. Тогда распределение задается набором вероятностей P(a 0 и b. Это множество называют масштабно-сдвиговым семейством, порожденным случайной величиной Х. Функции распределения FY(x) составляют масштабно сдвиговое семейство распределений, порожденное функцией распределения F(x). Вместо Y = aX + b часто используют запись

Число с называют параметром сдвига, а число d - параметром масштаба. Формула (3) показывает, что Х - результат измерения некоторой величины - переходит в У - результат измерения той же величины, если начало измерения перенести в точку с, а затем использовать новую единицу измерения, в d раз большую старой.

Для масштабно-сдвигового семейства (3) распределение Х называют стандартным. В вероятностно-статистических методах принятия решений и других прикладных исследованиях используют стандартное нормальное распределение, стандартное распределение Вейбулла-Гнеденко, стандартное гамма-распределение и др.

Применяют и другие преобразования случайных величин. Например, для положительной случайной величины Х рассматривают Y = lg X, где lg X - десятичный логарифм числа Х. Цепочка равенств

FY(x) = P(lg X x ) = F(10 x )

связывает функции распределения Х и Y.

Непрерывные функции распределения не имеют скачков. Они монотонно возрастают при увеличении аргумента - от 0 при до 1 при . Случайные величины, имеющие непрерывные функции распределения, называют непрерывными.

Практически используемые непрерывные функции распределения, как правило, имеют производные. Первая производная f(x) функции распределения F(x) называется плотностью вероятности,

По плотности вероятности можно определить функцию распределения:

Для любой функции распределения

Перечисленные свойства функций распределения постоянно используются в вероятностно-статистических методах принятия решений. В частности, из последнего равенства вытекает конкретный вид констант в формулах для плотностей вероятностей.

Пример. Часто используется следующая функция распределения:

где a и b - некоторые числа, a 0.

3. Квантили

Для дискретных распределений, как правило, не существует хр, удовлетворяющих уравнению (4). Точнее, если распределение случайной величины дается табл.1, где x1 -?x . Величина 1/? - масштабный параметр. Иногда вводят и параметр сдвига с, при этом экспоненциальным распределением называют распределение случайной величины Х + с, где распределение Х задается формулой (5).

В формуле (5) е = 2,718281828… - основание натуральных логарифмов. Функция экспоненциального распределения F(x, ?) и его плотность f(x. ?) связаны простым соотношением

Это соотношение имеет простую интерпретацию в терминах теории надежности технических изделий и устройств. Оно означает, что интенсивность отказов (т.е. интенсивность выхода изделий из строя) постоянна, другими словами, не зависит от того, сколько времени изделие уже проработало. Обычно интенсивность отказов постоянна на основном этапе эксплуатации, после того, как на начальном этапе выявлены скрытые дефекты, и до того, как из-за естественного старения материалов начинает происходить ускоренный износ с резким возрастанием интенсивности выхода изделия из строя.

8. Гамма-распределения

Перейдем к семейству гамма-распределений. Они широко применяются в экономике и менеджменте, теории и практике надежности и испытаний, в различных областях техники, метеорологии и т.д. В частности, гамма-распределению подчинены во многих ситуациях такие величины, как общий срок службы изделия, длина цепочки токопроводящих пылинок, время достижения изделием предельного состояния при коррозии, время наработки до k-го отказа, k = 1, 2, …, и т.д. Продолжительность жизни больных хроническими заболеваниями, время достижения определенного эффекта при лечении в ряде случаев имеют гамма-распределение. Это распределение наиболее адекватно для описания спроса в экономико-математических моделях управления запасами (логистики).

Плотность гамма-распределения имеет вид

Плотность вероятности в формуле (6) определяется тремя параметрами a, b, c, где a>0, b>0. При этом a является параметром формы, b - параметром масштаба и с - параметром сдвига. Множитель 1/?(а) является нормировочным, он введен, чтобы

Здесь ?(а) - одна из используемых в математике специальных функций, так называемая "гамма-функция", по которой названо и распределение, задаваемое формулой (6),

При фиксированном а формула (6) задает масштабно-сдвиговое семейство распределений, порождаемое распределением с плотностью

Распределение вида (7) называется стандартным гамма-распределением. Оно получается из формулы (6) при b = 1 и с = 0.

Если случайная величина X имеет гамма-распределение с параметром формы а таким, что d = 2a - целое число, b = 1 и с = 0, то 2Х имеет распределение хи-квадрат с d степенями свободы.

Случайная величина X с гвмма-распределением имеет следующие характеристики:

- математическое ожидание М(Х) = ab + c,

- дисперсию D(X) = ? 2 = ab 2 ,

Нормальное распределение - предельный случай гамма-распределения. Точнее, пусть Z - случайная величина, имеющая стандартное гамма-распределение, заданное формулой (7). Тогда

для любого действительного числа х, где Ф(х) - функция стандартного нормального распределения N(0,1).

В прикладных исследованиях используются и другие параметрические семейства распределений, из которых наиболее известны система кривых Пирсона, ряды Эджворта и Шарлье. Здесь они не рассматриваются.

9. Распределение Пуассона

Еще одно широко используемое дискретное распределение - распределение Пуассона. Случайная величина Y имеет распределение Пуассона, если

где ? - параметр распределения Пуассона, и P(Y=y)=0 для всех прочих y (при y=0 обозначено 0! =1). Для распределения Пуассона

Это распределение названо в честь французского математика С.Д.Пуассона (1781-1840), впервые получившего его в 1837 г. Распределение Пуассона является предельным случаем биномиального распределения, когда вероятность р осуществления события мала, но число испытаний n велико, причем np = ?. Точнее, справедливо предельное соотношение

Распределение Пуассона возникает в теории потоков событий. Доказано, что для простейшего потока с постоянной интенсивностью ? число событий (вызовов), происшедших за время t, имеет распределение Пуассона с параметром ? = ?t. Следовательно, вероятность того, что за время t не произойдет ни одного события, равна e - ? t , т.е. функция распределения длины промежутка между событиями является экспоненциальной.

Описание иных параметрических семейств дискретных распределений и возможности их практического использования рассматриваются в обширной (более миллиона названий статей и книг на десятках языков) литературе по вероятностно-статистическим методам.

10. Список литературы

распределение квантиль пирсон стьюдент фишер

1. А.И. Орлов. Математика случая, М.: МЗ-Пресс, 2004.

Подобные документы

Распределения случайных величин и функции распределения. Нормальное распределение и центральная предельная теорема, направления и особенности их применения в вероятностно-статистических методах принятия решений. Типичное поведение интенсивности отказа.

курсовая работа [859,1 K], добавлен 02.01.2013

Оценки параметров распределения, наиболее важные распределения, применяемые в математической статистике: нормальное распределение, распределения Пирсона, Стьюдента, Фишера. Факторное пространство, формулирование цели эксперимента и выбор откликов.

реферат [105,5 K], добавлен 01.01.2011

Двумерная функция распределения вероятностей случайных величин. Понятие условной функции распределения и плотности распределения вероятностей. Корреляция двух случайных величин. Система произвольного числа величин, условная плотность распределения.

реферат [325,3 K], добавлен 23.01.2011

Пространства элементарных событий. Совместные и несовместные события. Функция распределения системы случайных величин. Функции распределения и плотности распределения отдельных составляющих системы случайных величин. Условные плотности распределения.

задача [45,4 K], добавлен 15.06.2012

Вероятность совместного выполнения двух неравенств в системе двух случайных величин. Свойства функции распределения. Определение плотности вероятности системы через производную от соответствующей функции распределения. Условия закона распределения.

презентация [57,9 K], добавлен 01.11.2013

Проверка гипотезы о законе распределения. Определение значения вероятности по классам распределения случайных величин нефтеносных залежей. Расчет распределения эффективных мощностей месторождения, которое подчиняется нормальному закону распределения.

презентация [187,0 K], добавлен 15.04.2019

Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Критерии согласия: Пирсона, Романовского, Колмогорова.

Критерий Пирсона.

- теоретическая частота
- эмпирическая частота
Методика расчета теоретических частот:
1. Определяется среднее арифметическое и по интервальному вариационному ряду, считается t по каждому интервалу.
Находится значение плотности вероятности для нормированного закона распределения

2. Находится теоретическая частота.

SHAPE \* MERGEFORMAT

Для целей распространения результатов выборочного распределения на генеральную совокупность используется два метода:
· Метод прямого пересчета;
· Метод поправочных коэффициентов.
Метод прямого пересчета применяется для определения по данным о выборочной доле величины интервала, в пределах которого в генеральной совокупности с заданной вероятностью находится число единиц, обладающих изучаемым признаком.
Основное назначение метода поправочных коэффициентов – уточнение данных сплошного массового наблюдения посредством выборочных проверок. Обычно такие проверки осуществляются инструкторами-контролерами по результатам проведенных переписей.
3. Статистическое изучение взаимосвязи социально-экономических явлений
Изучение зависимостей – это сложнейшая задача, поскольку социально-экономические явления сами по себе сложны и многообразны. Кроме того, полученные выводы носят вероятностный характер, так как они делаются на основе данных, представляющих собой выборку во времени или пространстве.
Статистические методы изучения зависимости построены с учетом особенностей изучаемых закономерностей. Статистика изучает преимущественно стохастические связи, когда одному значению признака-фактора соответствует группа значений результативного признака. Если с изменением значений признака-фактора изменяются среднегрупповые значения результативного признака, то такие связи называют корреляционными. Не всякая стохастическая зависимость является корреляционной. Если каждому значению факторного признака соответствует строго определенное значение результативного признака, то такая зависимость функциональная. Ее называют еще полной корреляцией. Неоднозначные корреляционные зависимости называют неполной корреляцией.
По механизму взаимодействия различают:
· Непосредственные связи – когда причина прямо влияет на следствие;
· Косвенные связи – когда между причиной и следствием существуют ряд промежуточных признаков (например, влияние возраста на заработок).
По направлениям различают:
· Прямые связи – когда значение факторного и результативного признаков изменяются в одном направлении;
· Обратные связи – когда значения факторного и результативного признаков изменяются в разных направлениях.
Бывают:
· Прямолинейные (линейные) связи – выражены прямой линией;
· Криволинейные связи – выражены параболой, гиперболой.
По числу взаимосвязанных признаков различают:
· Парные связи – когда анализируется взаимосвязь двух признаков (факторного и результативного);
· Множественные связи – характеризуют влияние нескольких признаков на один результативный.
По силе взаимодействия различают:
· Слабые (заметные) связи;
· Сильные (тесные) связи.
Задача статистики определить наличие, направление, форму и тесноту взаимосвязи.
Для изучения зависимости применяются различные статистические методы. Поскольку зависимости в статистике проявляются через вариацию признаков, то и методы в основном измеряют и сопоставляют вариацию факторного и результативного признаков.
Если изобразить результаты группировки на графике, получим эмпирическую линию регрессии. Интервалы значений факторного признака заменяются средними групповыми показателями.
Помимо эмпирической линии регрессии, непосредственно определяющей форму и направление взаимосвязей, существует корреляционное поле, на котором отражаются параметрические данные.
По корреляционному полю так же можно судить о характере взаимосвязи. Если точки сконцентрированы около диагонали идущей слева направо, снизу вверх – то связь прямая. Если около другой диагонали – обратная. Если точки рассеяны по всему полю графика – связь отсутствует.
При построении аналитической группировки важно правильно определить величину интервала. Если в результате первичной группировки связь не проявляется отчетливо, можно укрупнить интервал. Однако, укрупняя интервалы, можно иногда обнаружить связь даже там, где ее нет. Поэтому при построении аналитической группировки руководствуются правилом: чем больше групп мы можем выделить, не натолкнувшись ни на одно исключение, тем надежнее наша гипотеза о наличии и форме связи.
Нематематические методы дают приближенную оценку о наличии, формы и направлении связи. Более глубокий анализ осуществляется с помощью математических методов, которые развились на базе методов, применяемых статистиками – нематематиками:
· Регрессионный анализ, позволяющий выразить с помощью уравнения форму взаимосвязи.
· Корреляционный анализ используется для определения тесноты или силы взаимосвязи признаков. Корреляционные методы делят:
- Параметрические методы, которые дают оценку тесноты связи непосредственно на базе значений факторного и результативного признаков;
- Непараметрические методы – дают оценку на основе условных оценок признаков.
Оценка тесноты криволинейных зависимостей дается после расчета параметра уравнения регрессии. Поэтому такой метод называется корреляционно-регрессивным.
Если анализируется зависимость одного факторного и результативного признаков, то в этом случае имеем дело с парной корреляцией и регрессией. Если анализируются несколько факторных и результативных признаков – это множественная корреляция и регрессия.
Регрессия – это линия, характеризующая наиболее общую тенденцию во взаимосвязи факторного и результативного признаков.
Предполагается, что аналитическое уравнение выражает подлинную форму зависимости, а все отклонения от этой функции обусловлены действием различных случайных причин. Так как изучаются корреляционные связи, изменению факторного признака соответствует изменение среднего уровня результативного признака. При построении аналитических группировок мы рассматривали эмпирическую линию регрессии. Однако, эта линия не пригодна для экономического моделирования и ее форма зависит от произвола исследователя. Теоретически линия регрессии в меньшей степени зависит от субъективизма исследователя, однако, здесь так же может быть произвол при выборе формы или функции взаимосвязи. Считается, что выбор функции должен опираться на глубокое знание специфики предмета исследования.
На практике чаще всего применяются следующие формы регрессионных моделей:
· Линейная ;
· Полулогарифметическая кривая ;
· Гипербола ;
· Парабола второго порядка ;
· Показательная функция ;
· Степенная функция .
Помимо содержательного подхода существует формальная оценка адекватности подобранной регрессионной модели. Лучшей из них считается та, которая наименее удалена от исходных данных.


Данное свойство средней, гласящее, что сумма квадратов отклонений всех вариантов ряда от средней арифметической меньше суммы квадратов их отклонений от любого другого числа, положено в основу метода наименьших квадратов, позволяющего рассчитать параметры избранного уравнения регрессии таким образом, чтобы линия регрессии была в среднем наименее удалена от эмпирических данных.
Непараметрические методы измерения тесноты взаимосвязи количественных признаков были первыми из методов измерения тесноты взаимосвязи. Впервые попытался измерить тесноту связи в 30-ч годах 19 века французский ученый Гиррий. Он сопоставлял между собой среднегрупповые значения факторного и результативного признаков. При этом абсолютные значения заменялись их отношениями к некоторым константам. Полученные результаты ранжировались в порядке возрастания. О наличии или отсутствии связи Гиррий судил сопоставляя ранее по группам и подсчитывая количество совпадений и несовпадений рангов. Если преобладало число совпадений – связь считалась прямой. Несовпадение – обратной. При равенстве совпадений и несовпадений – связь отсутствовала.
Методика Гиррий была использована Фехнером при разработке своего коэффициента, а так же Спирменом при разработке коэффициента корреляции рангов.

Коэффициент указывает на наличие весьма тесной обратной связи.
На ряду с коэффициентом Фехнера для измерения взаимосвязи количественных признаков применяются коэффициенты корреляции рангов. Наиболее распространенным среди них является коэффициент корреляции рангов Спирмена.

Непараметрические методы применяются для измерения тесноты связи качественных и альтернативных признаков, а так же количественных признаков, распределение которых отличается от нормального распределения.
Для измерения связи альтернативных признаков применяются коэффициент ассоциации Дэвида Юла и коэффициент контингенции Карла Пирсона. Для расчета этих показателей применяется следующая матрица взаимного распределения частот:
a, b, c, d – частоты взаимного распределения признаков.
При прямой связи частоты сконцентрированы по диагонали a-d, при обратной связи по диагонали b-c, при отсутствии связи частоты практически равномерно распределены по всему полю таблицы.
Коэффициент ассоциации

Коэффициент ассоциации непригоден для расчета в том случае, если одна из частот по диагонали равна 0. В этом случае применяется коэффициент контингенции, который рассчитывается по формуле:


Коэффициент контингенции также указывает на практическое отсутствие связи между признаками (его величина всегда меньше Кас).
Для измерения тесноты линейной взаимосвязи применяется коэффициент корреляции. Базовая форма коэффициента корреляции следующая:

Фактически, коэффициент корреляции – это среднее произведения нормативных отклонений:

Если связь между признаками отсутствует, то результативный признак не варьирует при изменении факторного признака, следовательно . Такой же результат получается при сбалансированности сумм отрицательных и положительных произведений.
Обычно для расчета коэффициента корреляции применяются формулы, использующие те показатели, которые уже рассчитывались при определении параметров уравнения регрессии.
Множественная корреляция и регрессия применяется для изучения влияния двух и более факторов на результативный признак. Процесс исследования включает несколько этапов.
Сначала проводится выбор формы уравнения взаимосвязи, чаще всего выбирается n-мерная линейная формула:
,
так как легче считать и интерпретировать полученный результат.
Поскольку расчеты важны и трудоемки, важнейшее значение имеет отбор факторов для включения в регрессионную модель. На основе качественного анализа необходимо отбирать наиболее существенные факторы. На этапе отбора факторов, рассчитывается так же единичная матрица парных коэффициентов корреляции между признаками факторов, отобранных для включения в уравнение регрессии.

Литература
1. Авдокушин Е.Ф. Основы статистики: Учебное пособие. М., 2004.
2. Буглай В.Б., Ливенцев Н.Н. Статистика: Учебное пособие / Под ред. Н.Н. Ливенцева. М., 2006.
3. Ивашковский А.А. и др. Статистика и ее применение в экономике: учебник. М., 2007.
4. Копцев К.В.. Прикладная статистика. СПб, 2003.

Распределение Пуассона называют также распределением редких событий. Например, рождение за год трёх или четырёх близнецов, тот же закон распределения имеет число распавшихся в единицу времени атомов радиоактивного вещества и др. [4.]

Примеры переменных, распределенных по закону Пуассона, дают число несчастных случаев, число фатальных дефектов в производственном процессе. Распределение Пуассона определяется формулой:


где
- ожидаемое значение x (среднее)
- число Эйлера (2.71. ) [1.]

Закон Пуассона зависит от одного параметра - λ (лямбда), смысл которого в следующем: он является одновременно математическим ожиданием и дисперсией случаной величины, распределённой по закону Пуассона.

Во-первых, распределение Пуассона является предельным для биномиального распределения, когда число опытов n неограниченно увеличивается (стремится к бесконечности) и одновременно вероятность p успеха в одном опыте неограниченно уменьшается (стремится к нулю), но так, что их произведение np сохраняется в пределе постоянным и равным λ (лямбде):

В математическом анализе доказано, что распределение Пуассона с параметромλ = np можно приближенно применять вместо биномиального, когда число опытов nочень велико, а вероятность p очень мала, то есть в каждом отдельном опыте событие A появляется крайне редко.


  • стационарность: вероятность наступления m событий в определённый период времени постоянна и не зависит от начала отсчёта времени, а зависит только от длины участка времени;

  • ординарность: вероятность попадания на малый участок времени двух или более событий пренебрежимо мала по сравнению с вероятностью попадания на него одного события;

  • отсутствие последствия: вероятность наступления m событий в определённый период времени не зависит от того, сколько событий наступило в предыдущий период. [4.]

Нормальное распределение

1. Имеется сильная тенденция данных принимать центральное значение;

2. Положительные и отрицательные отклонения от этого центрального значения равновероятны;

3. Частота отклонений быстро падает, когда отклонения становятся большими.

Механизм, лежащий в основе нормального распределения, можно представить следующим образом. Имеется бесконечное число независимых случайных событий, которые вносят вклад в значения наблюдаемой переменной. Например, имеется практически бесконечное число факторов, определяющих вес человека (тысячи генов, предрасположенность, болезни и т.д.). Таким образом, можно ожидать нормальное распределение для веса в популяции всех людей. Плотность нормального распределения имеет вид:


где
- среднее
- стандартное отклонение
- число Эйлера (2.71. )
- число Пи (3.14. )

Распределение Максвелла

В этой формуле а = 0,6267 х - параметр распределения, определяемый через среднюю арифметическую х варьирующего признака; t=xi/a, где xi - числовые значения случайной величины Х; dх- разность между двумя смежннми значениями переменной величины Х.

Указанием на то, что эмпирическое распределение следует закону Максвелла, служит равенство между средним квадратическим отклонением и величиной 0,674 а, т. е. sx=0,674 а, тогда как для распределения Пуассона характерно равенство Sx^2 =Х.

Распределение Шарлье

При выравнивании таких рядов важно найти кривую, которая бы учитывала ассиметрию и эксцессу ряда.

Для рядов с умеренной асимметрией такой кривой может служить распределение Шарлье, частоты которой рассчитываются по формуле


где N- общее число единиц совокупности


- нормированный момент третьего порядка, выступающий в качестве показателя асимметрии ряда


- показатель эксцесса

Антон Капустин

1) Понятие статистических рядов распределения, их виды
2) Атрибутивные ряды распределения
3) Вариационные ряды распределения.

Понятие статистических рядов распределения.
Результаты сводки и группировки материалов статистического наблюдения оформляются в виде статистических рядов распределения. Статистические ряды распределения представляют собой упорядоченное распределение единиц изучаемой совокупности на группы по группировочному (варьирующему) признаку. Они характеризуют состав (структуру) изучаемого явления, позволяют судить об однородности совокупности, границах ее изменения, закономерностях развития наблюдаемого объекта. В зависимости от признака статистические ряды распределения делятся на:
- атрибутивные (качественные);
- вариационные (количественные)
а) дискретные;
б) интервальные.
Атрибутивные ряды распределения
Атрибутивные ряды образуются по качественным признакам, которыми могут выступать занимаемая должность работников торговли, профессия, пол, образование и т.д.

Антон Капустин

Таблица 1.
Распределение работников предприятия по образованию
Образование работников Количество работников
абсолютное в % к итогу
высшее 20 15,4
неполное высшее 25 19,2
среднее специальное 35 26,9
среднее 50 38,5
ИТОГО 130 100

В данном примере группировочным признаком выступает образование работников предприятия (высшее, среднее). Данные ряды распределения являются атрибутивными, поскольку варьирующий признак представлен не количественными, а качественными показателями. Наибольшее число составляют работники со средним образованием (порядка 40%); остальные работники распределяются на группы по данному качественному признаку: со средним специальным образованием - 25%; с неполным высшим - 20%; с высшим - 15%.

Антон Капустин

Вариационные ряды распределения
Вариационные ряды строятся на основе количественного группировочного признака. Вариационные ряды состоят из двух элементов: вариант и частот. Варианта - это отдельное значение варьируемого признака, которое он принимает в ряду распределения. Они могут быть положительными и отрицательными, абсолютными и относительными. Частота - это численность отдельных вариант или каждой группы вариационного ряда. Частоты, выраженные в долях единицы или в процентах к итогу, называются частостями. Сумма частот называется объемом совокупности и определяет число элементов всей совокупности.
Частости – это частоты, выраженные в виде относительных величин (долях единиц или процентах). Сумма частостей равна единице или 100 %. Замена частот частостями позволяет сопоставлять вариационные ряды с разным числом наблюдений. Вариационные ряды в зависимости от характера вариации подразделяются на дискретные (прерывные) и интервальные (непрерывные). Дискретные ряды распределения основаны на дискретных (прерывных) признаках, имеющих только целые значения (например, тарифный разряд рабочих, число детей в семье). Интервальные ряды распределения базируются на непрерывно изменяющемся значении признака, принимающем любые (в том числе и дробные) количественные выражения, т.е. значение признаков таких рядах задается в виде интервала.
При наличии достаточно большого количества вариантов значений признака первичный ряд является труднообозримым, и непосредственное рассмотрение его не дает представления о распределении единиц по значению признака в совокупности. Поэтому первым шагом в упорядочении первичного ряда является его ранжирование – расположение всех вариантов в возрастающем (убывающем) порядке. Для построения дискретного ряда с небольшим числом вариантов выписываются все встречающиеся варианты значений признака , а затем подсчитывается частота повторения варианта . Ряд распределения принято оформлять в виде таблицы, состоящей из двух колонок (или строк), в одной из которых представлены варианты, а в другой - частоты. Для построения ряда распределения непрерывно изменяющихся признаков, либо дискретных, представленных в виде интервалов, необходимо установить оптимальное число групп (интервалов), на которые следует разбить все единицы изучаемой совокупности

Антон Капустин

Графическое изображение статистических данных
Ряды распределения удобно изучать с помощью графического метода. Статистический график – это чертеж, на котором статистические совокупности, характеризуемые определенными показателями, описываются с помощью условных геометрических образов или знаков. Представление данных таблиц в виде графика производит более сильное впечатление, чем цифры, позволяет лучше осмыслить результаты статистического наблюдения, правильно их истолковывать, значительно облегчает понимание статистического материала, делает его наглядным и доступным. Это, однако, вовсе не означает, что графики имеют лишь иллюстративное значение. Они дают новое знание о предмете исследования, являясь методом обобщения исходной информации.
Значение графического метода в анализе и обобщении данных велико. Графическое изображение позволяет осуществить контроль достоверности статистических показателей, так как, представленные на графике, они более ярко показывают имеющиеся неточности, связанные либо с наличием ошибок наблюдения, либо с сущностью изучаемого явления. С помощью графического изображения возможны изучение закономерностей развития явления, установление существующих взаимосвязей. Простое сопоставление данных не всегда дает возможность уловить наличие причинных зависимостей, в то же время их графическое изображение способствует выявлению причинных связей, в особенности в случае установления первоначальных гипотез, подлежащих затем дальнейшей разработке. Графики также широко используются для изучения структуры явлений, их изменения во времени и размещения в пространстве. В них более выразительно проявляются сравнительные характеристики и отчетливо виды основные тенденции развития и взаимосвязи, присущие изучаемому явлению или процессу.

Антон Капустин

Для изображения и внесения суждений о развитии явления во времени и составе совокупности наряду с графиками строятся диаграммы.
Используются диаграммы: столбиковые, ленточные, квадратные, круговые, линейные, радикальные и др. Выбор вида диаграммы зависит в основном от особенностей исходных данных, цели исследования. Например, если имеется ряд динамики с несколькими неравноотносящимися уровнями во времени (1913, 1940, 1950, 1980, 1985, 1997 гг.), то часто для наглядности используют столбиковые, квадратные или круговые диаграммы. Они зрительно впечатляют, хорошо запоминаются, но не годны для изображения большого числа уровней, так как громоздки. Когда число уровней в ряду динамики велико, целесообразно применять линейные диаграммы, которые воспроизводят непрерывность процесса развития в виде непрерывной ломанной линии. Кроме того, линейные диаграммы удобно использовать: если целью исследования является изображение общей тенденции и характера развития явления; когда на одном графике необходимо изобразить несколько динамических рядов с целью их сравнения; если наиболее существенным является сопоставление темпов роста, а не уровней.
Основное назначение структурных диаграмм заключается в графическом представлении состава статистических совокупностей, характеризующихся как соотношение различных частей каждой из совокупностей. Состав статистической совокупности графически может быть представлен с помощью как абсолютных, так и относительных показателей. В первом случае не только размеры отдельных частей, но и размер графика в целом определяются статистическими величинами и измеряются в соответствии с изменениями последних. Во втором – размер всего графика не меняется (так как сумма всех частей любой совокупности составляет 100%), а меняются только размеры отдельных его частей. Графическое изображение состава совокупности по абсолютным и относительным показателям способствует проведению более глубокого анализа и позволяет проводить международные сопоставления и сравнения социально – экономических явлений.
Итак, статистические ряды распределения представляют собой один из наиболее важных элементов статистического исследования. Статистические ряды распределения являются базисным методом для любого статистического анализа. Статистический ряд распределения представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку, характеризует структуру изучаемого явления.

Антон Капустин

Анализируя рассчитанные показатели статистического ряда распределения, можно делать выводы об однородности или неоднородности совокупности, закономерности распределения и границах варьирования единиц совокупности. Изучив основные приемы исследования и практики применения рядов распределения, а также методику вычисления наиболее важных статистических величин, необходимо отметить, что конечная цель изучения статистики в целом - анализ изучаемого явления - крайне важен для всех сфер человеческой жизни. Анализ отображает явления в целом и вместе с этим учитывает влияние каждого фактора в отдельности. На основании проведенного анализа можно учитывать и прогнозировать факторы, негативно влияющие на развитие событий.
Социально-экономическая статистика обеспечивает предоставление важной цифровой информации об уровне и возможностях развития страны: ее экономическом положении, уровне жизни населения, его составе и численности, рентабельности предприятий, динамике безработице и т.д. Статистическая информация является одним из решающих ориентиров государственной экономической политики.
Статистические методы используют комплексно (системно). Выделяют три основные стадии экономико-статистического исследования: сбор первичной статистической информации, статистическая сводка и обработка первичной информации, обобщение и интепретация статистической информации.

Читайте также: