Реферат на тему перемещение

Обновлено: 07.07.2024

Одним из больших разделов физики является механика. Это наука, изучающая виды траектории, пути и перемещения. Доклад на эту тему можно сделать довольно интересным, но для этого потребуется разобраться в процессах. В этом помогут общие сведения и примеры рассказов, рассчитанные на учащихся восьмых — девятых классов средней школы. При написании реферата, конечно же, следует стараться, чтобы текст был логичным, структурированным, и в нём не было фактических ошибок.

Путь это расстояние

Общие сведения

Природа так устроена, что всё находится в движении. Галактики перемещаются относительно друг друга, планеты вращаются вокруг своей оси и звёзд. Даже в микромире происходят постоянные колебания, вызванные космическим действием ионизирующих лучей и теплом. Человеческая жизнь немыслима без движения. Поэтому существует даже целая наука — механика, состоящая из нескольких больших разделов. Она изучает не только, как происходит перемещение, но и причину, по которой физические тела двигаются.

План доклада

Готовясь к написанию реферата по физике на тему перемещения нужно особое внимание уделить формулировкам понятий и примерам. Обязательно дать определение, что же учёные называют движением. Далее, кратко рассмотреть основные его виды, акцентируя внимание на относительность перемещения. Пожалуй, это главная теория в механике объясняющая, что в природе не существует тел, находящихся в абсолютном покое.

В работе не следует использовать сложные термины и громоздкие формулы. Нужно оценивать уровень аудитории, для которой она предназначена. Последовательность изложения материала можно выполнить в следующем порядке:

Писать доклад

  1. Ведение. Здесь нужно дать общие сведения о движении. Привести примеры различных его видов. Рассказать, почему так важно понимать физический смысл перемещения. А также следует упомянуть выдающихся учёных занимавшихся изучением вопроса.
  2. Основная часть. Должна включать описания и формулировки правил. Результаты исследований и их применение, фундаментальны формулы. Следует перечислить характеристики, с помощью которых можно описать тот или иной вид перемещения и дать им краткое определение. В этой части можно рассказать о принятых обозначениях величин и их единицах измерения.
  3. Заключение. Фактически это подведение итогов. Раздел должен включать в себя по теме исследования механического перемещения, перспективы его изучения.

Следует отметить, что будь то реферат, презентация или какой-либо иной вид доклада при подготовке к нему не следует использовать один источник. При этом если работа планируется с научным уклоном, то в ней можно привести рисунки, дополняющие излагаемый материал.

Пример реферата

Любое изменение положения тела в пространстве называют перемещением. Иное состояние предмета называют покоем. Но здесь следует отметить, что абсолютного такого значения не существует. Всё дело в теории относительности движения, разработанной в 1906 году Максом Планком. Выдвинутые им предположения заставили учёных в корне пересмотреть классическую механику Ньютона. Причём основное развитие она получила из-за трудов Эйнштейна, создавшего теорию пространства-времени.

Доклад на тему траектория путь и перемещение

Согласно утверждениям учёных состояния абсолютного покоя не существует. Наблюдать перемещение любого тела, возможно, если правильно выбрать систему координат. То есть точку относительно которой происходит изменение положения. Например, можно представить плот плывущий по реке с двумя людьми и отдыхающим стоящим на берегу. Людям находящихся на судне кажется, что перемещается только плот, а они относительно друг друга не двигаются. Но в то же время человек на берегу наблюдает, как положение изменяет не только судно, но и люди, находящиеся на нём.

Таким образом, относительность движения хоть и не является физической величиной, но во многом определяет основные характеристики движения. К ним же относят:

  • скорость — векторный параметр, определяющий быстроту, с которой происходит перемещение и сторону его направления;
  • путь — расстояние которое прошло тело при движении;
  • траекторию — линия, чаще всего воображаемая, по которой происходит перемещение из одной точки в другую.

Путь расстояние перемещение

Это важные характеристики. Учитывая их, можно сказать, что перемещение — это прохождение телом пути по определённой траектории соединяющей начальное и конечное положение. Все эти характеристики зависят от выбранной системы отсчёта. То есть совокупности тел или материальных точек относительно которых рассматривается движение.

Перемещение связано со временем, поэтому, кроме системы координат, двухмерной или трёхмерной, часто добавляется временная шкала, позволяющая определить нахождение объекта в любой момент. В качестве точки отсчёта может приниматься не только неподвижная система, но и подвижная, инерциальная, неинерциальная.

Перемещение тела в пространстве может быть охарактеризовано несколькими параметрами. Но самым важным из них является путь, описываемый, в свою очередь, траекторией и расстоянием. Термин абсолютное перемещение, как и покоя, в механики не имеет смысла. Пассажир, сидящий в вагоне движущего поезда по отношению к нему, находится в недвижимом состоянии, но при этом перемещается относительно деревьев за окном, совершает вместе с Землёй вращение вокруг Солнца.

Траектория путь перемещение это

Для удобства выполнения измерений водится система координат. С её помощью задаётся начальное положение, а также отслеживается, как со временем поменялось расположение тела. За определённый интервал времени тело переместится из одной точки в другую, то есть произойдёт движение. Характеризуется оно расстоянием — пространством, разделяющим объекты друг от друга. По сути, это длина которую преодолело тело, чтобы оказаться в иной точке.

В первом приближении существует два вида расстояний:

Доклад на тему перемещение 9 класс физика

  1. Кратчайшее — определяется отрезком, соединяющим точку начального и конечного положения.
  2. Фактическое — это путь, который тело прошло за промежуток времени из одной точки в другую. В физике такое расстояние определяется траекторией движения — плавной или ломанной линией, повторяющей путь тела.

Одно и то же изменение положения тело может выполнить за разный интервал времени. Определяется это видом движения, скоростью и ускорением. Простейшим перемещением является равномерное и прямолинейное. Например, автомобиль, двигаясь с постоянной скоростью, совершает первый вид перемещения, а притормаживая или разгоняясь второй.

Кроме этого, выделяют поступательное движение. Под ним понимают выполнение переноса, при котором любые две точки тела, соединённые линией, передвигаются параллельно своему первоначальному положению. Например, весы, пантограф. Ещё одним видом движения является вращательное. В качестве яркого примера можно привести колесо. При его движении любые точки, взятые в теле, будет описывать окружности, лежащие в параллельных плоскостях.

Следует различать понятие перемещение — отрезок, соединяющий начальное и конечное положения и путь тела. Они могут быть равны, если движение выполняется по прямой, или различаться. Так, если тело вернётся в первоначальную точку то фактически перемещения не произойдёт, в то же время пройденное расстояние может достигать тысячи километров.

Простая презентация

Вот пример такой последовательности слайдов рассчитанный на подготовленных слушателей:

Реферат на тему перемещение по физике

Путь расстояние траектория

  1. Движение — это смена положения физического тела с течением времени в пространстве относительно других материальных точек. Например, ходьба, езда, полёт, вращение, электрический ток, маятник.
  2. В том случае, когда расстояние, на которое переместилось тело превышает его размеры, то формой объекта пренебрегают и вводят понятие материальной точки.
  3. Траектория — это отрезок повторяющий движение тела в любом промежутке времени. Она бывает двух видов: прямолинейной и криволинейной.
  4. Измерить траекторию можно длиной. Это скалярная величина, определяющая пройденный путь. В СИ принято измерять её в метрах [м], а обозначать буквой L.
  5. Перемещение — вектор, соединяющий два положения тела. Обозначают величину буквой S и измеряют также в метрах.
  6. Так как перемещение — это векторная величина, то и найти её можно по правилу треугольника или параллелограмма.
  7. Из одной точки в другую тело может переместиться по разным траекториям, пройдя различный путь. Но только при прямолинейном движении путь и перемещение совпадут по численным значениям. Например, при движении по окружности перемещение будет равно нулю.
  8. Выделяют три основных вида движений: поступательное, вращательное, колебательное.
  9. Для того чтобы зафиксировать перемещение тела во времени нужно выбрать систему отсчёта. Она состоит из трёх составляющих: координат, тела, прибора времени.
  10. При движении тело может двигаться с разной скоростью. Находится она по формуле: V = S * t. При этом изменение положение может происходить с ускорением — величиной, характеризующей быстроту изменения скорости: a = ΔV / Δt.

Предложенную презентацию можно дополнить различными рисунками и чертежами. Например, нелишним будет нарисовать различные траектории движения, выделив их разным цветом. Здесь же указать и перемещение. Это позволит слушателям лучше воспринимать подаваемую им информацию.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Доклад на тему: Траектория, путь и перемещение (9 класс)

Траектория - это линия, которую тело описывает при движении.

Путь - это длина траектории. То есть длина той, возможно, кривой линии, по которой двигалось тело. Путь скалярная величина ! Перемещение - векторная величина ! Это вектор, который проведен из начальной точки отправления тела в конечную точку. Имеет численное значение, равное длине вектора. Путь и перемещение - это существенно разные физические величины.

hello_html_m7799bb26.jpg

Обозначения пути и перемещения вы можете встретить разное:

Пусть в течение промежутка времени t 1 тело совершило перемещение s 1 , а в течение следующего промежутка времени t 2 - перемещение s 2 . Тогда за все время движения перемещение s 3 - это векторная сумма

Движение с постоянной по модулю и по направлению скоростью. Что это значит? Рассмотрим движение машины. Если она едет по прямой линии, на спидометре одно и то же значение скорости (модуль скорости), то это движение равномерное. Стоит машине изменить направление (повернуть), это будет означать, что вектор скорости изменил свое направление. Вектор скорости направлен туда же, куда едет машина. Такое движение нельзя считать равномерным, несмотря на то, что спидометр показывает одно и то же число.

Направление вектора скорости всегда совпадает с направлением движения тела

Можно ли движение на карусели считать равномерным (если не происходит ускорение или торможение)? Нельзя, постоянно изменяется направление движения, а значит и вектор скорости. Из рассуждений можно сделать вывод, что равномерное движение - это всегда движение по прямой линии! А значит при равномерном движении путь и перемещение одинаковы (поясни почему).

Нетрудно представить, что при равномерном движении за любые равные промежутки времени тело будет перемещаться на одинаковое расстояние.

Состояние покоя тела - это особый вид равномерного движения. Скорость не изменяется и равна нулю.

Формула равномерного движения

Формула в координатах

hello_html_b1bb415.jpg

1) Путь - длина траектории, расстояние;
2) Перемещение - вектор, направлен из начальной точки движения в конечную;
3) Равномерное движение - это движение по прямой линии;
4) При равномерном движении путь и перемещение совпадают;
5) При равномерном движении скорость не изменяется (по числу и по направлению);
6) Формулу, единицы измерения в СИ


1. Механическим движением называют изменение положения тела в пространстве относительно других тел с течением времени. Существуют различные виды механического движения. Если все точки тела движутся одинаково и любая прямая, проведённая в теле, при его движении остаётся параллельной самой себе, то такое движение называется поступательным (рис. 1).

Точки вращающегося колеса описывают окружности относительно оси этого колеса. Колесо как целое и все его точки совершают вращательное движение (рис. 2).

Если тело, например шарик, подвешенный на нити, отклоняется от вертикального положения то в одну, то в другую сторону, то его движение является колебательным (рис. 3).



Для определения положения тела в пространстве вводят систему координат, которую связывают с телом отсчёта. При рассмотрении движения тела вдоль прямой линии используют одномерную систему координат, т.е. с телом отсчёта связывают одну координатную ось, например ось ОХ (рис. 5).


Если тело движется по криволинейной траектории, то система координат будет уже двухмерной, поскольку положение тела характеризуют две координаты X и Y (рис. 6). Таким движением является, например, движение мяча от удара футболиста или стрелы, выпущенной из лука.


Если рассматривается движение тела в пространстве, например движение летящего самолёта, то система координат, связанная с телом отсчёта, будет состоять из трёх взаимно перпендикулярных координатных осей (OX, OY и OZ) (рис. 7).


Поскольку при движении тела его положение в пространстве, т.е. его координаты, изменяются с течением времени, то необходим прибор (часы), который позволяет измерять время и определить, какому моменту времени соответствует та или иная координата.

Таким образом, для определения положения тела в пространстве и изменения этого положения с течением времени необходимы тело отсчёта, связанная с ним система координат и способ измерения времени, т.е. часы, которые все вместе представляют собой систему отсчёта (рис. 7).

3. Изучить движение тела — это значит определить, как изменяется его положение, т.е. координата, с течением времени.

Если известно, как изменяется координата со временем, можно определить положение (координату) тела в любой момент времени.

Основная задача механики состоит в определении положения (координаты) тела в любой момент времени.

Чтобы указать, как изменяется положение тела с течением времени, нужно установить связь между величинами, характеризующими это движение, т.е. найти математическое описание движения или, иными словами, записать уравнение движения тела.

Раздел механики, изучающий способы описания движения тел, называют кинематикой.

4. Любое движущееся тело имеет определённые размеры, и его различные части занимают разные положения в пространстве. Возникает вопрос, как в таком случае определить положение тела в пространстве. В делом ряде случаев нет необходимости указывать положение каждой точки тела и для каждой точки записывать уравнение движения.

Так, поскольку при поступательном движении все точки тела движутся одинаково, то нет необходимости описывать движение каждой точки тела.

Движение каждой точки тела не нужно описывать и при решении таких задач, когда размерами тела можно пренебречь. Например, если нас интересует, с какой скоростью пловец проплывает свою дистанцию, то рассматривать движение каждой точки пловца нет необходимости. Если же необходимо определить действующую на мяч выталкивающую силу, то пренебречь размерами пловца уже нельзя. Если мы хотим вычислить время движения космического корабля от Земли до космической станции, то корабль можно считать единым целым и представить в виде некоторой точки. Если же рассчитывается режим стыковки корабля со станцией, то, представив корабль в виде точки, решить эту задачу невозможно.

Таким образом, для решения ряда задач, связанных с движением тел, вводят понятие материальной точки.

Материальной точкой называют тело, размерами которого можно пренебречь в условиях данной задачи.

В приведённых выше примерах материальной точкой можно считать пловца при расчёте скорости его движения, космический корабль при определении времени его движения.

Материальная точка — это модель реальных объектов, реальных тел. Считая тело материальной точкой, мы отвлекаемся от несущественных для решения конкретной задачи признаков, в частности, от размеров тела.

5. При перемещении тело последовательно проходит точки пространства, соединив которые, можно получить линию. Эта линия, вдоль которой движется тело, называется траекторией. Траектория может быть видимой или невидимой. Видимую траекторию описывают трамвай при движении по рельсам, лыжник, скользя по лыжне, мел, которым пишут на доске. Траектория летящего самолёта в большинстве случаев невидима, невидимой является траектория ползущего насекомого.

Траектория движения тела относительна: её форма зависит от выбора системы отсчёта. Так, траекторией точек обода колеса велосипеда, движущегося по прямой дороге, относительно оси колеса является окружность, а относительно Земли — винтовая линия (рис. 8 а, б).


6. Одной из характеристик механического движения является путь, пройденный телом. Путём называют физическую величину, равную расстоянию, пройденному телом вдоль траектории.

Если известны траектория тела, его начальное положение и пройденный им путь за время ​ \( t \) ​, то можно найти положение тела в момент времени ​ \( t \) ​. (рис. 9)


Путь обозначают буквой ​ \( l \) ​ (иногда ​ \( s \) ​), основная единица пути 1 м: \( [\,\mathrm\,] \) = 1 м. Кратная единица пути — километр (1 км = 1000 м); дольные единицы — дециметр (1 дм = 0,1 м), сантиметр (1 см = 0,01 м) и миллиметр (1 мм = 0,001 м).

Путь — величина относительная, значение пути зависит от выбора системы отсчёта. Так, путь пассажира, переходящего из конца движущегося автобуса к его передней двери, равен длине автобуса в системе отсчёта, связанной с автобусом. В системе отсчёта, связанной с Землёй, он равен сумме длины автобуса и пути, который проехал автобус относительно Земли.

7. Если траектория движения тела неизвестна, то значение пути не позволит установить его положение в любой момент времени, поскольку направление движения тела не определено. В этом случае используют другую характеристику механического движения — перемещение.

Перемещение — вектор, соединяющий начальное положение тела с его конечным положением (рис. 10)


Перемещение — векторная физическая величина, имеет направление и числовое значение, обозначается ​ \( \overrightarrow \) ​. Единица перемещения \( [\,\mathrm\,] \) = 1 м.

Зная начальное положение тела, его перемещение (направление и модуль) за некоторый промежуток времени, можно определить положение тела в конце этого промежутка времени.

Следует иметь в виду, что перемещение в общем случае не совпадает с траекторией, а модуль перемещения — с пройденным путём. Это совпадение имеет место лишь при движении тела по прямолинейной траектории в одну сторону. Например, если пловец проплыл 100-метровую дистанцию в бассейне, длина дорожки которого 50 м, то его путь равен 100 м, а модуль перемещения равен нулю.

Перемещение, так же как и путь, величина относительная, зависит от выбора системы отсчёта.

При решении задач пользуются проекциями вектора перемещения. На рисунке 10 изображены система координат и вектор перемещения в этой системе координат.

Координаты начала перемещения — \( x_0, y_0 \) ; координаты конца перемещения — \( x_1, y_1 \) . Проекция вектора перемещения на ось ОХ равна: ​ \( s_x=x_1-x_0 \) ​. Проекция вектора перемещения на ось OY равна: \( s_y=y_1-y_0 \) .

Модуль вектора перемещения равен: ​ \( s=\sqrt \) ​.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. В состав системы отсчёта входят

1) только тело отсчёта
2) только тело отсчёта и система координат
3) только тело отсчёта и часы
4) тело отсчёта, система координат, часы

2. Относительной величиной является: А. Путь; Б. Перемещение. Правильный ответ

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

3. Пассажир метро стоит на движущемся вверх эскалаторе. Он неподвижен относительно

1) пассажиров, стоящих на другом эскалаторе, движущемся вниз
2) других пассажиров, стоящих на этом же эскалаторе
3) пассажиров, шагающих вверх по этому же эскалатору
4) светильников на баллюстраде эскалатора

4. Относительно какого тела покоится автомобиль, движущийся по автостраде?

1) относительно другого автомобиля, движущегося с такой же скоростью в противоположную сторону
2) относительно другого автомобиля, движущегося с такой же скоростью в ту же сторону
3) относительно светофора
4) относительно идущего вдоль дороги пешехода

5. Два автомобиля движутся с одинаковой скоростью 20 м/с относительно Земли в одном направлении. Чему равна скорость одного автомобиля в системе отсчёта, связанной с другим автомобилем?

1) 0
2) 20 м/с
3) 40 м/с
4) -20 м/с

6. Два автомобиля движутся с одинаковой скоростью 15 м/с относительно Земли навстречу друг другу. Чему равна скорость одного автомобиля в системе отсчёта, связанной с другим автомобилем?

1) 0
2) 15 м/с
3) 30 м/с
4) -15 м/с

7. Какова относительно Земли траектория точки лопасти винта летящего вертолёта?

1) прямая
2) окружность
3) дуга
4) винтовая линия

8. Мяч падает с высоты 2 м и после удара о пол поднимается на высоту 1,3 м. Чему равны путь ​ \( l \) ​ и модуль перемещения ​ \( s \) ​ мяча за всё время движения?

1) \( l \) = 3,3 м, ​ \( s \) ​ = 3,3 м
2) \( l \) = 3,3 м, \( s \) = 0,7 м
3) \( l \) = 0,7 м, \( s \) = 0,7 м
4) \( l \) = 0,7 м, \( s \) = 3,3 м

9. Решают две задачи. 1. Рассчитывают скорость движения поезда между двумя станциями. 2. Определяют силу трения, действующую на поезд. При решении какой задачи поезд можно считать материальной точкой?

1) только первой
2) только второй
3) и первой, и второй
4) ни первой, ни второй

10. Точка обода колеса при движении велосипеда описывает половину окружности радиуса ​ \( R \) ​. Чему равны при этом путь ​ \( l \) ​ и модуль перемещения ​ \( s \) ​ точки обода?

1) \( l=2R \) , ​ \( s=2R \) ​
2) \( l=\pi R \) , \( s=2R \)
3) \( l=2R \) , \( s=\pi R \)
4) \( l=\pi R \) , \( s=\pi R \) .

11. Установите соответствие между элементами знаний в левом столбце и понятиями в правом столбце. В таблице под номером элемента знаний левого столбца запишите соответствующий номер выбранного вами понятия правого столбца.

ЭЛЕМЕНТ ЗНАНИЙ
A) физическая величина
Б) единица величины
B) измерительный прибор

ПОНЯТИЕ
1) траектория
2) путь
3) секундомер
4) километр
5) система отсчёта

12. Установите соответствие между величинами в левом столбце и характером величины в правом столбце. В таблице под номером элемента знаний левого столбца запишите соответствующий номер выбранного вами понятия правого столбца.

ВЕЛИЧИНА
A) путь
Б) перемещение
B) проекция перемещения

ХАРАКТЕР ВЕЛИЧИНЫ
1) скалярная
2) векторная

Часть 2

13. Автомобиль свернул на дорогу, составляющую угол 30° с главной дорогой, и совершил по ней перемещение, модуль которого равен 20 м. Определите проекцию перемещения автомобиля на главную дорогу и на дорогу, перпендикулярную главной дороге.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.




Все, что сказано о ветровой нагрузке, относится в равной мере и к большинству других нагрузок .
При расчете строительных сооружений величины расчетных нагрузок регламентируются техническими условиями и нормами проектирования.
В машиностроении расчетные нагрузки определяются в зависимости от конкретных условий работы машины: по номинальным значениям мощности, угловой скорости отдельных ее деталей, собственного веса, сил инерции и т. д. Например, при расчете деталей трехтонного автомобиля учитывают номинальный полезный груз, равный трем тоннам. Возможность же перегрузки автомобиля учитывают тем, что размеры сечения деталей назначают с некоторым запасом прочности .
О величине этого запаса прочности подробнее будет сказано в § 12.

ДЕФОРМАЦИИ И ПЕРЕМЕЩЕНИЯ
Как было отмечено ранее, все тела под действием приложенных к ним внешних сил в той или иной степени деформируются, т. е. изменяют свои размеры или форму, либо и то и другое одновременно.
Изменение линейных размеров тела называется линейной, а изменение угловых размеров — угловой деформациями.
При этом увеличение размеров тела называется удлинением, а уменьшение размеров — укорочением.

Если деформации изменяются по объему тела, то говорят о деформации в данной точке тела, в определенном направлении.
Если на поверхности тела, вблизи исследуемой точки, нанести весьма малый прямоугольник 1 2 3 4 (рис. 1.7, а), то в результате деформации этот прямоугольник в общем случае примет вид параллелограмма 1'2'3'4' (рис. 1.7, б).
Длины сторон прямоугольника изменятся (увеличатся или уменьшатся), а стороны повернутся по отношению к первоначальному положению.
Если, например, длина стороны 23 изменится на величину s, то отношение

называется средней линейной деформацией (в данном случае средним удлинением) в точке 2..
При уменьшении отрезка s в пределе получим
lim
где величина называется истинной линейной деформацией в точке 2 в направлении 23.
Изменение первоначального прямого угла между сторонами рассматриваемого прямоугольника γ =α + β будет характеризовать угловую деформацию (или угол сдвига) в данной точке.
Опыт показывает, что деформации как линейные, так и угловые могут после снятия нагрузки или полностью исчезнуть, или исчезнуть лишь частично (в зависимости от материала и степени нагружения).
Деформации, исчезающие после разгрузки тела, называются упругими, а свойство тел принимать после разгрузки свою первоначальную форму называется упругостью.
Деформации же, сохраняемые телом и после удаления нагрузки, называются остаточными, или пластическими, а свойство материалов давать остаточные деформации называется пластичностью.
Зная деформации тела во всех его точках и условия закрепления, можно определить перемещения всех точек тела, т. е. указать их положение (новые координаты) после деформации. Для нормальной эксплуатации сооружения деформации его отдельных элементов должны быть, как правило, упругими, а вызванные ими перемещения не должны превосходить по величине определенных допускаемых значений. Эти условия, выраженные в форме тех или иных уравнений, называются условиями жесткости. В некоторых случаях допускаются небольшие пластические деформации (для конструкций из железобетона, пластмасс и для конструкций из металла при действии высоких температур).

МЕТОД СЕЧЕНИЙ
Внутренние силы (силы упругости), возникающие в теле под действием нагрузки, будем считать силами, непрерывно распределенными в соответствии с принятым допущением о непрерывности материала тела.
Как определяются эти силы в любой точке тела, будет показано ниже.
Теперь же займемся определением тех равнодействующих усилий (в том числе и моментов), к которым приводятся в сечении эти силы

упругости. Эти равнодействующие усилия представляют собой не что иное, как составляющие главного вектора и главного момента внутренних сил.
Для определения внутренних усилий (или внутренних силовых факторов) применяется метод сечений, заключающийся в следующем.
Для тела, находящегося в равновесии (рис. 1.8), в интересующем нас месте мысленно делается разрез, например по aа. Затем одна из частей отбрасывается (обычно та, к которой приложено больше сил). Взаимодействие частей друг на друга заменяется внутренними усилиями, которые уравновешивают внешние силы, действующие на отсеченную часть. Если внешние силы лежат в одной плоскости, то для их уравновешивания необходимо в общем случае приложить в сечении три внутренних усилия: силу N, направленную вдоль оси стержня, называемую продольной силой; силу Q, действующую в плоскости поперечного сечения и называемую поперечной силой, и момент Mизг, плоскость действия которого перпендикулярна к плоскости сечения. Этот момент возникает при изгибе стержня и называется изгибающим моментом.
После этого составляют уравнения равновесия для отсеченной части тела, из которых и определяют N, Q и Мизг. Действительно, проектируя силы, действующие на отсеченную часть, на направление оси стержня и приравнивая сумму проекций нулю, найдем N; проектируя силы на направление, перпендикулярное оси стержня, определим Q; приравнивая нулю сумму моментов относительно какой-либо точки, определим Мизг.

Если же внешние силы, к которым относятся также реакции опор, не лежат в одной плоскости (пространственная задача), то в поперечном сечении в общем случае могут возникать шесть внутренних усилий, являющихся компонентами главного вектора и главного момента системы внутренних сил (рис. 1.9): продольная сила N, поперечная сила Qy, поперечная сила Qx и три момента: My, Мх и Мz, причем первые два являются изгибающими, а третий Mz, действующий в плоскости сечения, называется крутящим, так как он возникает при закручивании стержня. Для определения этих шести усилий необходимо использовать шесть уравнений равновесия: приравнять нулю суммы проекций сил (приложенных к отсеченной части) на три оси координат и приравнять нулю суммы моментов сил относительно трех осей, имеющих начало в центре тяжести сечения.
На рис. 1.9 и в дальнейшем принята правовинтовая система координат, причем ось z будем совмещать с осью стержня.
Итак, для нахождения внутренних усилий необходимо:
1) разрезать стержень или систему стержней;
2) отбросить одну часть;
3) приложить в сечении усилия, способные уравновесить внешние силы, действующие на отсеченную часть;
4) найти значения усилий из уравнений равновесия, составленных для отсеченной части.
В частном случае в поперечном сечении стержня могут возникать:
1. Только продольная сила N. Этот случай нагружения называется растяжением (если сила N направлена от сечения) или сжатием (если продольная сила направлена к сечению).
2. Только поперечная сила Qx или Qy. Это — случай сдвига.
3. Только крутящий момент Мк. Это — случай кручения.
4. Только изгибающий момент Мх или My. Это — случай изгиба.
5. Несколько усилий, например изгибающий и крутящий моменты. Это — случаи сложных деформаций (или сложного сопротивления), которые будут рассмотрены в конце курса.
Если число неизвестных усилий равно числу уравнений равновесия, задача называется статически определимой, если же число неизвестных усилий больше числа уравнений равновесия — статически неопределимой.
Для статически неопределимых задач, кроме уравнений равновесия, необходимо использовать еще дополнительные уравнения, рассматривая деформации системы.

НАПРЯЖЕНИЯ
Было отмечено, что в поперечном сечении стержня действуют не сосредоточенные внутренние усилия N, Q, Мк и т. д., а непрерывно распределенные силы, интенсивность которых может быть различной в разных точках сечения и в разном направлении.
Как же измерить интенсивность внутренних сил в данной точке данного сечения, например в точке А (рис. 1.10)?
Выделим вокруг точки A малую площадку F. Пусть R— равнодействующая внутренних сил, действующих на эту площадку.
Тогда средняя величина внутренних сил, приходящихся на единицу площади рассматриваемой площадки F, будет равна
(1)
Величина называется средним напряжением. Она характеризует среднюю интенсивность внутренних сил. Уменьшая размеры площадки, в пределе получим
(2)
Величина р называется истинным напряжением, или просто напряжением, в данной точке данного сечения.
Упрощенно можно сказать, что напряжением называется внутренняя сила, приходящаяся на единицу площади в данной точке данного сечения.
Как видно из формул (1.1) и (1.2), размерность напряжения
.
В системе МКГСС единица измерения напряжения — кГ/м 2 . На практике обычно применяются внесистемные единицы измерения кГ/см 2 или кГ/мм 2 .
Полное напряжение р можно разложить на две составляющие (рис. 1.11, а):
1) составляющую, нормальную к плоскости сечения. Эта составляющая обозначается буквой σ и называется нормальным напряжением;

2) составляющую, лежащую в плоскости сечения. Эта составляющая обозначается буквой τ и называется касательным напряжением. Касательное напряжение в зависимости от действующих сил может иметь любое направление в плоскости сечения. Для удобства т представляют в виде двух составляющих по направлению координатных осей (рис. 1.11, б).
Принятые обозначения напряжений показаны на рис. 1.11, б.
У нормального напряжения ставится индекс, указывающий, какой координатной оси параллельно данное напряжение. Растягивающее нормальное напряжение считают положительным, сжимающее — отрицательным. Обозначения касательных напряжений снабжены двумя индексами: первый из них указывает, какой оси параллельна нормаль к площадке действия данного напряжения, а второй — какой оси параллельно само напряжение.
Разложение полного напряжения на нормальное и касательное имеет определенный физический смысл. Нормальное напряжение возникает, когда частицы материала стремятся отдалиться друг от друга или, наоборот, сблизиться. Касательные напряжения связаны со сдвигом частиц материала по плоскости рассматриваемого сечения.
Если мысленно вырезать вокруг какой-нибудь точки тела элемент в виде бесконечно малого кубика, то по его граням в общем случае будут действовать напряжения, представленные на рис. 1.12.
Совокупность напряжений на всех элементарных площадках, которые можно провести через какую-либо точку тела, называется напряженным состоянием в данной точке.
Если по граням кубика действуют одни только нормальные напряжения, то они называются главными, а площадки, на которых они действуют, называются главными площадками.
В теории упругости доказывается, что в каждой точке напряженного тела существуют три главные (взаимно перпендикулярные) площадки.
Главные напряжения обозначают σ1, σ2 и σ3. При этом большее (с учетом знака) главное напряжение обозначается σ1, а меньшее (с учетом знака) обозначается σ2.
Различные виды напряженного состояния классифицируются в зависимости от числа возникающих главных напряжений.
Если отличны от нуля все три главных напряжения, то напряженное состояние называется трехосным, или объемным (рис. 1.13).
Если равно нулю одно из главных напряжений, то напряженное состояние называется двухосным, или плоским.
Если равны нулю два главных напряжения, то напряженное состояние называется одноосным, или линейным.
Зная напряженное состояние в любой точке детали, можно оценить прочность этой детали.
В простейших случаях оценка прочности элементов конструкций производится или по наибольшему нормальному напряжению, или по наибольшему касательному напряжению (расчет на сдвиг), так что условие прочности записывается в виде
(3)
где [ ] и [τ]— допускаемые значения нормального и касательного напряжений, зависящие от материала и условий работы рассчитываемого элемента.
Величины [ ] и [τ] выбираются с таким расчетом, чтобы была обеспечена нормальная эксплуатация конструкции (см. § 12).
В более сложных случаях оценка прочности производится по приведенному напряжению, в соответствии с той или иной гипотезой прочности.

Читайте также: