Реферат на тему поворот

Обновлено: 05.07.2024

Доказательство Фалесом равенства углов при основании равнобедренного треугольника. Развитие теории движений, определение равенства фигур. Виды движений: параллельный перенос, поворот вокруг точки и др. Аналитическое выражение движения на плоскости.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 04.05.2016
Размер файла 19,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подготовила: ученица 9А класса Лисина Карина

1. История развития движений

Первым, кто начал доказывать некоторые геометрические предложения, считается древнегреческий математик Фалес Милетский (625-547г. до н.э.).

Именно благодаря Фалесу геометрия начала превращаться из свода практических правил в подлинную науку. До Фалеса доказательств просто не существовало!

Каким же образом проводил Фалес свои доказательства. Для этой цели он использовал движение.

Движение это преобразования фигур, при котором сохраняются расстояния между точками. Если две фигуры точно совместить друг с другом посредством движения, то эти фигуры одинаковы, равны.

Именно таким путем Фалес доказал ряд первых теорем геометрии. Если плоскость повернуть как твердое целое вокруг некоторой точки О на 180 0 , то луч ОА перейдет в его продолжение ОА 1 . При таком повороте (его еще называют центральной симметрией с центром О) каждая точка А перемещается в такую точку А 1 , что О является серединой отрезка АА 1

Пусть О общая вершина вертикальных углов АОВ и А 1 ОВ 1 . Но тогда ясно, что при повороте на 180 0 стороны одного из двух вертикальных углов как раз перейдут в стороны другого, т. е. эти два угла совместятся. Значит, вертикальные углы равны.

Доказывая равенство углов при основании равнобедренного треугольника, Фалес воспользовался осевой симметрией: две половинки равнобедренного треугольника он совместил перегибанием чертежа по биссектрисе угла при вершине. Тем же способом Фалес доказал, что диаметр делит круг пополам.

Применял Фалес и еще одно движение параллельный перенос, при котором все точки фигуры смещаются в определенном направлении на одно и тоже расстояние. С его помощью он доказал теорему, которая сейчас носит его имя: если на одной стороне угла отложить равные отрезки и провести через концы этих отрезков параллельные прямые до пересечения со второй стороны угла, то на другой стороне угла также получатся равные отрезки.

Во времена античной истории идеей движения пользовался знаменитый Евклид, автор Начал книги, переживший более двух тысячелетий. Евклид был современником Птолемея 1, правившего в Египте, Сирии и Македонии в 305-283 до н.э.

Дальнейшее развитие теории движений связывают с именем французского математика и историка науки Мишеля Шаля (1793-1880). В 1837г. он выпускает труд исторический обзор происхождение и развитие геометрических методов в процессе собственных геометрических исследований Шаль доказывает важнейшую теорему:

Всякое меняющие ориентацию движение плоскости является либо параллельным переносом, либо поворотом.

Всякое меняющее ориентацию движение плоскости является либо осевой симметрией, либо скользящей симметрией.

Важным обогащением, которым геометрия обязана 19 веку, является создание теории геометрических преобразований, в частности, математической теорией движений. (перемещений).

К этому времени назрела необходимость дать классификаций всех существующих геометрических систем. Такую задачу решил немецкий математик Кристиан Феликс Клейн(1849 1925).

В 1872 г., выступая в должность профессора эрлангенского университета, Клейн прочитал лекцию сравнительное обозрение новейших геометрических исследований. Выдвинутая им идея переосмысления всей геометрии на основе теории движений получила название эрлангенская программа.

По Клейну, для построения той или иной геометрии нужно задать множество элементов и группу преобразований. Задача геометрии состоит в изучении тех отношений между элементами, которые остаются инвариантными при всех преобразованиях данной группы. Например, геометрия Евклида изучает те свойства фигур, которые остаются неизменными при движении. Иначе говоря, если одна фигура получается из другой движением, то у этих фигур одинаковые геометрические свойства.

В этом смысле движения составляют основу геометрии, а пять аксиом конгруэнтности выделенные самостоятельной группой в системе аксиом современной геометрии. Эту полную и достаточно строгую систему аксиом, подытожив все предыдущие исследования, предложил немецкий математик Давид гильберт(1862-1943). Его система из двадцати аксиом, разделенный на пять групп, была впервые опубликована в 1899 в книге Основание геометрии.

В 1909 г. немецкий математик Фридрих Шур (1856-1932), следуя идеям Фалкса и Клейна, разработал другую систему аксиом геометрии основанную на рассмотрении движений. В его системе, в частности, вместо группы аксиом конгруэнтности гильберта предлагается группа из трех аксиом движения.

движение параллельный плоскость равенство

2. Движения

Движением называется отображение плоскости на себя при котором сохраняются все расстояния между точками. Движение имеет ряд важных свойств:

Три точки, лежащие на одной прямой, при движении переходят в три точки, лежащие на одной прямой, и три точки, не лежащие на одной прямой, переходят в три точки, не лежащие на одной прямой.

Доказательство: пусть движение переводит точки А, В, С в токи А', В', С'. Тогда выполняются равенства

А'В'=АВ , А'С'=АС , В'С'=ВС (1)

Если точки А, В, С лежат на одной прямой, то одна из ни, например точка В лежит между двумя другими. В этом случае АВ+ВС=АС, и из равенства(1) следует, что А'С'+В'С'=А'С'. А из этого следует, что точка В' лежит между точками А' и С'. Первое утверждение доказано. Второе утверждение докажем методом от противного: Предположим, что точки А', В', С' лежат на одной прямой даже в том случае, если точки А,В,С не лежат на одной прямой, то есть являются вершинами треугольника. Тогда должны выполнятся неравенства треугольника:

но из равенства (1) следует что те же неравенства должны выполнятся и для точек А', В', С' следовательно точки А', В', С' должны быть вершинами треугольника, следовательно точки А', В', С' не должны лежать на одной прямой.

Отрезок движения переводится в отрезок.

При движении луч переходит в луч, прямая в прямую.

Треугольник движением переводится в треугольник.

Движение сохраняет величину углов.

При движении сохраняются площади многоугольных фигур.

Движение обратимо. Отображение, обратное движению является движением.

Композиция двух движений также является движением.

Используя определение можно дать такое определение равенства фигур: Две фигуры называются равными, если одну из них можно перевести в другую некоторым движением.

3. Виды движений

На плоскости существует четыре типа движений:

Поворот вокруг точки

Рассмотрим подробнее каждый вид.

3.1 Параллельный перенос

Параллельны переносом называется такое движение , при котором все точки плоскости перемещаются в одном и том же направлении на одинаковое расстояние.

Подробнее: параллельный перенос произвольным точкам плоскости Х и У ставит в соответствие такие точки Х 1 и У 1 , что ХХ 1 =УУ 1 или еще можно сказать так: параллельный перенос это отображение, при котором все точки плоскости перемещаются на один и тот же вектор - вектор переноса. Параллельный перенос задается вектором переноса: зная этот вектор всегда можно сказать, в какую точку перейдет любая точка плоскости.

Параллельный перенос является движением, сохраняющим направления. Действительно, пусть при параллельном переносе точки Х и У перешли в точки Х 1 и У 1 соответственно. Тогда выполняется равенство ХХ 1 =УУ 1 , откуда получаем, что во-первых ХУ=Х 1 У 1 , то есть параллельный перенос является движением, и во-вторых, ХУ=Х 1 У 1 , то есть при параллельном переносе сохраняются направления.

Это свойство параллельного переноса - его характерное свойство, то есть справедливо утверждении: движение, сохраняющее направление является параллельным переносом.

3.2 Осевая симметрия

Точки Х и Х 1 называются симметричными относительно прямой а, и каждая из них симметрична другой, если а является серединным перпендикуляра отрезка ХХ 1 . Каждая точка прямой а считается симметрично самой себе( относительно прямой а) если дана прямая а, то каждой точке Х соответствует единственная точка Х 1 , симметричная Х относительно а.

Симметрией плоскости относительно прямой а называется такое отображение, при котором каждой точке этой плоскости ставится в соответствии точка, симметричная ей относительно прямой а.

Докажем, что осевая симметрия является движением используя метод координат: примем прямую а за ось х декартовых координат. Тогда при симметрии относительно нее точка, имеющая координаты (х;у) будет преобразована в точку с координатами (х ,-у).

Возьмем любые две точки А(х1, -у1) и В(х2, -у2) и рассмотрим симметричные АВ и А 1 В 1 , получим АВ =А 1 В 1 .

Таким образом, осевая симметрия сохраняет расстояние, следовательно она является движением.

3.3 Центральная симметрия

Можно дать такое определение:

Центральная симметрия с центром в точке О это такое отображение плоскости, при котором любой точке Х сопоставляется такая точка Х 1 , что точка О является серединой отрезка ХХ 1 .

Однако можно заметить, что центральная симметрия является частным случаем поворота на 180 градусов. Действительно, пусть при центральной симметрии относительно точки О точка Х перешла в Х 1 . тогда угол ХОХ 1 = 180 градусов, как развернутый, и ХО = ОХ 1 , следовательно такое преобразование является поворотом на 180 градусов. Отсюда также следует, что центральная симметрия также является движением.

3.4 Поворот

Поворот плоскости относительно центра О на данный угол в в данном направлении определяется так: каждой точке Х плоскости ставится в соответствие такая точка Х 1 , что во-первых, ОХ=ОХ 1 , во-вторых угол ХОХ 1 равен углу поворота в и, в-третьих ОХ 1 откладывается от луча ОХ в заданном направлении. Точка О называется центром поворота, а угол в - углом поворота. Поворот является движением.

4. Аналитическое выражение движения на плоскости

На плоскости собственные движения выражаются аналитически в прямоугольной системе координат (х, у) при помощи следующих формул показывающих,

Х=Х cos ц - Y sin ц + а,

Y=X sin ц + cos ц + в ,

Что совокупность всех собственных движений на плоскости зависит от трех параметров а, b , ц. Первые два параметра характеризуют параллельный перенос плоскости на вектор (а, b ) , а параметр ц - вращение (поворот) плоскости вокруг начала координат. Собственные движения представляют собой произведение (композицию) вращения вокруг начала на угол ц и параллельного переноса на вектор (а , b ) . Всякое собственное движение может быть представлено либо как параллельный перенос, либо как вращение вокруг некоторой точки.

Несобственные движения выражаются при помощи формул

X=X cos ц + Y sin ц + а ,

Y= X sin ц -Y cos ц + в ,

показывающих, что несобственное движение есть произведение собственного движения на преобразование симметрии относительно некоторой прямой. Всякое несобственное движение представляет собой произведение параллельного переноса вдоль некоторого направления и симметрии относительно прямой, имеющей то же направление.

Подобные документы

Случай движения, при котором все точки пространства перемещаются в одном и том же пространстве и расстоянии. Параллельный перенос на координатной прямой и плоскости в направлении данного вектора на его длину. Построение трапеции параллельным переносом.

презентация [121,1 K], добавлен 15.02.2012

Понятие движения как преобразования одной фигуры в другую при сохранении расстояния между точками. Характеристика видов движения (центральная и осевая симметрия, поворот и параллельный перенос). Переход фигуры в равную ей фигуру, сохранение углов.

презентация [315,9 K], добавлен 09.03.2012

Понятие треугольника и его роль в геометрии. Сумма углов треугольника, вычисление площади, свойства различных видов фигур. Признаки равенства и подобия треугольников, теорема Пифагора. Медианы, биссектрисы и высоты, соотношение между сторонами и углами.

курс лекций [3,7 M], добавлен 23.04.2011

Теоретические сведения по теме "Признаки равенства треугольников". Методика изучения темы "Признаки равенства треугольников". Тема урока "Треугольник. Виды треугольников". "Свойства равнобедренного и равностороннего треугольников".

курсовая работа [30,5 K], добавлен 11.01.2004

Развитие вычислительных умений и навыков при решении задач. Закрепление формул для вычисления площадей геометрических фигур. Доказательства условий равенства пары треугольников. Определение соотношения прямых, заключающих равные углы у треугольников.

Поворо́т (враще́ние) — движение, при котором по крайней мере одна точка плоскости (пространства) остаётся неподвижной.В физике нередко поворотом называется неполное вращение, или, наоборот, вращение рассматривается как частный вид поворота. Последнее определение более строго, поскольку понятие поворот охватывает значительно более широкую категорию движений, в том числе и такое, при котором траектория движущегося тела в избранной системе отсчёта представляет собой незамкнутую кривую.

Содержимое публикации

Доклад по геометрии тема:Поворот

Подготовила: ученица 9 класса

Корчик Евгения Артемовна

Поворо́т (враще́ние) — движение, при котором по крайней мере одна точка плоскости (пространства) остаётся неподвижной.В физике нередко поворотом называется неполное вращение, или, наоборот, вращение рассматривается как частный вид поворота. Последнее определение более строго, поскольку понятие поворот охватывает значительно более широкую категорию движений, в том числе и такое, при котором траектория движущегося тела в избранной системе отсчёта представляет собой незамкнутую кривую.

неподвижная точка называется центром вращения, неподвижная прямая называется осью вращения и т. д.

Типы вращений:

Вращение плоскости (пространства) называется собственным (вращение первого рода) или несобственным (вращение второго рода) в зависимости от того, сохраняет оно или нет ориентацию плоскости (пространства).

Несобственное вращение нельзя сделать малым (в смысле расстояния между каждой точкой и ее образом), собственное — можно сделать сколь угодно малым

для любой ограниченной области пространства (то есть можно подобрать для ограниченной области сколь угодно малое собственное вращение).

На плоскости в прямоугольных декартовых координатах собственное вращение выражается формулами

где — угол поворота, а центр вращения выбран в начале координат. При тех же условиях несобственное вращение плоскости выражается формулой

Если репер привязан к центру вращения, то реализуется ортогональной матрицей

Вращения трехмерного евклидова пространства (с фиксированным центром) образуют группу O(3) (собственные — группу SO(3)).

Вращения двумерного пространства (плоскости) образуют соответственно группы O(2) и SO(2) (изоморфную U(1)).

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Первым, кто начал доказывать некоторые геометрические положения, считается древнегреческий математик Фалес Милетский (625-547 гг. до н.э.).

Именно благодаря Фалесу геометрия из набора практических правил начала развиваться в настоящую науку. До Фалеса просто не было доказательств!

То, как Тейлз вел свои улики. Он использовал для этого движение.

Движение представляет собой преобразование формы, при котором сохраняются расстояния между точками. Если две цифры точно скомбинированы набором, то эти цифры равны, равны по значению.

Таким образом, Фалес доказал некоторые из первых наборов геометрии. Если плоскость в целом поворачивается на одну точку O около 1800, то пучок ОА изменяется на продолжение OA1. При таком вращении (также называемом центральной симметрией с центром O) каждая точка A перемещается в точку A1, которая O является центром отрезка AA1.

Пусть O будет полным пиком вертикальных углов AB и A1 AB1 . Но тогда понятно, что при повороте на 1800 граней один из двух вертикальных углов просто переходит в стороны другого, т.е. эти два угла совмещаются. Это означает, что вертикальные углы равны.

В качестве доказательства равенства углов в основании равнобедренного треугольника Фалес использовал аксиальную симметрию: он объединил две половинки равнобедренного треугольника, изогнув рисунок вдоль биссектрисы в верхней части. Точно так же Фалес доказал, что диаметр делит окружность на две половины.

Прикладные сланцы и еще одно движение параллельного переноса, при котором все точки фигуры на одной дорожке перемещаются в определенном направлении. С его помощью он доказал теорему, которая теперь носит его имя: Если с одной стороны угла отложить равные отрезки и провести параллельные линии через концы этих отрезков до пересечения со второй стороны угла, то равные отрезки создаются и с другой стороны угла.

В эпоху античной истории, идеей движения пользовался знаменитый Евклид, автор начал книгу, которая просуществовала более двух тысячелетий. Евклид был современником Птолемея 1, правившего 305-283 гг. до н.э. в Египте, Сирии и Македонии.

Дальнейшее развитие теории движения связано с именем французского математика и историка науки Мишеля Шаля (1793-1880). В 1837 году он опубликовал исторический обзор происхождения и развития геометрических методов в процессе собственных геометрических исследований Чал доказывает важнейшую теорему:

Любое движение плоскости, изменяющее ее ориентацию, является либо параллельным переносом, либо вращением.

Любое движение плоскости, изменяющее ее ориентацию, является либо аксиально симметричным, либо скользящим симметричным.

Важным обогащением, которому привержена геометрия в 19 веке, является создание теории геометрических преобразований, в частности математической теории движений. (движения).

На данном этапе необходимо классифицировать все существующие геометрические системы. Эта проблема была решена немецким математиком Кристианом Феликсом Кляйном (1849-1925).

В 1872 году Кляйн читал лекции в качестве профессора в Университете Эрлангена по сравнительному обзору последних геометрических исследований. Его идея переосмысления всей геометрии на основе теории движения была названа Эрлангенской программой.

По Клейну, для построения той или иной геометрии необходимо указать набор элементов и группу преобразований. Задача геометрии заключается в изучении тех отношений между элементами, которые остаются инвариантными для всех преобразований данной группы. Например, геометрия Евклида исследует те свойства фигур, которые остаются инвариантными во время движения. Другими словами, если фигура выходит из другого движения, то эти фигуры обладают теми же геометрическими свойствами.

В 1909 г. немецкий математик Фридрих Шур (1856-1932), следуя идеям Фалькса и Клейна, разработал другую систему аксиомной геометрии, основанную на учете движения. В его системе, в частности, вместо группы аксиом сходства Гильберта, предлагается группа из трех аксиом движения.

Равенство параллельных плоскостей

Движение — это нанесение плоскости на себя, с сохранением всех расстояний между точками. Движение имеет несколько важных свойств:

Три точки, расположенные на одной прямой, становятся тремя точками, расположенными на одной прямой, а три точки, не расположенные на одной прямой, становятся тремя точками, не расположенными на одной прямой.

Доказательство: Переведите движение A, B, C на A’, B’, C’. Тогда те же самые исполняются. A’V’=AV, A’S’=AS, V’S’=C.

Если точки A, B, C находятся на одной прямой, то одна из них, например, точка B, лежит между двумя другими. В этом случае AB+B’s=A’s, а из равенства(1) следует, что A’C’+B’C’=A’C. И из этого следует, что точка B’ находится между точками A’ и C’. Первое утверждение доказано. Второе утверждение доказывается обратным методом: Предположим, что точки A’, B’, C’ находятся на одной прямой, даже если точки A, B, C не находятся на одной прямой, т.е. на вершинах треугольника.

Тогда необходимо устранить неравенство в треугольнике:

Но из равенства следует, что одни и те же неравенства должны быть для точек A’, B’, C’, поэтому точки A’, B’, C’ должны быть вершинами треугольника, поэтому точки A’, B’, C’ не должны быть на одной прямой.

Сегмент движения переводится в сегмент.

Когда вы двигаетесь, луч превращается в бар, прямой в прямую линию.

Треугольник превращается в треугольник движением.

Движение поддерживает размер углов.

При их перемещении сохраняются поверхности полигональных фигур.

Движение обратимое. Дисплей, обратное движение — это движение.

Состав двух движений также является движением.

С помощью определения вы можете дать это определение равенству фигур: Две фигуры называются равными, если одна из них может быть переведена в другую движением.

Виды перемещения

На самолете есть четыре типа движений:

  • Параллельная передача
  • осевая симметрия
  • Повернитесь вокруг точки
  • Центральная симметрия.
  • Давайте посмотрим поближе на каждый вид.

Параллельно с передачей идет движение, при котором все точки на плоскости движутся в одном направлении и на одинаковом расстоянии.

Подробнее: параллельный перенос в любые точки плоскости X и U соответствует таким точкам X1 и U1, что XX1 = UU1 или можно сказать так: параллельный перенос — это отображение, при котором все точки плоскости перемещаются в один и тот же вектор — вектор переноса. Параллельное смещение определяется вектором смещения: Если вы знаете этот вектор, вы всегда можете сказать, к какой точке будет двигаться любая точка плоскости.

Параллельная передача — это движение, в котором соблюдаются направления. Пусть при параллельном перемещении точки X и U перемещаются к точкам X1 и U1 соответственно. Затем выполняется равенство ХХ1=УУ1, из которого мы получаем, во-первых, ХУ=Х1 У1, т.е. параллельная передача является движением, а во-вторых, ХУ=Х1 У1, т.е. направления сохраняются в параллельной передаче.

Это свойство параллельной передачи является ее характерным свойством, т.е. можно сказать, что направление, поддерживающее движение, является параллельной передачей.

Осевая симметрия

Точки X и X1 описываются как симметричные относительно прямой a, и каждая из них симметрична друг другу, если является центром перпендикулярным отрезку XX1. Каждая точка прямой a считается симметричной самой себе (относительно прямой a), если задана прямая a, то каждая точка X соответствует одной точке X1 , симметричной X относительно a.

Симметрия плоскости относительно прямой a называется отображением, где каждая точка плоскости располагается в соответствии с точкой, симметричной ей относительно прямой a.

Докажем, что осевая симметрия — это движение с помощью координатного метода: Давайте возьмем прямую линию и ось x-картезиан. Затем, в случае симметрии относительно нее, точка с координатами (x;y) преобразуется в точку с координатами (x,-y).

Если взять любые две точки A(x1, -u1) и B(x2, -u2) и считать симметричными AB и A1 B1, то получим AB =A1 B1.

Значит, осевая симметрия сохраняет расстояние, значит, это движение.

Центральная симметрия

Центральная симметрия с центром в точке O — это такое отображение плоскости, что каждая точка X сравнивается с такой точкой X1, что точка O является центром отрезка XX1.

Однако можно констатировать, что центральная симметрия — это особый случай вращения на 180 градусов. Действительно, даже если в центральной симметрии относительно точки О, точки Х, проходящей через Х1, угол XOX1=180 градусов, как повернутый, а XO=ОХ1, то такое преобразование представляет собой поворот на 180 градусов. Из этого следует, что центральная симметрия также является движением.

Вращение плоскости относительно центра O на заданный угол β в этом направлении определяется следующим образом: Каждая точка X плоскости приводится в соответствие с такой точкой X1, что, во-первых, OX=OX1, во-вторых, угол OX1 равен углу поворота β и, в-третьих, OX1 смещается пучком OX в заданном направлении. Точка Ox называется точкой вращения, а угол β — углом поворота. Поворот — это движение.

Заключение

На плоскости собственные движения среды выражаются аналитически в прямоугольной системе координат (x, y) по следующим формулам, X=X cos φ — Y sin φ + a, Y=X грех φ + cos φ + to.

Что совокупность всех правильных движений на уровне зависит от трех параметров a, b, φ. Первые два параметра характеризуют параллельный перенос плоскости в вектор (a, b ), а параметр φ — вращение плоскости вокруг начала координат. Eigenmovements — это произведение (композиция) вращения вокруг начала φ и параллельный перенос в вектор (a , b ). Каждое собственно движение может быть представлено как параллельная передача или вращение вокруг точки.

Непредставительные движения выражаются с помощью формул:

  • X=X cos φ + Y грех φ + a ,
  • Y= X грех φ -Y cos φ + bis.

Которые показывают, что непатентованное движение является продуктом собственного движения для преобразования симметрии относительно прямой линии. Любое непатентованное движение — это произведение параллельной передачи по заданному направлению и симметрии относительно прямой, имеющей такое же направление.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института



В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Поворот"

Прежде чем приступить к изучению нового материала давайте повторим, что если каждой точке плоскости ставится в соответствие какая-то точка этой же плоскости, причем любая точка плоскости оказывается сопоставленной некоторой точке, тогда говорят, что дано отображение плоскости на себя.

Вспомним, что движение плоскости – это отображение плоскости на себя, сохраняющее расстояния.

Мы уже познакомились и повторили некоторые виды движения: такие как осевая симметрия, центральная симметрия, параллельный перенос.

Сегодня на уроке мы познакомимся с еще одним видом отображения плоскости на себя – поворотом.

Давайте отметим на плоскости произвольную точку О, назовем ее центром поворота, и зададим угол α (назовем его углом поворота).


Поворотом плоскости вокруг точки О на угол α называется отображение плоскости на себя, при котором каждая точка М отображается в такую точку М1, что и угол MOM1=α. Заметим, что точка О остается на месте, то есть другими словами, отображается сама в себя, а все остальные точки поворачиваются вокруг точки О, причем, если , то против часовой стрелки, если , то по часовой стрелке


Иногда в литературе можно встретить следующее обозначение для поворота вокруг центра О и на угол α: .

Теперь давайте попробуем определить, будет ли поворот движением? Для этого достаточно показать, что при повороте сохраняется расстояние между точками.

Пусть точка О – центр поворота, а угол α– угол поворота.

Рассмотрим случай, когда α>0, то есть поворачивать относительно точки О будем против часовой стрелки. Случай, когда α Оцените видеоурок

Читайте также: