Реферат на тему применение трехфазного тока

Обновлено: 02.07.2024

Трёхфазная цепь, трёхфазная система, совокупность трёх однофазных электрических цепей переменного тока (называемых фазами), в которых действуют три переменных напряжения одинаковой частоты, сдвинутых по фазе друг относительно друга; частный случай многофазной системы. Наиболее распространены симметричные трёхфазные системы, напряжения в которых синусоидальные, равны по величине и имеют сдвиг фаз, равный 120°.

Содержание

Введение………………………………………………………………………….. 3
Трёхфазная система электроснабжения ………………………………………. 4
Преимущества …………………………………………………………………. 5
Схемы соединений трехфазных цепей ……………………………………. … 5
Звезда …………………………………………………………………………….5
Соотношение между линейными и фазными токами и напряжениями. …….7
Последствия отгорания (обрыва) нулевого провода в трехфазных сетях …..7
Проблема гармоник, кратных третьей …………………………………………8
Треугольник ……………………………………………………………………. 9
Соотношение между линейными и фазными токами и напряжениями ……..11
Распространённые стандарты напряжений
Маркировка ……………………………………………………………………. 11
Заключение ………………………………………………………………………12
Литература……………………………

Работа содержит 1 файл

Нов трехфазн.docx

Трёхфазная система электроснабжения ………………………………………. 4

Схемы соединений трехфазных цепей ………………………………… …. … 5

Соотношение между линейными и фазными токами и напряжениями. …….7

Последствия отгорания (обрыва) нулевого провода в трехфазных сетях …..7

Проблема гармоник, кратных третьей …………………………………………8

Соотношение между линейными и фазными токами и напряжениями ……..11

Распространённые стандарты напряжений

Трёхфазная цепь, трёхфазная система, совокупность трёх однофазных электрических цепей переменного тока (называемых фазами), в которых действуют три переменных напряжения одинаковой частоты, сдвинутых по фазе друг относительно друга; частный случай многофазной системы. Наиболее распространены симметричные трёхфазные системы, напряжения в которых синусоидальные, равны по величине и имеют сдвиг фаз, равный 120°. Трёхфазная система называется электрически несвязанной, если отдельные фазы представляют собой независимые электрические цепи, и электрически связанной, если её отдельные фазы электрически соединены между собой. Практическое применение имеют электрически связанные трёхфазные системы, образованные фазными обмотками трёхфазного генератора, тремя приёмниками электроэнергии (фазами нагрузки) и соединительными (линейными) проводами. Если фазные обмотки генератора и фазы нагрузки соединены звездой. Наличие нейтрального провода уменьшает взаимное влияние режимов работы фаз Т. ц. и обеспечивает возможность подключения к Т. ц. однофазной нагрузки. Напряжения между линейными проводами и протекающие по этим проводам токи называются линейными; токи, протекающие по фазным обмоткам генератора и фазам нагрузки, а также напряжения на них — фазными. В общем случае линейные токи и напряжения отличаются от соответствующих фазных. Трёхфазная система была предложена М. О. Доливо-Добровольским (1891), который разработал все основные звенья этой системы — генераторы, трансформаторы, линии передачи и двигатели трёхфазного тока. Она получила преимущественное распространение в электроэнергетике. По сравнению с однофазными цепями переменного тока Т. ц. более экономичны, дают существенно меньшие пульсации тока после выпрямления. Применение Т. ц. позволяет простыми средствами получать вращающееся магнитное поле в электродвигателях переменного тока.

Россия, EC (выше 1000 В) Россия, ЕС (ниже 1000 В) Германия Дания
А L1 U1 R
B L2 V1 S
C L3 W1 T

Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который провёл ряд экспериментов с индукционным электродвигателем и выявил ряд преимуществ трёхфазной системы по отношению к другим системам.

Преимущества

Благодаря этим преимуществам, трёхфазные системы наиболее распространённые в современной электроэнергетике.

Схемы соединений трехфазных цепей

Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток приёмника (M) также соединяют в общую точку. Провода, соединяющие начала фаз генератора и приёмника, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным. Шины для раздачи нулевых проводов и проводов заземления при подключении звездой. Одно из преимуществ подключения звездой — экономия на нулевом проводе, поскольку от генератора до точки разделения нулевых проводов вблизи потребителя, требуется только один провод. Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной. Если сопротивления Za, Zb, Zc приёмника равны между собой, то такую нагрузку называют симметричной.

Рис. 2. Соединение звездой трехфазных цепей

Существующие виды защиты от линейного напряжения, которые можно найти в продаже в электротехнических магазинах. Как и требуют современные стандарты, монтаж происходит на DIN-рейку. Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток приёмника (M) также соединяют в общую точку. Провода, соединяющие начала фаз генератора и приёмника, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным. Шины для раздачи нулевых проводов и проводов заземления при подключении звездой. Одно из преимуществ подключения звездой — экономия на нулевом проводе, поскольку от генератора до точки разделения нулевых проводов вблизи потребителя, требуется только один провод. Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной. Если сопротивления Za, Zb, Zc приёмника равны между собой, то такую нагрузку называют симметричной.

Соотношение между линейными и фазными токами и напряжениями.

Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами() называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Последствия отгорания (обрыва) нулевого провода в трехфазных сетях

Проблема гармоник, кратных третьей

Треугольник

Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.

Рис.3 Схема соединений треугольником

Соединение фаз источника в замкнутый треугольник возможно при симметричной системе ЭДС, так как

Если соединение обмоток треугольником выполнено неправильно, т.е. в одну точку соединены концы или начала двух фаз, то суммарная ЭДС в контуре треугольника отличается от нуля и по обмоткам протекает большой ток. Это аварийный режим для источников питания, и поэтому недопустим. Напряжение между концом и началом фазы при соединении треугольником – это напряжение между линейными проводами. Поэтому при соединении треугольником линейное напряжение равно фазному напряжению.

Пренебрегая сопротивлением линейных проводов, линейные напряжения потребителя можно приравнять линейным напряжениям источника питания: Uab =, Ubc =, Uca =. По фазам Zab, Zbc, Zca приемника протекают фазные токи İab, İbc и İca. Условное положительное направление фазных напряжений Úab, Úbc и Úca совпадает с положительным направлением фазных токов. Условное положительное направление линейных токов İA, İB и İC принято от источников питания к приемнику. В отличие от соединения звездой при соединении треугольником фазные токи не равны линейным. Токи в фазах приемника определяются по формулам

İab = Úab / Zab; İbc = Úbc / Zbc; İca = Úca / Zca.

Линейные токи можно определить по фазным, составив уравнения по первому закону Кирхгофа для узлов a, b и c

İA = İab - İca; İB = İbc - İab; İC = İca - İbc.

Сложив левые и правые части системы уравнений, получим

т.е. сумма комплексов линейных токов равна нулю как при симметричной, так и при несимметричной нагрузке.

Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в МЭК 60445:2010.

Пути получения трёхфазной системы переменного тока. Характеристика трехфазного генератора, служащего источником энергии в трехфазной системе. Соединение источника энергии и приемника по схеме "звезда и треугольник". Активная мощность трехфазной системы.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 03.04.2011
Размер файла 297,9 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат на тему:

Принцип получения трёхфазной системы переменного тока

Трехфазные электротехнические устройства

переменный ток трехфазный мощность

здесь с нулевой начальной фазой, как обычно, выбрана ЭДС фазы А. На рис. 2 показаны график мгновенных значений фазных ЭДС и три вектора соответствующих им комплексных значений. Сумма трех векторов комплексных значений ЭДС равна нулю. Следовательно, алгебраическая сумма комплексных значений фазных ЭДС и алгебраическая сумма мгновенных значений фазных ЭДС генератора равны нулю:

Комплексные значения ЭДС трехфазного симметричного генератора можно выразить через одинаковое для всех трех фаз действующее значение Еф и соответствующий комплексный множитель:

Комплексная величина называется фазным множителем трехфазной системы и обозначается буквой а. Умножение комплексного значения на а соответствует повороту изображающего вектора на угол 2 в положительном направлении, т. е. против направления движения стрелки часов. Таким образом,

Для получения трехфазной системы необходимо определенным образом соединить фазы источника энергии и фазы приемника. Возможны два основных способа соединения в трехфазной системе - соединение источника энергии и приемника по схеме звезда и соединение источника энергии и приемника по схеме треугольник.

Соединение трехфазной системы заездом и треугольником

Соединение источника энергии и приемника по схеме звезда

У источника энергии и приемника, выполненных по схеме звезда(условное обозначение Y), все концы фазных обмотокгенератора соединяются в общий узел N (рис.4); такой же узел n образует соединение трех фаз приемника, а три обратных провода фаз системы объединяются в один общий нейтральный провод. Остальные три провода, соединяющий генератор с приемником, называются линейными. Узел, который образует обмотки фаз генератора или фазы приемника, называется нейтралью или нейтральной точкой. Пренебрегая сопротивлениями всех проводов, легко определить токи трех фазприемника и генератора:

и ток в нейтральном проводе

Приемник с одинаковыми сопротивлениями всех трех фаз

называется симметричным. При симметричном приемнике у токов всех фаз одинаковые действующие значения и одинаковые сдвиги фаз относительно соответствующих фазных ЭДС (рис.5), ток в нейтральном проводе (5) равен нулю. Поэтому в случае симметрического приемника, или, как говорят, при симметричной нагрузке генератора, нейтральный провод не нужен и не прокладывается. Примером такого приемника является трехфазный двигатель с соединением трехфазных обмоток по схеме звезда.

В трехфазной системе напряжения между выводами каждой фазной обмотки генератора или каждой фазы приемника называются фазными напряжениями.

У симметричной трехфазной системы действующие значения фазных напряжени одинаковы: . Фазными токами называются токи в фазных обмотках генератора или в фазах приемника. Напряжения между линейными проводами называются линейными и линейными называются токи в линейных проводах. Запишем уравнение по другому закону Кирхгофа для контура, обозначенного на рис.4 пунктиром, и двух других аналогичных контуров и учтем, что

Для линейных напряжений получим:

где - действующее значение линейного напряжения. Векторная диаграмма фазных и линейных напряжений при соединении источника энергии и приемника по схеме звезда дана на рис.5. Вектор линейного напряжения построен по (7а) , т. е. получен как результат суммирования вектора и вектора -, который по длине равен вектору и противоположен ему по направлению. Аналогично построены и остальные два вектора линейных напряжений. При наличии нейтрального провода (рис.4) условия (6) выполняются как при симметричном, так и при несимметричном приемнике, а при отсутствии нейтрального провода - только при симметричном. В обоих случаях векторы комплексных значений фазных и линейных напряжений образуют три одинаковых равнобедренных треугольника с углом при основании. Из треугольников напряжений следует, что между действующими значениями линейных и фазных напряжений справедливо соответствие

Например, линейное напряжение а фазное или линейное , а фазное . При соединении источника энергии и приемника по схеме звезда линейные токи равны соответствующим разным токам. В случае симметричного приемника действующие значения всех линейных и фазных токов одинаковые:

Каждый трехфазный двигатель представляет собой симметричный приемник. Поэтому для подключения электродвигателей к источнику энергии применяют трехпроводные линии.Но для осветительной нагрузки (рис.6) нейтральный провод необходим, поскольку нет оснований рассчитывать на полную симметрию такого трехфазного приемника. В нейтральном проводе четырехпроводной осветительный магистрали запрещена установка предохранителей или выключателей, так как при отключении нейтрального провода фазные напряжения могут стать неравными. В результате в одних фазах (или фазе) может наблюдаться недокал, а в других фазах (или фазе) - перекал и быстрое перегорание ламп. Если при таком соединении перегорит один из магистральных предохранителей, то отключатся лампы только одной (соответствующей) фазы.

Соединение иэточника энергии и приемника по схеме треугольник

У трехфазной системы, выполненной по схеие треугольник (условное обозначение Д), нейтральный провод отсутствует. Покажем сначала, как можно получить такую трехфазную цепь из необъедпненной системы (рис.7,а), в которой три фазные обмотки генератора соединены шестью проводами с тремя приемниками. Для получения из фазных обмоток генератора схемы треугольник (рис.7,б) соединим конец X первой обмотки с началом В второй обмотки и конец Z третьей обмотки с началом A первой обмотки. Так как алгебраическая сумма синусоидальных фазных ЭДС генератора равна нулю (2), то никакого дополнительного (уравнительного) тока в обмотках генератора не возникает.

После объединения обмоток герератора напряжения между началом и концом каждой фазы не изменятся, т.е. эти фазные напряжения одинаковы для несвязанной (рис 7,а) и связаной(рис 7,б) систем.Поэтому и токи в фазах приемника,т.е. фазные токи,, в связанной системе такие же, как в несвязанной.Токи в каждом из трех объединенных линейных проводов, т.е. линейные токи, равны разностям соответствующих фазных токов (первый закон Кирхгофа для узлов приемника):

Линейные напряжения равны соответствующим фазным напряжениям, их комплексные значения:

По закону Ома комплексные значения фазных токов:

причем у симметричного приемника

и у всех фазных токов одинаковые действующие значения и одинаковые сдвиги фаз относительно соответствующих ЭДС или фазных напряжений.

Векторная диаграмма напряжений и токов показана на рис.8. Из треугольников токов следует, что в симметричной трехфазной системе для действующих значений линейных и фазных токов справедливо соотношение

Как следует из (11), действующие значения линейных и фазных напряжений равны друг другу и при несимметричном приемнике:

Преимуществом соединения источника энергии и приемника по схеме треугольник по сравнению с соединением по схеме звезда без нейтрального провода является взаимная независимость фазных токов. На рис. 9 показана осветительная установка, выполненная по схеме треугольник. Если при таком соединении перегорит один из магистральных предохранителей (например, в линейном проводе В), то лампы в двух фазах (АВ и ВС) окажутся последовательно включенными и при одинаковой мощности ламп напряжения на лампах каждой из этих фаз будет равно только половине линейного (номинального) напряжения; напряжение на лампах третьей фазы (СА) останется нормальным. Рассмотренные выше методы анализа соединений одноименных фаз источника энергии и приемника по схемам звезда и треугольник можно распространить и на трехфазную цепь, у которой схемы соединения фаз источника энергии и фаз приемника различные.

Мощность трехфазной цепи переменного тока

Активная, реактивная и полная мощности трехфазной симметричной системы

Активной мощностью (часто просто мощность) трехфазной системы называется сумма активных мощностей всех фаз источника энергии, равная сумме активных мощностей всех фаз приемника.

В симметричной трехфазной системе, т. е. системе с симметричными генератором и приемником, при любой схеме их соединений для каждой фазы мощности источника энергии и приемника одинаковые. В этом случае и для каждой из фаз справедлива формула активной мощности синусоидального тока:

Где - угол сдвига фаз между фазными напряжением и токов. Заменив действующие значения фазных тока и напряжения линейными при соединении источника энергии и приемника по схеме звезда (8), (9) и треугольник (14), (15), получим одно и то же выражение для активной мощности симметричной трехфазной системы:

В промышленных установках приемники обычно симметричные или почти симметричные, т. е. мощность может быть вычислена по (16). В общем случае реактивной мощностью трехфазной системы называется сумма реактивных мощностей всех фаз источника энергии, равная сумме реактивных мощностей всех фаз приемника. Реактивная мощность симметричной трехфазной системы

или после замены действующих значений фазных тока и напряжения линейными

Комплексной мощностью трехфазной системы называется сумма комплексных мощностей всех фаз источника энергии, равная сумме комплексных мощностей всех фаз приемника. Полная мощность симметричной фазной системы

Сравнение условий работы трехфазных цепей при различных соединениях фаз приемника

Схема соединения трехфазного приемника не зависит от схемы соединения трехфазного генератора.Соединение фаз приемника по схеме треугольника часто переключается на соединение по схеме звезда для изминения тока и мощности,например для уменьшения пусковых токов трехфазных двигателей,изминения температуры трехфазных электрических печей и т.д. Рассмотрим, как изменения действующие значения токов симетричного приемника с полным фазным сопротивлением при переключении фаз со схемы звезда на треугольник, например, простым трехполюсным переключателем (рис 10). При соединении приемника по схеме звезда между действующими значениями фазных и линейных токов (9) и напряжений (8) справедливы соотношения

из которых следует, что

При соединении приемника по схеме треугольник между действующими значениями фазных и линейных токов (14) и напряжений (15) справедливы соотношения

из которых следует, что

Сопоставив выражения для действующих значений линейных токов при соединении приемника по схемам звезда (19) и треугольник (20), получим при одном и том же действующем значении линейного напряжения и одинаковых полных фазных сопротивлениях

а для действующим значений фазных токов

Активная мощность трехфазного симметричного приемника при любой из схем соединения по (16) равна:

Вследствие уменьшения действующего значения линейного тока при переключении фаз приемника со схемы треугольник на схему звезда мощность уменьшается в 3 раза, т. е.

Измерение активной мощности трехфазной системы

В случае симметричного трехфазного приемника мощности всех фаз одинаковы, поэтому достаточно измерить активную мощность одной фазы. Активная мощность приемника . Очень просто измеряется мощность одной фазы если приемник соединен по схеме звезда с доступной нейтральной точкой. На рис. 11,а показано включение ваттметра, который измеряет мощность фазы A приемника. Подобное включение ваттметра позволяет измерить мощность одной фазы, если приемник соединен по схеме треугольник(рис. 11,б).

Если фазы симметричного приемника недоступны, то необходима искусственная нейтральная точка. Это - нейтральная точка цепи по схеме звезда, состоящей из цепи напряжения ваттметра с сопротивлением r и двух резисторов с сопротивлениями (рис. 12).При таком соединении цепь напряжения ваттметра находится под фазным напряжением, тока в его цепи тока равен фазному (линейному) току приемника ,соединенного по схеме звезда (треугольник).Следовательно, в обоих случаях (16) ваттметр измеряет третью часть мощности приемника. Обычно завод-изготовитель выпускает такой ваттметр с искусственной нейтральной точкой для измерения мощности в симметричных трехфазных системах. В трехфазных трехпроходных системах мощность при несимметричном приемнике в большинстве случаев измеряют методом двух ваттметров. Своеобразная особенность этого метода измерения заключается в том, что даже при симметричном приемнике показания двух ваттметров в большинстве случаев не одинаковые, причем показания одного из них может быть и отрицательным. В этом случае мощность трехфазной системы равна алгебраической сумме показаний двух ваттметров. Для доказательства справедливости измерения мощности методом двух ваттметров сначала выразим мгновенную мощность системы через мгновенные значения напряжений и токов. Мгновенная мощность любой фазы равна произведению мгновенных значений фазных напряжения и тока, а мгновенная мощность трехфазной системы равна сумме мгновенных мощностей фаз.

Но при соединении фаз приемника по схеме звезда без нейтрального провода

Подставив это значение тока в выражение мгновенной мощности, получим:

Так как разность фазных напряжений равна соответствующему линейному напряжению (7) т. е.

то мгновенная мощность

Следовательно, мгновенная мощность трехфазной системы равна сумме двух произведений мгновенных значений линейных напряжений и токов. Сумма средних значений этих двух произведений, т. е. активная мощность системы, может быть измерена двумя ваттметрами (рис. 13,а):

где - угол сдвига фаз между соответствующими линейным напряжением и током.

Из этого выражения следует, что при симметричном приемнике показания ваттметров будут равны только при . Если , то показание второго ваттметра будет отрицательным, т. е. сумма показаний алгебраическая. Можно не доказывать возможность измерения мощности методом двух ваттметров при соединении фаз приемника по схеме треугольник, так как заданных значениях линейных напряжений и токов мощность не зависит от схемы соединения фаз приемника. Для измерения мощности в трехфазных системах с нейтральным проводом простейшим является метод трех ваттметров (рис. 14). При таком соединении каждый из ваттметров измеряет мощность одной фазы приемника (или генератора). Активная мощность трехфазной системы равна сумме показаний трех ваттметров:

Ваттметры трехфазного тока, устанавливаемые на распределительных щитах, представляют собой два (для трехпроходной системы) или три (для четырехпроходной системы) измерительных механизма, связанных общей осью и воздействующих на общую стрелку. Эти измерительные механизмы включаются в трехфазную цепь соответственно методам измерения при помощи двух или трех ваттметров.

Подобные документы

Особенности соединения источника энергии и приемника по схеме звезда и треугольник. Активная, реактивная и полная мощности трехфазной симметричной системы. Симметричная трехфазная цепь с несколькими приемниками. Несимметричный режим трехфазной цепи.

курсовая работа [818,9 K], добавлен 15.12.2010

Основные понятия, определения и величины, характеризующие трехфазные электрические цепи. Источник электрической энергии в трехфазной цепи. Способы соединения фаз источника трехфазного тока и соотношения. Соединение приемников звездой и треугольником.

контрольная работа [240,1 K], добавлен 19.01.2011

Трехфазные электротехнические устройства. Соединения источника энергии и приемника по схемам звезды и треугольника. Активная и реактивная мощности трехфазной симметричной системы. Сравнение условий работы цепей при различных соединениях фаз приемника.

контрольная работа [812,5 K], добавлен 16.01.2011

Основные элементы трехфазных электрических цепей, а также напряжение между фазными выводами. Анализ электрических цепей при соединении трехфазного источника и приемника по схеме "звезда" с нулевым проводом. Соединение приемника по схеме "треугольник".

презентация [742,4 K], добавлен 22.09.2013

Основные элементы трехфазных электрических цепей. Трехфазный источник электрической энергии. Анализ электрических цепей при соединении трехфазного источника и приемника по схемам "звезда" с нулевым проводом и "треугольник". Расчет и измерение мощности.

презентация [742,4 K], добавлен 25.07.2013

Передача электрической энергии от источника к потребителю в трехфазной трехпроводной системе с помощью линейных приводов. Второй закон Кирхгофа. Схемы соединения звездой трехфазного потребителя. Определение фазного тока потребителя по закону Ома.

лабораторная работа [492,6 K], добавлен 01.02.2010

Изучение особенностей соединения фаз приемников по схеме "звезда". Опытное исследование распределений токов, линейных и фазных напряжений при симметричных и несимметричных режимах работы трехфазной цепи. Выяснение роли нейтрального провода в цепи.

Применение трехфазного тока объясняется большей экономичностью сетей и установок трехфазного тока по сравнению с установками однофазного переменного тока, а также возможностью широкого использования в качестве электропривода наиболее надежных, простых и дешевых асинхронных электродвигателей. [1]

Применение трехфазного тока имеет следующие преимущества: электродвигатель прост по конструкции ( отсутствует коллектор) и дешевле двигателя постоянного тока. Кроме того, передача и распределение переменного тока при больших расстояниях значительно проще и дешевле. [2]

Применение трехфазного тока объясняется большой экономичностью сетей и установок трехфазного тока по сравнению с установками однофазного переменного тока, а также возможностью широкого использования в качестве электропривода наиболее надежных, простых и дешевых асинхронных электродвигателей. [3]

Применение трехфазного тока объясняется большей экономичностью сетей и установок трехфазного тока по сравнению с установками однофазного переменного тока, а также возможностью широкого использования в качестве электропривода наиболее надежных, простых и дешевых асинхронных электродвигателей. [4]

Если применение трехфазного тока невозможно, кабель прогревают однофазным током; этот способ прогрева требует более длительного времени. Прогрев кабелей однофазным током должен выполняться по схемам, обеспечивающим протекание тока в прямом и обратном направлении через жилы кабеля. В случае необходимости прогрева кабеля в отапливаемом помещении при температуре окружающего воздуха ниже - 20 С продолжительность прогрева кабелей на барабанах должна быть не менее 3 суток при температуре воздуха в помещении от 5 до 10 С; 1 - 1 5 суток при температуре воздуха в помещении от 10 до 25 С; 18 ч при температуре воздуха в помещении от 25 до - т - 40 С. [5]

При применении трехфазного тока обычно принимают меры к выравниванию нагрузки отдельных фаз, благодаря чему ток в нулевом проводе значительно меньше токов в линейных проводах. [7]

При применении трехфазного тока все жилы внутреннего конца кабеля соединяют накоротко, после чего конец герметически заделывают. К наружному концу кабеля, разделанному временной концевой заделкой, подводят ток от специального трансформатора или от передвижного сварочного агрегата. [8]

В промышленном производстве представляет преимущества применение трехфазного тока . [10]

В работе показана принципиальная возможность применения трехфазного тока для разработки прямых методов получения солей кобальта и предложена конструкция промышленного трехфазного электролизера. [11]

Рассмотрим принцип получения вращающегося магнитного поля с применением трехфазного тока . Положим также, что все три катушки имеют одинаковое число витков ( на схеме показано по одному витку) и совершенно однотипны и что они питаются от симметричной трехфазной системы напряжений, чем обеспечивается равенство токов в атушках. [12]

Рассмотрим принцип получения вращающегося магнитного поля с применением трехфазного тока . Положим также, что все три катушки имеют одинаковое число витков ( на схеме показано по одному витку) и совершенно однотипны и что они питаются от симметричной трехфазной системы напряжений, чем обеспечивается равенство. [13]

В Москве на Раушской набережной построена ЦЭС Общества 1886 г. мощностью 3300 кет, 2 000 в, 50 гц с применением трехфазного тока . [14]

При дальнейшем увеличении передаваемой мощности и энергии до 2 000 МВт на цепь и 14 0 млрд. кВт - ч / год экономическая граница применения трехфазного тока 600 кВ снижается до 500 - 800 км. [15]

Трехфазный переменный ток - это ток, который вырабатывают электростанции в настоящее время. Генератор трехфазного тока представляет собой как бы три объединенных вместе генератора переменного тока, работающих так, чтобы сила тока (и напряжение) изменялась у них не одновременно, а с отставанием на 1/3 периода. Это осуществляется за счет смещения катушек генераторов на 120° одна относительно другой. Был изобретён Доливо-Добровольским в 80х годах IX века. В 1889 г. Доливо-Добровольскнй изобрел трехфазный трансформатор. Вначале это был трансформатор с радиальным расположением сердечников. Его конструкция еще напоминает машину с выступающими полюсами, в которой устранен воздушный зазор, а обмотки ротора перенесены на стержни.



Трехфазные цепи являются частным случаем многофазных систем, под которыми понимают совокупность нескольких нагрузок и источников питания, имеющих одинаковую частоту и смещенных по фазе на некоторый угол друг относительно друга. Каждая пара источник-нагрузка может рассматриваться как отдельная цепь и называется фазой системы.



Трехфазная система токов требует для передачи и распределения электроэнергии только три провода. Для передачи одинаковой мощности на три провода в трехфазной системе требовалось затратить металла на 25 % меньше, чем на два провода в однофазной. Эта очевидная экономия металла была одним из главных аргументов в пользу трехфазной системы.

В трехфазной системе токов существует два способа соединения:


а) Звездой б) Треугольником

Соединение треугольником


Соединение треугольником - это соединение, в котором все элементы объединены в замкнутый контур так, что у соседних элементов соединены между собой начало и конец

Рис. 12. Пример соединения треугольником Uф = Uл

Соединение треугольником применяется как при осветительной, так и при силовой нагрузке. Например, в школьной мастерской станки можно включать в звезду или треугольник. Выбор того или иного способа соединения определяется величиной напряжения сети и номинальным напряжением приемников электрической энергии.
Принципиально можно соединять треугольником и фазы генератора, но обычно этого не делают. Дело в том, что для создания заданного линейного напряжения каждая фаза генератора при соединении треугольником должна быть рассчитана на напряжение, в раз большее, чем в случае соединения звездой. Более высокое напряжение в фазе генератора требует увеличения числа витков и усиленной изоляции для обмоточного провода, что увеличивает размеры и стоимость машин. Поэтому фазы трехфазных генераторов почти всегда соединяют звездой. Двигатели же иногда в момент пуска включают звездой, а затем переключают на треугольник.

Читайте также: