Реферат на тему оптоэлектронные приборы

Обновлено: 05.07.2024

Введение 3
1. Введение в оптоэлектронику 4
2. Физические основы оптоэлектроники 5
3. Оптоэлектронные приборы 7
4. Фотоприёмники 8
5. Оптоэлектронные источники излучения 11
Заключение 19
Список использованной литературы 20

Введение
Перспективы развития современных телекоммуникационных и информационных системсвязанны с совершенствованием микроэлектронной элементной базы.
Последние сорок лет элементная база развивается в соответствии с законом Г. Мура. Количество элементов в изделиях микроэлектроники удваивается каждые два года. Современные электронные компоненты позволяют создавать малогабаритную, экономическую и надёжную электронную аппаратуру.
Одно из центральных мест в общей номенклатуре изделий электроннойтехники занимают оптоэлектронные приборы. Эти приборы используют электромагнитное излучение оптического диапазона для приёма, обработки и передачи, а также отображения информации.
Оптоэлектронные приборы чувствительны к электромагнитному излучению в спектральном диапазоне от инфракрасного до ультрафиолетового или к приборам, излучающим электромагнитную энергию в данном диапазоне.
Физическуюоснову оптоэлектроники составляют процессы: преобразования электрических сигналов в оптические и оптические в электрические; распространения излучения в видимой, инфракрасной и ультрафиолетовой областях спектра в различных средах; взаимодействия электромагнитных излучений оптического диапазона с веществом.
Оптоэлектроника синтезирует достижения ряда областей науки и техники: квантовой электроники,полупроводниковой электроники, микроэлектроники и др.
При разработке оптоэлектронных приборов широко используются возможности технологии производства интегральных микросхем. Основу практически любой оптоэлектронной системы составляют генераторы когерентного (лазеры) и некогерентного (светодиоды) излучения.

1. Введение в оптоэлектронику
Оптоэлектроника – область физики и техники, использующая эффектывзаимного преобразования электрических и оптических сигналов с веществом (обычно с твёрдым телом).
Её преимущества заключаются в огромной информационной ёмкости оптических каналов связи, связанной с высокой частотой электромагнитных колебаний (~1015 Гц) света и высокая энергетическая плотность оптического излучения внутри световода, что позволяет минимизировать поперечные размеры оптического волокна.
Воптоэлектронике в качестве носителя информации используются электромагнитные волны оптического диапазона. Длины волн оптического излучения лежат в диапазоне от 1 нм до 1мм (рис. 1).

Рис. 1 – шкала электромагнитных волн
Оптоэлектронный прибор – это элемент или узел, применяемый в оптоэлектронике для преобразования оптического излучения в электрические сигналы и наоборот.
2. Физические основыоптоэлектроники
Оптоэлектронные приборы делятся на источники оптического излучения и приемники оптического излучения (фотоприемники).
Кроме них к оптоэлектронным приборам относят оптические волноводы, оптическую память, функциональные приборы (преобразователи некогерентного излучения в когерентное, оптроны, оптические вентили и др.), оптические и оптоэлектронные интегральные схемы, модуляторы света и отклоняющиесистемы, а также разного рода дисплеи.
Основные эффекты оптоэлектроники:
* фотопроводимость (внутренний фотоэффект) – увеличение электропроводности полупроводника или изолятора под действием света;
* фотогальванический эффект – если светом облучать поверхность перехода в полупроводнике, то возникает ЭДС;
* нелинейные оптические эффекты – нелинейные отклики на мощное оптическое излучение;
*магнитооптический эффект – изменение оптических свойств вещества в зависимости от его намагниченности или от приложенного к нему магнитного поля;
* электрооптический эффект – изменение коэффициента преломления пропорционально приложенному электрическому полю;
* акустооптический эффект – явление преломления, дифракции, отражения или.

Оптоэлектроника является важной самостоятельной областью функциональной электроники и микроэлектроники. Оптоэлектронный прибор - это устройство, в котором при обработке информации происходит преобразование электрических сигналов в оптические и обратно.

Существенная особенность оптоэлектронных устройств состоит в том, что элементы в них оптически связаны, а электрически изолированы друг от друга.

Благодаря этому легко обеспечивается согласование высоковольтных и низковольтных, а также высокочастотных и низкочастотных цепей. Кроме того, оптоэлектронным устройствам присущи и другие достоинства: возможность пространственной модуляции световых пучков, что в сочетании с изменениями во времени дает три степени свободы (в чисто электронных цепях две); возможность значительного ветвления и пересечения световых пучков в отсутствие гальванической связи между каналами; большая функциональная нагрузка световых пучков ввиду возможности изменения многих их параметров (амплитуды, направления, частоты, фазы, поляризации).

Оптоэлектроника охватывает два основных независимых направления - оптическое и электронно-оптическое. Оптическое направление базируется на эффектах взаимодействия твердого тела с электромагнитным излучением. Оно опирается на голографию, фотохимию, электрооптику и другие явления. Оптическое направление иногда называют лазерным.

Электронно-оптическое направление использует принцип фотоэлектрического преобразования, реализуемого в твердом теле посредством внутреннего фотоэффекта, с одной стороны, и электролюминесценцией, с другой. В основе этого направления лежит замена гальванических и магнитных связей в традиционных электронных цепях оптическими. Это позволяет повысить плотность информации в канале связи, его быстродействие, помехозащищенность.

Для микроэлектроники представляет интерес в основном электронно-оптическое направление, которое позволяет решить одну из важных проблем интегральной микроэлектроники - существенное уменьшение паразитных связей между элементами как внутри одной интегральной микросхемы, так и между микросхемами. На оптоэлектронном принципе могут быть созданы безвакуумные аналоги электронных устройств и систем: дискретные и аналоговые преобразователи электрических сигналов (усилители, генераторы, ключевые элементы, элементы памяти, логические схемы, линии задержки и др.); преобразователи оптических сигналов - твердотельные аналоги электронно-оптических преобразователей, видиконов, электронно-лучевых преобразователей (усилители света и изображения, плоские передающие и воспроизводящие экраны); устройства отображения информации (индикаторные экраны, цифровые табло и другие устройства картинной логики).


Рис.1. Оптрон с внутренней (а) и внешними (б) фотонными связями: 1, 6 – источники света; 2 – световод; 3, 4 – приемники света; 5 – усилитель.

Основным элементом оптоэлектроники является оптрон. Различают оптроны с внутренней (рис.1, а) и внешними (рис.1, б) фотонными связями. Простейший оптрон представляет собой четырехполюсник (рис.1, а), состоящий из трех элементов: фотоизлучателя 1, световода 2 и приемника света 3, заключенных в герметичном светонепроницаемом корпусе. При подаче на вход электрического сигнала в виде импульса или перепада входного тока возбуждается фотоизлучатель. Световой поток по световоду попадает в фотоприемник, на выходе которого образуется электрический импульс или перепад выходного тока. Этот тип оптрона является усилителем электрических сигналов, в нем внутренняя связь фотонная, а внешние - электрические.

Другой тип оптрона - с электрической внутренней связью и фотонными внешними связями (рис.1, б) - является усилителем световых сигналов, а также преобразователем сигналов одной частоты в сигналы другой частоты, например сигналов инфракрасного излучения в сигналы видимого спектра. Приемник света 4 преобразует входной световой сигнал в электрический. Последний усиливается усилителем 5 и возбуждает источник света 6.

В настоящее время разработано большое число оптоэлектронных устройств различного назначения. В микроэлектронике, как правило, используются только те оптоэлектронные функциональные элементы, для которых имеется возможность интеграции, а также совместимость технологии их изготовления с технологией изготовления соответствующих интегральных микросхем.

Фотоизлучатели. К источникам света оптоэлектроникой предъявляются такие требования, как миниатюрность, малая потребляемая мощность, высокие эффективность и надежность, большой срок службы, технологичность. Они должны обладать высоким быстродействием, допускать возможность изготовления в виде интегральных устройств.

Наиболее широкое распространение в качестве электролюминесцентных источников получили инжекционные светодиоды, в которых испускание света определяется механизмом межзонной рекомбинации электронов и дырок. Если пропускать достаточно большой ток инжекции через p-n-переход (в прямом направлении), то часть электронов из валентной зоны перейдет в зону проводимости (рис.2). В верхней части валентной зоны образуются свободные состояния (дырки), а в нижней части зоны проводимости - заполнение состояния (электроны проводимости).

Такая инверсная заселенность не является равновесной и приводит к хаотическому испусканию фотонов при обратных переходах электронов. Возникающее при этом в р-n-переходе некогерентное свечение и является электролюминесценцией.


Рис.2. К объяснению принципа действия инжекционного светодиода.

Фотон, испускаемый при люминесцентном переходе из заполненной части зоны проводимости в свободную часть валентной зоны, вызывает индуцированное излучение идентичного фотона, заставив еще один электрон перейти в валентную зону. Однако фотон такой же энергии (от ∆E=E2-E1 до ∆E=2δE) не может поглотиться, так как нижнее состояние свободно (в нем нет электронов), а верхнее состояние уже заполнено. Это означает, что p-n-переход прозрачен для фотонов такой энергии, т.е. для соответствующей частоты. Наоборот, фотоны с энергией, большей ∆E+2δE, могут поглощаться, переводя электроны из валентной зоны в зону проводимости. В то же время для таких энергий индуцированное испускание фотонов невозможно, так как верхнее исходное состояние не заполнено, а нижнее состояние заполнено. Таким образом, вынужденное излучение возможно в узком диапазоне около частоты, соответствующей энергии запрещенной зоны ∆Е с шириной спектра δE.

Наилучшими материалами для светодиодов являются арсенид галлия, фосфид галлия, фосфид кремния, карбид кремния и др. Светодиоды имеют высокое быстродействие (порядка 0,5 мкс), но потребляют большой ток (около 30 А/см2). В последнее время разработаны светодиоды на основе арсенида галлия - алюминия, мощности которых составляют от долей до нескольких милливатт при прямом токе в десятки миллиампер.К. п. д. светодиодов не превышает 1 - 3%.

Перспективными источниками света являются инжекционные лазеры, позволяющие концентрировать высокие энергии в узкой спектральной области при высоких к. п. д. и быстродействии (десятки пикосекунд). Эти лазеры можно изготовлять в виде матриц на одном базовом кристалле по той же технологии, что и интегральные микросхемы. Недостатком простых инжекционных лазеров является то, что они имеют приемлемые характеристики лишь при использовании охлаждения до очень низких температур. При нормальной температуре галлий-арсенидовый лазер имеет малую среднюю мощность, низкий к. п. д. (порядка 1%), небольшие стабильность работы и срок службы. Дальнейшее усовершенствование инжекционного лазера путем создания перехода сложной структуры с использованием гетеропереходов (гетеропереход - граница между слоями с одинаковыми типами электропроводности, но с разной шириной запрещенной зоны) позволило получить малогабаритный источник света, работающий при нормальной температуре с к. п. д.10 - 20% и приемлемыми характеристиками.

Фотоприемники. Для преобразования световых сигналов в электрические используют фотодиоды, фототранзисторы, фоторезисторы, фототиристоры и другие приборы.

Фотодиод представляет собой смещенный в обратном направлении p-n-переход, обратный ток насыщения которого определяется количеством носителей заряда, порождаемых в нем действием падающего света (рис.3). Параметры фотодиода выражают через значения тока, протекающего в его цепи. Чувствительность фотодиода, которую принято называть интегральной, определяют как отношение фототока к вызвавшему его световому потоку Фυ. Порог чувствительности фотодиодов оценивают по известным значениям интегральной (токовой) чувствительности и темнового тока Id, т.е. тока, протекающего в цепи в отсутствие облученности чувствительного слоя.

Основными материалами для фотодиодов являются германий и кремний. Кремниевые фотодиоды обычно чувствительны в узкой области спектра (от λ = 0,6 – 0,8 мкм до λ = 1,1 мкм) с максимумом при λ = 0,85 мкм, а германиевые фотодиоды имеют границы чувствительности λ = 0,4 - 1,8 мкм с максимумом при λ ≈ 1,5 мкм. В фотодиодном режиме при напряжении питания 20 В темновой ток кремниевых фотодиодов обычно не превышает 3 мкА, в то время как у германиевых; фотодиодов при напряжении питания 10 В он достигает 15-20 мкА.


Рис.3. Схема и вольт-амперные характеристики фотодиода.

Рис.4. Схема и вольт-амперные характеристики фототранзистора.

Фототранзисторы представляют собой приемники лучистой энергии с двумя или с большим числом р-п-переходов, обладающие свойством усиления фототока при облучении чувствительного слоя. Фототранзистор соединяет в себе свойства фотодиода и усилительные свойства транзистора (рис.4). Наличие у фототранзистора оптического и электрического входов одновременно позволяет создать смещение, необходимое для работы на линейном участке энергетической характеристики, а также компенсировать внешние воздействия. Для обнаружения малых сигналов напряжение, снимаемое с фототранзистора, должно быть усилено. В этом случае следует увеличить сопротивление выхода переменному току при минимальном темновом токе в цепи коллектора, создавая положительное смещение на базе.

В качестве световодов в оптоэлектронике находят применение тонкие нити стекла или прозрачной пластмассы. Это направление получило название волоконной оптики. Волокна покрывают светоизолирующими материалами и соединяют в многожильные световые кабели. Они выполняют те же функции по отношению к свету, что и металлические провода по отношению к току. С помощью волоконной оптики можно: осуществлять поэлементную передачу изображения с разрешающей способностью, определяемой диаметром световолокна (порядка 1 мкм); производить пространственные трансформации изображения благодаря возможности изгибания и скручивания волокон световода; передавать изображения на значительные расстояния и т.д. На Рис.6 показан световод в виде кабеля из светопроводящих волокон.

Интегральная оптика. Одним из перспективных направлений функциональной микроэлектроники является интегральная оптика, обеспечивающая создание сверхпроизводительных систем передачи и обработки оптической информации. Область исследований интегральной оптики включает распространение, преобразование и усиление электромагнитного излучения оптического диапазона в диэлектрических тонкопленочных волноводах и волоконных световодах. Основным элементом интегральной оптики является объемный или поверхностный оптический микроволновод. Простейший симметричный объемный оптический микроволновод представляет собой локализованную по одной или двум пространственным измерениям область с показателем преломления, превышающим показатель преломления окружающей оптической среды. Такая оптически более плотная область есть нечто иное, как канал или несущий слой диэлектрического волновода.



Рис.5. Разрез твердотельного оптрона с иммерсионным световодом: 1 – планарная диффузия; 2 - селеновое стекло; 3 – омические контакты; 4 – диффузионная мезаструктура; 5 – источник света; 6 – приемник света.

Рис.6. Световод в виде кабеля из светопроводящих волокон: 1 - источник света; 2 – приемник света; 3 – световой кабель.

Примером несимметричного поверхностного диэлектрического волновода может служить тонкая пленка оптически прозрачного диэлектрика или полупроводника с показателем преломления, превышающим показатель преломления оптически прозрачной подложки. Степень локализации электромагнитного поля, а также отношение потоков энергии, переносимых вдоль несущего слоя и подложки, определяются эффективным поперечным размером несущего слоя и разностью показателей преломления несущего слоя и подложки при заданной частоте излучения. Сравнительно простым и наиболее подходящим для твердотельных оптических устройств является оптический полосковый микроволновод, выполненный в виде тонкой диэлектрической пленки (рис.7), нанесенной на подложку методами микроэлектроники (например, вакуумным напылением). С помощью маски на диэлектрическую подложку можно наносить с высокой степенью точности целые оптические схемы. Применение электронно-лучевой литографии обеспечило успехи в создании как одиночных оптических полосковых волноводов, так и оптически связанных на определенной длине, а впоследствии расходящихся волноводов, что существенно для создания направленных ответвителей и частотно-избирательных фильтров в системах интегральной оптики.


Рис 7. Оптический полосковый микроволновод с прямоугольным поперечным сечением: 1 – подложка; 2 – диэлектрическая пленка.

Оптоэлектронные микросхемы. На основе оптоэлектроники разработано большое число микросхем. Рассмотрим некоторые оптоэлектронные микросхемы, выпускаемые отечественной промышленностью. В микроэлектронике наиболее широко применяют оптоэлектронные микросхемы гальванической развязки. К ним относят быстродействующие переключатели, коммутаторы аналоговых сигналов, ключи и аналоговые оптоэлектронные устройства, предназначенные для использования в системах функциональной обработки аналоговых сигналов.

Основным элементом любой оптоэлектронной микросхемы является оптронная пара (рис.8, а, б), состоящая из источника света 1, управляемого входным сигналом, иммерсионной среды 2, оптически связанной с источником света, и фотоприемника 3. Параметрами оптронной пары являются сопротивление развязки по постоянному току, коэффициент передачи тока (отношение фототока приемника к току излучателя), время переключения и проходная емкость.

На базе оптоэлектронных пар создаются оптоэлектронные микросхемы различного назначения.


Рис.8. Схема и технологическое выполнение оптронной пары:

1 – источник света; 2 – иммперсионная среда; 3 – фотоприемник.

1. Петров К.С. Радиоматериалы, радиокомпоненты и электроника: Учебное пособие для вузов. – СПб: Питер, 2003. – 512 с.

2. Опадчий Ю.Ф. и др. Аналоговая и цифровая электроника: Учебник для вузов / Ю.Ф. Опадчий, О.П. Глудкин, А.И. Гуров; Под. ред. О.П. Глудкина. М.: Горячая Линия – Телеком, 2002. – 768 с.

3. Акимов Н.Н. и др. Резисторы, конденсаторы, трансформаторы, дроссели, коммутационные устройства РЭА: Справочник / Н.Н. Акимов, Е.П. Ващуков, В.А. Прохоренко, Ю.П. Ходоренок. Мн.: Беларусь, 2005. – 591 с.

Современная наука активно развивается в самых разных направлениях, стремясь охватить все возможные потенциально полезные сферы деятельности. Среди всего этого следует выделить оптоэлектронные приборы, которые используются как в процессе передачи данных, так и их хранения или обработки. Они используются практически везде, где применяется более или менее сложная техника.

Что это такое?

  • блоках связи аппаратуры;
  • входных цепях измеряющих устройств;
  • высоковольтных и сильноточных цепях;
  • мощных тиристорах и симисторах;
  • релейных устройствах и так далее.

Все такие изделия могут быть классифицированы по нескольким базовым группам, в зависимости от их отдельных компонентов, конструкции или других факторов. Об этом ниже.

оптоэлектронные приборы

Излучатель

Оптоэлектронные приборы и устройства оснащаются системами передачи сигнала. Их называют излучателями и в зависимости от типа, изделия разделяются следующим образом:

  • Лазерные и светодиоды. Такие элементы относятся к самым универсальными. Для них характерны высокие показатели коэффициента полезного действия, весьма узкий спектр луча (этот параметр также известен как квазихроматичность), достаточно широкий диапазон работы, поддержание четкого направления излучения и очень высокая скорость работы. Устройства с подобными излучателями работают очень долго и крайне надежно, отличаются небольшими размерами и отлично показывают себя в сфере микроэлектронных моделей.
  • Электролюминесцентные ячейки. Такой элемент конструкции показывает не особо высокий параметр качества преобразования и работает не слишком долго. При этом, устройствами весьма тяжело управлять. Однако именно они лучше всего подходят для фоторезисторов и могут использоваться для создания многоэлементных, многофункциональных структур. Тем не менее в силу своих недостатков, сейчас излучатели такого типа используются достаточно редко, только тогда, когда без них действительно нельзя обойтись.
  • Неоновые лампы. Отдача света этих моделей сравнительно невысока, а также они плохо выдерживают повреждения и работают недолго. Отличаются большими размерами. Используются крайне редко, в отдельных видах приборов.
  • Ламы накаливания. Такие излучатели применяются только в резисторном оборудовании и больше нигде.

Как следствие, светодиодные и лазерные модели оптимально подходят практически для всех сфер деятельности и лишь в некоторых областях, где по-другому нельзя, применяются другие варианты.

оптоэлектронные приборы и устройства

Фотоприемник

Классификация оптоэлектронных приборов также производится и по типу этой части конструкции. В качестве принимающего элемента могут использоваться разные типы изделий.

  • Фото- тиристоры, транзисторы и диоды. Все они относятся к универсальным устройствам, способным работать с переходом открытого типа. Чаще всего в основе конструкции лежит кремний и из-за этого изделия получают достаточно широкий спектр чувствительности.
  • Фоторезисторы. Это единственный альтернативный вариант, главным преимуществом которого является изменение свойств очень сложным образом. Это помогает реализовывать всевозможные математические модели. К сожалению, именно фоторезисторы инерционны, что значительно сужает сферу их применения.

Прием луча – это один из самых базовых элементов любого подобного устройства. Только после того как он сможет быть получен, начинается дальнейшая обработка, и она будет невозможна при недостаточно высоком качестве связи. Как следствие, конструкции фотоприемника уделяется огромное внимание.

классификация оптоэлектронных приборов

Оптический канал

Особенности конструкции изделий может неплохо показать используемая система обозначений фотоэлектронных и оптоэлектронных приборов. В том числе это касается и канала передачи данных. Выделяют три основных их варианта:

  • Удлиненный канал. Фотоприемник в такой модели отдален на достаточно серьезное расстояние от оптического канала, образуя специальный световод. Именно такой вариант конструкции активно применяется в компьютерных сетях для активной передачи данных.
  • Закрытый канал. Такой тип конструкции использует специальную защиту. Она превосходно предохраняет канал от внешнего воздействия. Применяются модели для системы гальванической развязки. Это достаточно новая и перспективная технология, сейчас непрерывно совершенствующаяся и постепенно заменяющая собой электромагнитные реле.
  • Открытый канал. Такая конструкция подразумевает наличие воздушного зазора между фотоприемником и излучателем. Используются модели в системах диагностики или разнообразных датчиках.

система обозначений фотоэлектронных и оптоэлектронных приборов

Спектральный диапазон

С точки зрения этого показателя, все виды оптоэлектронных приборов можно разделить на два вида:

полупроводниковые приборы диоды тиристоры оптоэлектронные приборы

Конструкция

По этому показателю оптоэлектронные приборы разделяются на три группы:

  • Специальные. Сюда входят устройства оснащенными несколькими излучателями и фотоприемниками, датчиками присутствия, положения, задымленности и так далее.
  • Интегральные. В таких моделях дополнительно используются специальные логические схемы, компараторы, усилители и другие устройства. Кроме всего прочего, выходы и входы у них гальванически развязаны.
  • Элементарные. Это самый простой вариант изделий, в которых приемник и излучатель присутствуют только в одном экземпляре. Они могут быть как тиристорными, так и транзисторными, диодными, резистивными и вообще, любыми другими.

В приборах могут использоваться все три группы или каждая по отдельности. Конструктивные элементы играют существенную роль и напрямую воздействуют на функциональность изделия. В то же время сложное оборудование может использовать и самые простейшие, элементарные разновидности, если это будет целесообразно. Но верно и обратное.

оптоэлектронные приборы и их применение

Оптоэлектронные приборы и их применение

С точки зрения использования устройств все они могут разделяться на 4 категории:

  • Интегральные схемы. Применяются в самых разных приборах. Используется принцип между разными элементами конструкции при помощи отдельных частей, которые изолированы друг от друга. Это не дает взаимодействовать компонентам никаким образом, кроме того, который был предусмотрен разработчиком.
  • Изоляция. В этом случае используются специальные оптические резисторные пары, их диодные, тиристорные или транзисторные разновидности и так далее.
  • Преобразование. Это один из самых распространенных вариантов использования. В нем ток трансформируется в свет и применяется именно таким образом. Простой пример – всевозможные лампы.
  • Обратное преобразование. Это уже полностью противоположный вариант, в котором именно свет трансформируется в ток. Используются для создания всевозможных приемников.

Фактически, сложно представить себе практически любое устройство, работающее на электричестве и лишенное какого-то варианта оптоэлектронных компонентов. Они могут быть представлены в небольшом количестве, но все равно будут присутствовать.

виды оптоэлектронных приборов

Итоги

Все оптоэлектронные приборы, тиристоры, диоды, полупроводниковые приборы – это конструктивные элементы разных видов оборудования. Они позволяют человеку получать свет, передавать информацию, обрабатывать или даже хранить ее.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Содержание

1.
Оптоэлектронные приборы

2.
Основные характеристики светоизлучающих диодов видимого диапазона

3.
Основные характеристики светоизлучающих диодов инфракрасного диапазона

4.
Оптоэлектронные приборы в широком понимании

5.
Список использованных источников

Оптоэлектронные приборы

Работа оптоэлектронных приборов основана на электронно-фотонных процессах получения, передачи и хранения информации.

Простейшим оптоэлектронным прибором является оптоэлектронная пара, или оптрон. Принцип действия оптрона, состоящего из источника излучения, иммерсионной среды (световода) и фотоприемника, основан на преобразовании электрического сигнала в оптический, а затем снова в электрический.

Оптроны как функциональные приборы обладают следующими преимуществами перед обычными радиоэлементами:

абсолютной помехозащищенностью в канале передачи информации (носителями информации являются электрически нейтральные частицы – фотоны);

однонаправленностью потока информации, которая связана с особенностями распространения света;

широкополосностью из-за высокой частоты оптических колебаний,

достаточным быстродействием (единицы наносекунд);

высоким пробивным напряжением (десятки киловольт);

малым уровнем шумов;

хорошей механической прочностью.

По выполняемым функциям оптрон можно сравнивать с трансформатором (элементом связи) при реле (ключом).

В оптронных приборах применяют полупроводниковые источники излучения – светоизлучающие диоды, изготовляемые из материалов соединений группы А III
B
V , среди которых наиболее перспективны фосфид и арсенид галлия. Спектр их излучения лежит в области видимого и ближнего инфракрасного излучения (0,5 – 0,98 мкм). Светоизлучающие диоды на основе фосфида галлия имеют красный и зеленый цвет свечения. Перспективны светодиоды из карбида кремния, обладающие желтым цветом свечения и работающие при повышенных температурах, влажности и в агрессивных средах.
Светодиоды, излучающие свет в видимом диапазоне спектра, используют в электронных часах и микрокалькуляторах.

Светоизлучающие диоды характеризуются спектральным составом излучения, который достаточно широк, диаграммой направленности; квантовой эффективностью, определяемой отношением числа испускаемых квантов света к количеству прошедших через p - n -переход электронов; мощностью (при невидимом излучении) и яркостью (при видимом излучении); вольт-амперными, люмен-амперными и ватт-амперными характеристиками; быстродействием (нарастанием и спадом электролюминесценции при импульсном возбуждении), рабочим диапазоном температур. При повышении рабочей температуры яркость светодиода падает и снижается мощность излучения.


Светоизлучающие диоды в оптоэлектронных приборах соединяются с фотоприемниками иммерсионной средой, основным требованием к которой является передача сигнала с минимальными потерями и искажениями. В оптоэлектронных приборах используют твердые иммерсионные среды – полимерные органические соединения (оптические клеи и лаки), халькогенидные среды и волоконные световоды. В зависимости от длины оптического канала между излучателем и фотоприемником оптоэлектронные приборы можно подразделить на оптопары (длина канала 100 – 300 мкм), оптоизоляторы (до 1 м ) и волоконно-оптические линии связи – ВОЛС (до десятков километров).
Таблица 2. Основные характеристики светоизлучающих диодов инфракрасного диапазона

0,2 – 1,5 (при токе 100 мА)

6 – 10 (при токе 100 мА)

1,5 (при токе 100 мА)

0,2 (при токе 20 мА)


К фотоприемникам, используемым в оптронных приборах, предъявляют требования по согласованию спектральных характеристик с излучателем, минимуму потерь при преобразовании светового сигнала в электрический, фоточувствительности, быстродействию, размерам фоточувствительной площадки, надежности и уровню шумов.

Для оптронов наиболее перспективны фотоприемники с внутренним фотоэффектом, когда взаимодействие фотонов с электронами внутри материалов с определенными физическими свойствами приводит к переходам электронов в объеме кристаллической решетки этих материалов.

Внутренний фотоэффект проявляется двояко: в изменении сопротивления фотоприемника под действием света (фоторезисторы) либо в появлении фото-эдс на границе раздела двух материалов – полупроводник-полупроводник, металл-полупроводник (вентильные фотоэлементы, фотодиоды, фототранзисторы).

Фотоприемники с внутренним фотоэффектом подразделяют на фотодиоды (с p - n -переходом, МДП-структурой, барьером Шоттки), фоторезисторы, фотоприемники с внутренним усилением (фототранзисторы, составные фототранзисторы, фототиристоры, полевые фототранзисторы).

Фотодиоды выполняют на основе кремния и германия. Максимальная спектральная чувствительность кремния 0,8 мкм, а германия – до 1,8 мкм. Они работают при обратном смещении на p - n -переходе, что позволяет повысить их быстродействие, стабильность и линейность характеристик.

Наиболее часто в качестве фотоприемников оптоэлектронных приборов различной сложности применяют фотодиоды p
-
i
- n -структуры, где i – обедненная область высокого электрического поля. Меняя толщину этой области, можно получить хорошие характеристики по быстродействию и чувствительности за счет малой емкости и времени пролета носителей.

Повышенными чувствительностью и быстродействием обладают лавинные фотодиоды, использующие усиление фототока при умножении носителей заряда. Однако у этих фотодиодов недостаточно стабильны параметры в диапазоне температур и требуются источники питания высокого напряжения. Перспективны для использования в определенных диапазонах длин волн фотодиоды с барьером Шоттки и с МДП-структурой.

Фоторезисторы изготовляют в основном из поликристаллических полупроводниковых пленок на основе соединения (кадмия с серой и селеном). Максимальная спектральная чувствительность фоторезисторов 0,5 – 0,7 мкм. Фоторезисторы, как правило, применяют при малой освещенности; по чувствительности они сравнимы с фотоэлектронными умножителями – приборами с внешним фотоэффектом, но требуют низковольтного питания. Недостатками фоторезисторов являются низкое быстродействие и высокий уровень шумов.

Наиболее распространенными фотоприемниками с внутренним усилением являются фототранзисторы и фототиристоры. Фототранзисторы чувствительнее фотодиодов, но менее быстродействующие. Для большего повышения чувствительности фотоприемника применяют составной фототранзистор, представляющий сочетание фото- и усилительного транзисторов, однако он обладает невысоким быстродействием.

В оптронах в качестве фотоприемника можно использовать фототиристор (полупроводниковый прибор с тремя p
-
n
-переходами, переключающийся при освещении), который обладает высокими чувствительностью и уровнем выходного сигнала, но недостаточным быстродействием.

Многообразие типов оптронов определяется в основном свойствами и характеристиками фотоприемников. Одно из основных применений оптронов – эффективная гальваническая развязка передатчиков и приемников цифровых и аналоговых сигналов. В этом случае оптрон можно использовать в режиме преобразователя или коммутатора сигналов. Оптрон характеризуется допустимым входным сигналом (током управления), коэффициентом передачи тока, быстродействием (временем переключения) и нагрузочной способностью.

Отношение коэффициента передачи тока к времени переключения называется добротностью оптрона и составляет 10 5 – 10 6 для фотодиодных и фототранзисторных оптронов. Широко используют оптроны на основе фототиристоров. Оптроны на фоторезисторах не получили широкого распространения из-за низкой временной и температурной стабильности. Схемы некоторых оптронов приведены на рис. 4, а – г.

В качестве когерентных источников излучения применяют лазеры, обладающие высокой стабильностью, хорошими энергетическими характеристиками и эффективностью. В оптоэлектронике для конструирования компактных устройств используют полупроводниковые лазеры – лазерные диоды, применяемые, например, в волоконно-оптических линиях связи вместо традиционных линий передачи информации – кабельных и проводных. Они обладают высокой пропускной способностью (полоса пропускания единицы гигагерц), устойчивостью к воздействию электромагнитных помех, малой массой и габаритами, полной электрической изоляцией от входа к выходу, взрыво- и пожаробезопасностью. Особенностью ВОЛС является использование специального волоконно-оптического кабеля, структура которого представлена на рис. 5. Промышленные образцы таких кабелей имеют затухание 1 – 3 дБ/км и ниже. Волоконно-оптические линии связи используют для построения телефонных и вычислительных сетей, систем кабельного телевидения с высоким качеством передаваемого изображения. Эти линии допускают одновременную передачу десятков тысяч телефонных разговоров и нескольких программ телевидения.

В последнее время интенсивно разрабатываются и получают распространение оптические интегральные схемы (ОИС), все элементы которых формируются осаждением на подложку необходимых материалов.

Перспективными в оптоэлектронике являются приборы на основе жидких кристаллов, широко используемые в качестве индикаторов в электронных часах. Жидкие кристаллы представляют собой органическое вещество (жидкость) со свойствами кристалла и находятся в переходном состоянии между кристаллической фазой и жидкостью.

Индикаторы на жидких кристаллах имеют высокую разрешающую способность, сравнительно дешевы, потребляют малую мощность и работают при больших уровнях освещенности.

Жидкие кристаллы со свойствами, схожими с монокристаллами (нематики, наиболее часто используют в световых индикаторах и устройствах оптической памяти. Разработаны и широко применяются жидкие кристаллы, изменяющие цвет при нагревании (холестерики). Другие типы жидких кристаллов (смектики) используют для термооптической записи информации.

Оптоэлектронные приборы, разработанные сравнительно недавно, получили широкое распространение в различных областях науки и техники, благодаря своим уникальным свойствам. Многие из них не имеют аналогов в вакуумной и полупроводниковой технике. Однако существует еще много нерешенных проблем, связанных с разработкой новых материалов, улучшением электрических и эксплуатационных характеристик этих приборов и развитием технологических методов их изготовления.

Оптоэлектронный полупроводниковый прибор — полупроводниковый прибор, действие которого основано на использовании явлений излучения, передачи или поглощения в видимой, инфракрасной или ультрафиолетовой областях спектра.
Оптоэлектронные приборы в широком понимании представляют собой устройства
, использующие оптическое излучение для своей работы: генерации, детектирования, преобразования и передачи информационного сигнала . Как правило, эти приборы включают в себя тот или иной набор оптоэлектронных элементов. В свою очередь, сами приборы можно подразделить на типовые и специальные, считая типовыми те из них, которые серийно производятся для широкого применения в различных отраслях промышленности, а специальные устройства выпускаются с учетом специфики конкретной отрасли - в нашем случае, полиграфии.
Все многообразие оптоэлектронных элементов подразделяют на следующие группы изделий: источники и приемники излучения, индикаторы, элементы оптики и световоды, а также оптические среды, позволяющие создавать элементы управления, отображения и запоминания информации. Известно, что любая систематизация не может быть исчерпывающей, но, как верно отметил наш соотечественник, открывший в 1869 г . периодический закон химических элементов, Дмитрий Иванович Менделеев (1834-1907), наука начинается там, где появляется счет, т.е. оценка, сравнение, классификация, выявление закономерностей, определение критериев, общих признаков. Учитывая это, прежде чем приступить к описанию конкретных элементов, следует хотя бы в общих чертах дать отличительную характеристику оптоэлектронных изделий.

Как было сказано выше, главным отличительным признаком оптоэлектроники является связь с информацией. К примеру, если в какой-то установке для закалки стальных валов используется лазерное излучение, то вряд ли закономерно относить эту установку к оптоэлектронным устройствам (хотя сам источник лазерного излучения имеет на это право).

Следует упомянуть еще о трех отличительных чертах, которые, по мнению известного специалиста в области оптоэлектроники Юрия Романовича Носова, характеризуют ее как научно-техническое направление.

Физическую основу оптоэлектроники составляют явления, методы, средства, для которых принципиальны сочетание и неразрывность оптических и электронных процессов. В широком смысле оптоэлектронное устройство определяется как прибор, чувствительный к электромагнитному излучению в видимой, инфракрасной (ИК) или ультрафиолетовой (УФ) областях, или прибор, излучающий и преобразующий некогерентное или когерентное излучение в этих же спектральных областях.

Техническую основу оптоэлектроники определяют конструктивно-технологические концепции современной микроэлектроники: миниатюризация элементов; предпочтительное развитие твердотельных плоскостных конструкций; интеграция элементов и функций.

Государственное образовательное учреждение высшего профессионального образования

Читайте также: