Реферат на тему особенности строения кристаллизация свойства сплавов

Обновлено: 02.07.2024

Основную долю разнообразных металлических материалов, используемых в технике, составляют сплавы. Чистые металлы в технике не применяют, потому что они характеризуются низким пределом прочности. Путем сплавления или спекания нескольких металлов или металлов с неметаллическими элементами получают сплавы, которые обладают высокой прочностью, пластичностью, хорошо обрабатываются резанием, свариваются и т.д. При этом улучшаются эксплуатационные и технологические свойства металлического материала.

Сплавом называется макроскопически однородная система, состоящая из двух и более химических элементов. Вещества, образующие систему, называют компонентами.

Компонентами сплава могут быть металлы (железо, медь, алюминий, никель и т.д.) и неметаллические элементы (углерод). Компонентом могут быть и химические соединения, если в рассматриваемых интервалах температур они не диссоциируют на свои составные части. Количество компонентов, составляющих систему (сплав), может быть различным. Чистый металл - это однокомпонентная система; сплав двух металлов - двухкомпонентная, и т.д.

Выбор базового компонента сплава определяется техническим заданием на его свойства. В зависимости от базового компонента все сплавы делятся на:

черные, основу которых составляет железо (стали, чугуны);

цветные, основу которых составляет любой металл, кроме железа (алюминиевые, медные, никелевые, титановые и др.).

Выбор других компонентов сплава производится на основе оценки взаимодействия элементов периодической системы с базовым компонентом и между собой. Их взаимодействие учитывается и в жидком, и в твердом состояниях, так как сплавление проводится при температурах, превышающих температуру плавления базового компонента, а затем сплав, охлаждаясь, кристаллизуется и остывает до температуры окружающей среды. При этом изменяется не только агрегатное состояние системы, но и ее фазовый состав в зависимости от температуры и скорости охлаждения.

Фазы металлических сплавов

В сплавах компоненты могут вступать во взаимодействие с образованием различных фаз. Различают следующие фазы металлических сплавов:

Раствором называется твердая или жидкая гомогенная (однородная) система, состоящая из двух или более компонентов, относительные количества которых могут изменяться в широких пределах.

Жидкие растворы. Большинство металлов растворяются друг в друге в жидком состоянии неограниченно (в любых соотношениях). При этом образуется однородный жидкий раствор, в котором атомы растворимого металла равномерно распределены среди атомов металла-растворителя.

Твердые растворы. В твердом растворе металл-растворитель сохраняет свою кристаллическую решетку, а растворимый элемент (металл или неметалл) распределяется в ней в виде отдельных атомов. Твердые растворы бывают двух типов:

твердые растворы замещения;

твердые растворы внедрения.

В твердых растворах замещения (рис. 1, а) часть атомов кристаллической решетки металла-растворителя замещена атомами другого компонента. Атомы растворенного компонента могут замещать атомы растворителя в любых узлах решетки. Поэтому твердые растворы замещения называют неупорядоченными твердыми растворами.

В твердых растворах внедрения (рис. 1, б) атомы растворенного компонента внедряются в межатомное пространство кристаллической решетки компонента-растворителя. При этом атомы располагаются в таких пустотах, где для них имеется больше свободного пространства.

Таким образом, твердый раствор, состоящий из двух или нескольких компонентов, имеет один тип решетки и представляет собой одну фазу.

При образовании твердого раствора кристаллическая решетка всегда искажается, так как атомы растворителя и растворенного компонента различны.

Искажение кристаллической решетки обусловливает изменение свойств сплавов по сравнению со свойствами исходных компонентов. Образование твердых растворов в сплавах приводит к увеличению их электрического сопротивления, снижает пластичность и вязкость.

Растворенные атомы в твердых растворах обоих типов распределены произвольно. Однако в некоторых случаях при медленном охлаждении сплава или длительной его выдержке при заданных температурах могут образоваться кристаллические решетки с упорядоченным расположением атомов компонентов. Такие растворы называют упорядоченными или сверхструктурами. Они занимают промежуточное положение между твердыми растворами и химическими соединениями.

Химические соединения. Химические соединения и родственные им фазы постоянного состава в металлических сплавах многообразны. Они имеют характерные особенности, отличающие их от твердых растворов:

их кристаллическая решетка отличается от кристаллических решеток компонентов, образующих соединение;

соотношение элементов в них кратно целым числам;

их свойства отличны от свойств образующих элементов;

они плавятся при постоянной температуре;

их образование сопровождается значительным тепловым эффектом.

Диаграммы состояния сплавов

Для определения количества фаз в сплаве, их состава пользуются диаграммами фазового равновесия - диаграммами состояния. Диаграмма состояния - графическое изображение фазового состава сплава в состоянии равновесия или близком к нему в зависимости от содержания компонентов в сплаве и от температуры.

Температуры, при которых изменяются строение и свойства (происходят фазовые превращения) металлов и сплавов, называют критическими точками. Чистые металлы имеют одну критическую точку, которой является температура плавления (кристаллизации). Они плавятся и затвердевают при одной и той же постоянной температуре. В отличие от чистых металлов сплавы плавятся и кристаллизуются в интервале температур, т.е. они имеют две критические точки - температуру начала кристаллизации (полного расплавления) и температуру полного затвердевания (начала плавления) при охлаждении расплава (при нагревании сплава).

В расплавленном состоянии металлы обычно неограниченно растворимы друг в друге. В твердом состоянии их взаимная растворимость может изменяться.

Рассмотрим диаграмму состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии.

Система состоит из двух компонентов А и В, полностью растворимых друг в друге в твердом состоянии. Ось абсцисс показывает изменение концентрации растворенного компонента В от 0 до 100%, ось ординат - температуру, при которой рассматривается состояние системы.

Вертикальная линия, соответствующая чистому компоненту А (0% В), является диаграммой состояния компонента А. При нагревании чистого компонента А он находится в твердом состоянии до температуры ТА, которая является температурой плавления (соответственно и температурой кристаллизации). При этой температуре компонент А плавится и выше этой критической точки находится в жидком состоянии.

Вертикальная линия, соответствующая чистому компоненту В (100% В), является диаграммой состояния компонента В. Критическая точка - температура плавления Тв.

Сплав с содержанием 50% В (вертикальная линия I), так же как и другие сплавы системы, имеет две критические точки Ts - температура начала плавления (конца кристаллизации) и Tt - температура конца плавления (начала кристаллизации). Интервал температур от Ts до TL - это интервал плавления (кристаллизации) сплава.

Выше температуры TL сплав находится в расплавленном состоянии, представляет собой однофазную систему. Линия, соответствующая температурам, выше которых сплав полностью расплавлен, называется линией ликвидус.

Ниже температуры Ts сплав представляет собой твердый раствор L, система однофазна. Линия, соответствующая температурам, ниже которых сплав находится полностью в твердом состоянии, называется линией солидус.

В интервале кристаллизации TL - Ts сплав представляет собой двухфазную систему: часть сплава находится в жидком состоянии (расплав), остальной сплав в твердом состоянии (кристаллы L - твердого раствора).

Рассмотрим диаграмму состояния компонентов с ограниченной растворимостью друг в друге в твердом состоянии (рис. 6).

Та и Тв - температуры плавления компонентов А и В соответственно. Линия ТАСТВ - линия ликвидус. Линия TAECDTB - линия солидус.

Предельная растворимость компонента В в компоненте А соответствует точке F, компонента А в компоненте В-точке G. В интервале концентраций, соответствующих точкам Fn G, компоненты An В друг в друге нерастворимы. После кристаллизации сплавы таких концентраций представляют собой двухфазную систему, состоящую из а и В-твердых растворов.

Сплав, соответствующий проекции точки С, является самым легкоплавким и называется эвтектическим. Этот сплав кристаллизуется (плавится) при постоянной температуре, при этом из расплава кристаллизуются одновременно две твердые фазы (а и В-растворы). Такой процесс называется эвтектическим превращением.

Эвтектика - это механическая смесь нескольких твердых фаз, одновременно кристаллизующихся при постоянной температуре из расплава.

Сплавы, относящиеся к области левее точки Сдо точки Е, называются доэвтектическими, правее точки Сдо точки D - заэвтектическими.

Связь между структурой и свойствами сплавов

Между составом и структурой сплава, определяемой типом диаграммы состояния, и свойствами сплава существует определенная зависимость.

При образовании твердого раствора предел прочности, текучести и твердость повышаются при сохранении достаточно высокой пластичности. При образовании твердого раствора внедрения прочность во много раз больше, чем при образовании твердого раствора замещения той же концентрации.

Сочетание повышенной прочности и хорошей пластичности позволяет использовать твердые растворы как основу конструкционных сплавов.

Благодаря высокой пластичности сплавы - твердые растворы легко деформируются, но плохо обрабатываются резанием. Такие сплавы имеют низкие литейные свойства.

При образовании твердых растворов значительно увеличивается электросопротивление. Поэтому сплавы - твердые растворы широко применяют для изготовления проволоки электронагревательных элементов и реостатов.

Для получения высоких литейных свойств концентрация компонентов в сплавах должна превышать их предельную растворимость в твердом состоянии и приближаться к эвтектическому составу. Эвтектические сплавы обладают хорошей жидкотекучестью. Но при появлении в структуре сплава эвтектики сильно снижается его пластичность. Поэтому в деформируемых сплавах содержание компонентов не превышает величины предельной растворимости при эвтектической температуре.

Химические соединения, образующиеся в сплавах, обладают свойствами, резко отличающимися от свойств исходных компонентов. Они имеют очень высокую твердость, но хрупки. Химические соединения имеют большое значение в качестве твердых структурных составляющих в сплавах.

Основную долю разнообразных металлических материалов, используемых в технике, составляют сплавы. Чистые металлы в технике не применяют, потому что они характеризуются низким пределом прочности. Путем сплавления или спекания нескольких металлов или металлов с неметаллическими элементами получают сплавы, которые обладают высокой прочностью, пластичностью, хорошо обрабатываются резанием, свариваются и т.д. При этом улучшаются эксплуатационные и технологические свойства металлического материала.

Сплавом называется макроскопически однородная система, состоящая из двух и более химических элементов. Вещества, образующие систему, называют компонентами.

Компонентами сплава могут быть металлы (железо, медь, алюминий, никель и т.д.) и неметаллические элементы (углерод). Компонентом могут быть и химические соединения, если в рассматриваемых интервалах температур они не диссоциируют на свои составные части. Количество компонентов, составляющих систему (сплав), может быть различным. Чистый металл – это однокомпонентная система; сплав двух металлов – двухкомпонентная, и т.д.

Выбор базового компонента сплава определяется техническим заданием на его свойства. В зависимости от базового компонента все сплавы делятся на:

—черные, основу которых составляет железо (стали, чугуны);

—цветные, основу которых составляет любой металл, кроме железа (алюминиевые, медные, никелевые, титановые и др.).

Выбор других компонентов сплава производится на основе оценки взаимодействия элементов периодической системы с базовым компонентом и между собой. Их взаимодействие учитывается и в жидком, и в твердом состояниях, так как сплавление проводится при температурах, превышающих температуру плавления базового компонента, а затем сплав, охлаждаясь, кристаллизуется и остывает до температуры окружающей среды. При этом изменяется не только агрегатное состояние системы, но и ее фазовый состав в зависимости от температуры и скорости охлаждения.

Фазы металлических сплавов

В сплавах компоненты могут вступать во взаимодействие с образованием различных фаз. Различают следующие фазы металлических сплавов:

Растворомназывается твердая или жидкая гомогенная (однородная) система, состоящая из двух или более компонентов, относительные количества которых могут изменяться в широких пределах.

Жидкие растворы. Большинство металлов растворяются друг в друге в жидком состоянии неограниченно (в любых соотношениях). При этом образуется однородный жидкий раствор, в котором атомы растворимого металла равномерно распределены среди атомов металла-растворителя.

Твердые растворы. В твердом растворе металл-растворитель сохраняет свою кристаллическую решетку, а растворимый элемент (металл или неметалл) распределяется в ней в виде отдельных атомов. Твердые растворы бывают двух типов:

—твердые растворы замещения;

—твердые растворы внедрения.

В твердых растворах замещения (рис. 1, а) часть атомов кристаллической решетки металла-растворителя замещена атомами другого компонента. Атомы растворенного компонента могут замещать атомы растворителя в любых узлах решетки. Поэтому твердые растворы замещения называют неупорядоченными твердыми растворами.

В твердых растворах внедрения (рис. 1, б) атомы растворенного компонента внедряются в межатомное пространство кристаллической решетки компонента-растворителя. При этом атомы располагаются в таких пустотах, где для них имеется больше свободного пространства.

Таким образом, твердый раствор, состоящий из двух или нескольких компонентов, имеет один тип решетки и представляет собой одну фазу.

При образовании твердого раствора кристаллическая решетка всегда искажается, так как атомы растворителя и растворенного компонента различны.


Искажение кристаллической решетки обусловливает изменение свойств сплавов по сравнению со свойствами исходных компонентов. Образование твердых растворов в сплавах приводит к увеличению их электрического сопротивления, снижает пластичность и вязкость.

Растворенные атомы в твердых растворах обоих типов распределены произвольно. Однако в некоторых случаях при медленном охлаждении сплава или длительной его выдержке при заданных температурах могут образоваться кристаллические решетки с упорядоченным расположением атомов компонентов. Такие растворы называют упорядоченными или сверхструктурами. Они занимают промежуточное положение между твердыми растворами и химическими соединениями.

Химические соединения.Химические соединения и родственные им фазы постоянного состава в металлических сплавах многообразны. Они имеют характерные особенности, отличающие их от твердых растворов:

—их кристаллическая решетка отличается от кристаллических решеток компонентов, образующих соединение;

—соотношение элементов в них кратно целым числам;

—их свойства отличны от свойств образующих элементов;

—они плавятся при постоянной температуре;

—их образование сопровождается значительным тепловым эффектом.

Диаграммы состояния сплавов

Для определения количества фаз в сплаве, их состава пользуются диаграммами фазового равновесия – диаграммами состояния. Диаграмма состояния – графическое изображение фазового состава сплава в состоянии равновесия или близком к нему в зависимости от содержания компонентов в сплаве и от температуры.

Температуры, при которых изменяются строение и свойства (происходят фазовые превращения) металлов и сплавов, называют критическими точками. Чистые металлы имеют одну критическую точку, которой является температура плавления (кристаллизации). Они плавятся и затвердевают при одной и той же постоянной температуре. В отличие от чистых металлов сплавы плавятся и кристаллизуются в интервале температур, т.е.они имеют две критические точки – температуру начала кристаллизации (полного расплавления) и температуру полного затвердевания (начала плавления) при охлаждении расплава (при нагревании сплава).

В расплавленном состоянии металлы обычно неограниченно растворимы друг в друге. В твердом состоянии их взаимная растворимость может изменяться.

Рассмотрим диаграмму состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии.

Система состоит из двух компонентов А и В, полностью растворимых друг в друге в твердом состоянии. Ось абсцисс показывает изменение концентрации растворенного компонента В от 0 до 100%, ось ординат – температуру, при которой рассматривается состояние системы.

Вертикальная линия, соответствующая чистому компоненту А (0% В), является диаграммой состояния компонента А. При нагревании чистого компонента А он находится в твердом состоянии до температуры ТА , которая является температурой плавления (соответственно и температурой кристаллизации). При этой температуре компонент А плавится и выше этой критической точки находится в жидком состоянии.

Вертикальная линия, соответствующая чистому компоненту В (100% В), является диаграммой состояния компонента В. Критическая точка – температура плавления Тв .

Сплав с содержанием 50% В (вертикальная линия I), так же как и другие сплавы системы, имеет две критические точки Ts – температура начала плавления (конца кристаллизации) и Tt – температура конца плавления (начала кристаллизации). Интервал температур от Ts до TL – это интервал плавления (кристаллизации) сплава.

Выше температуры TL сплав находится в расплавленном состоянии, представляет собой однофазную систему. Линия, соответствующая температурам, выше которых сплав полностью расплавлен, называется линией ликвидус.

Ниже температуры Ts сплав представляет собой твердый раствор L, система однофазна. Линия, соответствующая температурам, ниже которых сплав находится полностью в твердом состоянии, называется линией солидус.

В интервале кристаллизации TL – Ts сплав представляет собой двухфазную систему: часть сплава находится в жидком состоянии (расплав), остальной сплав в твердом состоянии (кристаллы L– твердого раствора).

Рассмотрим диаграмму состояния компонентов с ограниченной растворимостью друг в друге в твердом состоянии (рис. 6).

Та иТв – температуры плавления компонентов А и В соответственно. Линия ТА СТВ – линия ликвидус. Линия TA ECDTB – линия солидус.

Предельная растворимость компонента В в компоненте А соответствует точке F, компонента А в компоненте В-точке G. В интервале концентраций, соответствующих точкам FnG, компоненты An В друг в друге нерастворимы. После кристаллизации сплавы таких концентраций представляют собой двухфазную систему, состоящую из а и В-твердых растворов.

Сплав, соответствующий проекции точки С, является самым легкоплавким и называется эвтектическим. Этот сплав кристаллизуется (плавится) при постоянной температуре, при этом из расплава кристаллизуются одновременно две твердые фазы (а и В-растворы). Такой процесс называется эвтектическим превращением.

Эвтектика – это механическая смесь нескольких твердых фаз, одновременно кристаллизующихся при постоянной температуре из расплава.

Сплавы, относящиеся к области левее точки Сдо точки Е, называются доэвтектическими, правее точки Сдо точки D– заэвтектическими.

Связь между структурой и свойствами сплавов

Между составом и структурой сплава, определяемой типом диаграммы состояния, и свойствами сплава существует определенная зависимость.

При образовании твердого раствора предел прочности, текучести и твердость повышаются при сохранении достаточно высокой пластичности. При образовании твердого раствора внедрения прочность во много раз больше, чем при образовании твердого раствора замещения той же концентрации.

Сочетание повышенной прочности и хорошей пластичности позволяет использовать твердые растворы как основу конструкционных сплавов.

Благодаря высокой пластичности сплавы – твердые растворы легко деформируются, но плохо обрабатываются резанием. Такие сплавы имеют низкие литейные свойства.

При образовании твердых растворов значительно увеличивается электросопротивление. Поэтому сплавы – твердые растворы широко применяют для изготовления проволоки электронагревательных элементов и реостатов.

Для получения высоких литейных свойств концентрация компонентов в сплавах должна превышать их предельную растворимость в твердом состоянии и приближаться к эвтектическому составу. Эвтектические сплавы обладают хорошей жидкотекучестью. Но при появлении в структуре сплава эвтектики сильно снижается его пластичность. Поэтому в деформируемых сплавах содержание компонентов не превышает величины предельной растворимости при эвтектической температуре.

Химические соединения, образующиеся в сплавах, обладают свойствами, резко отличающимися от свойств исходных компонентов. Они имеют очень высокую твердость, но хрупки. Химические соединения имеют большое значение в качестве твердых структурных составляющих в сплавах.

Когда говорят о кристаллизации, обычно подразумевают процесс превращения воды в лед. Общие закономерности этого процесса хорошо известны, но истинные перемещения атомов, происходящие при этом, еще неполностью выяснены. В этом и заключается актуальность данной темы реферата. Металлы также могут переходить из жидкого состояния в твердое, но, как и в случае превращения воды в лед, механизм этого процесса не вполне ясен. Это одновременно удивительно и печально, так как металл на определенных стадиях изготовления из него большинства деталей или изделий претерпевает переход из жидкого состояния в твердое. Когда деталь отлита в форму, структура, образующаяся сразу после затвердевания, определяет многие свойства изделия. Это справедливо даже для слитков, несмотря на распространенное, но неправильное мнение, что дефекты могут быть ликвидированы при ковке.

Содержание

1.1. Понятие кристаллизации. 5

1.2. Кристаллическое строение металлов …………………………………………..7

1.3. Гомогенная (самопроизвольная) кристаллизация……………………………10

1.4. Гетерогенная (несамопроизвольная) кристаллизация…………………….…12

Прикрепленные файлы: 1 файл

кристалы.docx

Министерство образования и науки Российской федерации

По дисциплине: Материаловедение. ТКМ.

На тему: Кристаллизация металлов.

Выполнил(а): ст. гр. ОПИ-10

Принял(а): ст преп.каф.ОПИ

Содержание

1.1. Понятие кристаллизации. . . . 5

1.2. Кристаллическое строение металлов …………………………………………..7

1.3. Гомогенная (самопроизвольная) кристаллизация……………………………10

1.4. Гетерогенная (несамопроизвольная) кристаллизация…………………….…12

Когда говорят о кристаллизации, обычно подразумевают процесс превращения воды в лед. Общие закономерности этого процесса хорошо известны, но истинные перемещения атомов, происходящие при этом, еще неполностью выяснены. В этом и заключается актуальность данной темы реферата. Металлы также могут переходить из жидкого состояния в твердое, но, как и в случае превращения воды в лед, механизм этого процесса не вполне ясен. Это одновременно удивительно и печально, так как металл на определенных стадиях изготовления из него большинства деталей или изделий претерпевает переход из жидкого состояния в твердое. Когда деталь отлита в форму, структура, образующаяся сразу после затвердевания, определяет многие свойства изделия. Это справедливо даже для слитков, несмотря на распространенное, но неправильное мнение, что дефекты могут быть ликвидированы при ковке. На практике многие дефекты, проходя через все стадии изготовления, доходят до готового изделия, будь то подвеска автомобиля или ножки металлического стула. Наличие значительных дефектов не позволяет получить желаемые механические свойства, а колебания в химическом составе приводят к тому, что коррозионные и усталостные свойства в разных местах изделия становятся различными.

Для инженера и ученого важно получить в твердом состоянии металл, однородный по химическому составу, не содержащий значительных дефектов и обладающий определенными, одинаковыми по всему объему, механическими и физическими свойствами.

Все металлы могут находиться в твердом, жидком или в газообразном состояниях. Переход из твердого состояния в жидкое происходит при определенной температуре плавления, переход из жидкого состояния в газообразное происходит при температуре кипения. Эти температуры зависят от давления. Температура плавления является одной из важнейших характеристик металла.

Процессы нагрева или охлаждения, при которых происходит переход металла из одного состояния в другое, связаны с получением или потерей тепла. Все превращения в природе, протекающие самопроизвольно, вызываются стремлением системы к переходу из неустойчивого состояния в более устойчивое, обладающее меньшим запасом свободной энергии.

С изменением температуры свободная энергия для жидкого и твердого (кристаллического) состояния изменяется различно. Но для каждого металла есть такая температура, при которой свободные энергии жидкого и твердого состояний равны, металл в обоих состояниях находится в равновесии. Эта температура и называется теоретической температурой кристаллизации.

Практически процесс кристаллизации металлов происходит при температуре ниже теоретической температуры кристаллизации, т. е. при некоторой фактической температуре кристаллизации.

Охлаждение жидкого металла ниже теоретической температуры кристаллизации носит название явления переохлаждения. Разность между теоретической и фактической температурами кристаллизации называется степенью переохлаждения.

Процесс кристаллизации, т. е. переход из жидкого состояния в твердое, изображается кривыми охлаждения, которые строятся в координатах температура — время.

Жидкий металл при охлаждении не испытывает качественных изменений: кривая охлаждения идет плавно. При достижении теоретической температуры кристаллизации на кривой охлаждения появляется горизонтальная площадка, так как отвод тепла компенсируется выделяющейся при кристаллизации скрытой теплотой кристаллизации. Когда закончится процесс кристаллизации, кривая охлаждения снижается опять плавно.

У некоторых металлов как, например, у сурьмы, из-за большого переохлаждения скрытая теплота кристаллизации выделяется настолько бурно, что температура скачкообразно повышается и приближается к теоретической температуре кристаллизации. Процесс кристаллизации имеет важное значение, так как все превращения определяют структуру металла, а, следовательно, и его свойства.

Рассмотрим подробней понятие кристаллизации, ее виды и кристаллическое строение металлов.

1.1. Понятие кристаллизации[1,2,4].

Переход металла из жидкого состояния в твердое (кристаллическое) называется кристаллизацией. Кристаллизация протекает вследствие перехода к более устойчивому состоянию с меньшей свободной энергией. Свободные энергии жидкого и твердого состояний уменьшаются с повышением температуры. При достижении равновесной температуры свободные энергии жидкого и твердого состояний равны, а поэтому при этой температуре ни процесс кристаллизации, ни процесс плавления до конца протекать не могут. Эта температура называется равновесной или теоретической температурой кристаллизации.
Процесс кристаллизации развивается, если созданы условия, при которых возникает разность свободных энергий, образующаяся вследствие меньшей свободной энергии твердого металла, чем жидкого.
Это возможно только тогда, когда жидкость охлаждена ниже точки равновесной температуры, например, до температуры кристаллизации, называемой фактической температурой кристаллизации. Разность температур равновесной и кристаллизации называется степенью переохлаждения. Процесс кристаллизации можно изобразить кривыми в координатах температура — время. разной скоростью. Они позволяют проследить ход процесса кристаллизации металла.
Сначала, когда металл находится в жидком состоянии, температура понижается равномерно до температуры кристаллизации, лежащей ниже равновесной температуры. При достижении температуры кристаллизации на кривой охлаждения появляется горизонтальная площадка, так как отвод теплоты в окружающую среду компенсируется выделяющейся при кристаллизации скрытой теплотой кристаллизации. После окончания кристаллизации температура вновь понижается равномерно. Чем больше скорость охлаждения, тем больше и степень переохлаждения. Поэтому процесс кристаллизации закончится при более низкой температуре.
Великий русский ученый Д.К. Чернов установил, что процесс кристаллизации состоит из двух стадий: зарождения мельчайших частиц кристаллов (зародышей или центров кристаллизации) и роста кристаллов из этих центров. Зародышами кристаллов в жидком растворе являются устойчивые группы атомов, расположение которых близко к кристаллическому. Такую кристаллизацию называют самопроизвольной (гомогенной). Рост кристаллов заключается в том, что к их зародышам присоединяются все новые атомы жидкого металла. Сначала кристаллы растут свободно, сохраняя правильную геометрическую форму, но это происходит только до момента встречи растущих кристаллов. В месте соприкосновения кристаллов рост отдельных их граней прекращается, и развиваются не все, а только некоторые грани кристаллов. В результате кристаллы не имеют правильной геометрической формы. Такие кристаллы называют кристаллитами или зернами. Величина зерна зависит от числа центров кристаллизации (ч.ц.) и скорости роста кристаллов (с.к.). Чем больше центров кристаллизации, тем больше кристаллов образуется в данном объеме. На образование центров кристаллизации влияет степень переохлаждения. Чем больше степень переохлаждения металла, тем больше возникает в нем центров кристаллизации, и зерна получаются мельче. Размер зерна металла в большой степени влияет на его механические свойства. Эти свойства, особенно вязкость и пластичность, выше, если металл имеет мелкое зерно. Для получения мелкого зерна при затвердевании металла используют модифицирование, т.е. введение в жидкий металл тугоплавких мелких частичек, служащих дополнительными центрами кристаллизации. Такую кристаллизацию называют несамопроизвольной (гетерогенной). Степень переохлаждения влияет не только на величину кристаллов, но и на их форму. При очень малых степенях переохлаждения образуются кристаллы правильной геометрической формы. При больших степенях переохлаждения возникают кристаллы иной формы, при этом наиболее распространена дендритная форма. Дендритная кристаллизация характеризуется тем, что рост зародышей происходит с неравномерной скоростью. После образования зародышей их развитие идет главным образом в тех направлениях решетки, которые имеют наибольшую плотность упаковки атомов. В этих направлениях образуются длинные ветви будущего кристалла — так называемые оси первого порядка.

Распределенными углами начинают расти новые оси, которые называют осями второго порядка, от осей второго порядка растут оси третьего порядка и т.д. По мере кристаллизации образуются оси более высокого порядка, которые постепенно заполняют все промежутки, ранее занятые жидким металлом.

1.2. Кристаллическое строение металлов [1,4].

Металлургический тип связи характерен тем, что нет непосредственного соединения атомов друг с другом, нет между ними прямой связи. Атомы в металлах размещаются закономерно, образуя кристаллическую решетку.

Кристаллическая решетка - это мысленно проведенные в пространстве прямые линии, соединяющие ближайшие атомы и проходящие через их центры, относительно которых они совершают колебательные движения. В итоге образуются фигуры правильной геометрической формы - кристаллическая решетка (рис. 1.1).

Каждый атом принадлежит 8 кристаллическим решеткам. В аморфных телах с хаотическим расположением атомов в пространстве, свойства в различных направлениях одинаковы, а в кристаллических телах расстояния между атомами в различных направлениях неодинаковы, поэтому различны и свойства. Тип кристаллической решетки (рис. 1.2) зависит от металла, температуры и давления. Это используется при термообработке металлов для упрочнения их.

Реальные металлы состоят из большого количества кристаллов, различно ориентированных в пространстве относительно друг друга. На границах зерен атомы кристаллов не имеют правильного расположения, здесь скапливаются примеси, дефекты и включения. Экспериментально установлено, что внутреннее кристаллическое строение зерен не является правильным. В решетках имеются различные дефекты (несовершенства), которые нарушают связь между атомами и оказывают влияние на свойства металлов.

Имеются следующие несовершенства в кристаллических решетках:

1. Точечные (рис. 1.3):

а) Наличие вакансий, т. е. мест в решетке, не занятых атомами. Это происходит из-за смещения атомов от равновесного состояния. Число вакансий увеличивается с ростом температуры.

б) Дислоцированные атомы, т. е. атомы вышедшие из узла решетки и занявшие место в междоузлии.

в) Примесные атомы, т.е. в основном металле имеются чужеродные примеси. Например, в чугуне основными атомами являются атомы железа, а примесными- атомы углерода, которые или занимают место основного атома, или внедряются внутрь ячейки.

2. Поверхностные несовершенства, имеющие небольшую толщину при значительных размерах в двух других направлениях.

3. Линейные несовершенства (цепочки вакансий, дислокаций и т. д.).

Линейные дефекты малы в двух направлениях и значительно большего размера в третьем.

Остывая, расплавленный металл затвердевает. Переход металла из жидкого состояния в твердое сопровождается группировкой его атомов в кристаллические решетки. Процесс образования кристаллических решеток при остывании металла называется кристаллизацией. Явления, происходящие в расплавленном металле при его остывании, можно проследить по кривым охлаждения. Для построения такой кривой через определенные промежутки времени измеряют температуру расплавленного металла и откладывают ее значения на вертикальной оси, а значения времени откладывают на горизонтальной оси. Температура, при которой металл превращается из жидкого в твердый, а также из твердого в жидкий, называется критической точкой.. В действительности при охлаждении металла до критической точки кристаллизация не начинается, пока температура не достигнет величины, меньшей критической точки. Металл при этом переохлаждается. При образовании кристаллических решеток происходит выделение тепла. Поэтому температура металла резко поднимается почти до критической и не падает до полного затвердевания металла. Скопление большого количества кристаллических решеток образует кристалл. Металл состоит из множества кристаллов.
Свойства кристаллов зависят от расположения атомов внутри них. Рассмотрев кристаллическую решетку, увидим, что расстояния между атомами не равны друг другу. Следовательно, силы взаимодействия между атомами в разных направлениях будут неодинаковы. Поэтому свойства кристаллов в одном направлении отличаются от их свойств в другом направлении. Такое различие свойств является одной из важнейших особенностей кристаллов.


1 чел. помогло.

3.1. Строение металлов и сплавов

Любое вещество может находиться в трех агрегатных состояниях: твердом, жидком, газообразном. Возможен переход из одного состояния в другое, если новое состояние в новых условиях является более устойчивым, обладает меньшим запасом энергии.

С изменением внешних условий свободная энергия изменяется по сложному закону различно для жидкого и кристаллического состояний. Характер изменения свободной энергии жидкого и твердого состояний с изменением температуры показан на рис. 3.1.


Рис. Изменение свободной энергии в зависимости от температуры

В соответствии с этой схемой выше температуры ТS вещество должно находиться в жидком состоянии, а ниже ТS – в твердом.

При температуре равной ТS жидкая и твердая фаза обладают одинаковой энергией, металл в обоих состояниях находится в равновесии, поэтому две фазы могут существовать одновременно бесконечно долго. Температура ТSравновесная или теоретическая температура кристаллизации.

Рассмотрим переход металла из жидкого состояния в твердое.

При нагреве всех кристаллических тел наблюдается четкая граница перехода из твердого состояния в жидкое. Такая же граница существует при переходе из жидкого состояния в твердое.

Кристаллизация – это процесс образования участков кристаллической решетки в жидкой фазе и рост кристаллов из образовавшихся центров.

Процесс перехода металла из жидкого состояния в кристаллическое можно изобразить кривыми в координатах время – температура. Кривая охлаждения чистого металла представлена на рис. 3.2.


Рис. Кривая охлаждения чистого металла


– теоретическая температура кристаллизации;


. – фактическая температура кристаллизации.

^ 3.2. Механизм и закономерности кристаллизации металлов

При соответствующем понижении температуры в жидком металле начинают образовываться кристаллики – центры кристаллизации или зародыши.

Механизм кристаллизации представлен на рис.3.4.


Рис.3.4. Модель процесса кристаллизации

Центры кристаллизации образуются в исходной фазе независимо друг от друга в случайных местах. Сначала кристаллы имеют правильную форму, но по мере столкновения и срастания с другими кристаллами форма нарушается. Рост продолжается в направлениях, где есть свободный доступ питающей среды. После окончания кристаллизации имеем поликристаллическое тело.

^ 3.3. Понятие об изотропии и анизотропии

Свойства тела зависят от природы атомов, из которых оно состоит, и от силы взаимодействия между этими атомами. Силы взаимодействия между атомами в значительной степени определяются расстояниями между ними. В аморфных телах с хаотическим расположением атомов в пространстве расстояния между атомами в различных направлениях равны, следовательно, свойства будут одинаковые, то есть аморфные тела изотропны

В кристаллических телах атомы правильно располагаются в пространстве, причем по разным направлениям расстояния между атомами неодинаковы, что предопределяет существенные различия в силах взаимодействия между ними и, в конечном результате, разные свойства. Зависимость свойств от направления называется анизотропией

^ 3.4. Аллотропия или полиморфные превращения

Способность некоторых металлов существовать в различных кристаллических формах в зависимости от внешних условий (давление, температура) называется аллотропией или полиморфизмом.

Каждый вид решетки представляет собой аллотропическое видоизменение или модификацию.

Примером аллотропического видоизменения в зависимости от температуры является железо (Fe).

Fe: – ОЦК - ;

– ГЦК - ;

– ОЦК - ; (высокотемпературное )

Превращение одной модификации в другую протекает при постоянной температуре и сопровождается тепловым эффектом. Видоизменения элемента обозначается буквами греческого алфавита в виде индекса у основного обозначения металла.

Примером аллотропического видоизменения, обусловленного изменением давления, является углерод: при низких давлениях образуется графит, а при высоких – алмаз.

^ 3.5. Магнитные превращения

Некоторые металлы намагничиваются под действием магнитного поля. После удаления магнитного поля они обладают остаточным магнетизмом. Это явление впервые обнаружено на железе и получило название ферромагнетизма. К ферромагнетикам относятся железо, кобальт, никель и некоторые другие металлы.


При нагреве ферромагнитные свойства металла уменьшаются постепенно: вначале слабо, затем резко, и при определ¨нной температуре (точка Кюри) исчезают (точка Кюри для железа – ). Выше этой температуры металлы становятся парамагнетиками. Магнитные превращения не связаны с изменением кристаллической решетки или микроструктуры, они обусловлены изменениями в характере межэлектронного взаимодействия.

^ 3.6. Понятие о сплавах и методах их получения

Под сплавом понимают вещество, полученное сплавлением двух или более элементов. Возможны другие способы приготовления сплавов: спекания, электролиз, возгонка. В этом случае вещества называются псевдосплавами.

Сплав, приготовленный преимущественно из металлических элементов и обладающий металлическими свойствами, называется металлическим сплавом.

Основные понятия в теории сплавов.

Компоненты – вещества, образующие систему. В качестве компонентов выступают чистые вещества и химические соединения.

Фаза – однородная часть системы, отделенная от других частей системы поверхностного раздела, при переходе через которую структура и свойства резко меняются.

^ 3.7. Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений

Строение металлического сплава зависит от того, в какие взаимодействия вступают компоненты, составляющие сплав. Почти все металлы в жидком состоянии растворяются друг в друге в любых соотношениях. При образовании сплавов в процессе их затвердевании возможно различное взаимодействие компонентов.


  1. механические смеси;

  2. химические соединения;

  3. твердые растворы.

Образуются между элементами значительно различающимися по строению и свойствам, когда сила взаимодействия между однородными атомами больше чем между разнородными. Сплав состоит из кристаллов входящих в него компонентов (рис. 4.1). В сплавах сохраняются кристаллические решетки компонентов.


Рис. Схема микроструктуры механической смеси

Сплавы химические соединения образуются между элементами, значительно различающимися по строению и свойствам, если сила взаимодействия между разнородными атомами больше, чем между однородными.


  1. Постоянство состава, то есть сплав образуется при определенном соотношении компонентов, химическое соединение обозначается Аn Вm/

  2. Образуется специфмческая, отличающаяся от решеток элементов, составляющих химическое соединение, кристаллическая решетка с правильным упорядоченным расположением атомов (рис. 4.2)

  3. Ярко выраженные индивидуальные свойства

  4. Постоянство температуры кристаллизации, как у чистых компонентов

Рис. Кристаллическая решетка химического соединения

Сплавы твердые растворы – это твердые фазы, в которых соотношения между компонентов могут изменяться. Являются кристаллическими веществами.

Характерной особенностью твердых растворов является:наличие в их кристаллической решетке разнородных атомов, при сохранении типа решетки растворителя.

Твердый раствор состоит из однородных зерен (рис. 4.3).


Рис. Схема микроструктуры твердого раствора

^ 3.7. Кристаллизация сплавов

Кристаллизация сплавов подчиняется тем же закономерностям, что и кристаллизация чистых металлов. В сплавах в твердых состояниях, имеют место процессы перекристаллизации, обусловленные аллотропическими превращениями компонентов сплава, распадом твердых растворов, выделением из твердых растворов вторичных фаз, когда растворимость компонентов в твердом состоянии меняется с изменением температуры.

Эти превращения называют фазовыми превращениями в твердом состоянии.

При перекристаллизации в твердом состоянии образуются центры кристаллизации и происходит их рост.

Обычно центры кристаллизации возникают по границам зерен старой фазы, где решетка имеет наиболее дефектное строение, и где имеются примеси, которые могут стать центрами новых кристаллов. У старой и новой фазы, в течение некоторого времени, имеются общие плоскости. Такая связь решеток называется когерентной связью. В случае различия строения старой и новой фаз превращение протекает с образованием промежуточных фаз.

Нарушение когерентности и обособления кристаллов наступает, когда они приобретут определенные размеры.

Читайте также: