Реферат на тему окружность и круг

Обновлено: 02.07.2024

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Надо только постараться и запомнить

Всё, как есть: 3, 14, 15, 92 и 6.

Введение

Данная тема представляет определенный интерес, поскольку её истоки относятся к древности:с давних пор люди пытались решать задачи, связанные с кругом – измерять длину окружности, находить площадь круга.

Любой школьник сегодня должен уметь находить длину окружности и площадь круга, первый опыт вычислений происходит в 6 классе. Но, к сожалению, эти знания остаются для многих формальными, и уже через годмало кто помнит не только то, что отношение длины окружности к её диаметру одно и то число, но даже с трудом вспоминают численное значение числа π, равное 3,14.

В ходе работы над проектом появляется возможность не только усвоить формулы для нахождения длины окружности и площади круга, нои приподнять завесу богатейшей истории числа π, которым человечество пользуется уже много веков.

Гипотеза: Длина окружности, её радиус и площадь связаны между собой посредством формул.

Цель работы: Исследование числа π и выявление его роли в окружающей среде . Задачи работы: 1. Познакомиться подробнее с числом π. 2. Провести практическую работу нахождения числа π. 3. Найти занимательные факты и правила для запоминания числа π.

4.Изучить формулу площади круга.

5.Научится создавать буклеты с помощью текстового процессора MicrosoftWord.Предмет исследования: окружность.

Объект исследования: отношение длины окружности к диаметру.

Методы исследования: эксперимент, наблюдение, анализ.

Ожидаемые результаты: Некоторые данные и формулы достаточно трудно запоминаются, но с помощью открытия интересных фактов о числах или понятиях, можно лучше запомнить формулы, правила. Создание буклета с помощью MicrosoftOffice.

Глава 1. Теоретическая часть

У круга есть одна подруга.

Известна всем её наружность.

Она идёт по краю круга

1.1. Понятие окружности

Окружность – это замкнутая кривая линия, все точки которой находятся на равном расстоянии от данной точки плоскости, называемой центром окружности.

Точка О – центр окружности. R –радиус окружности (это отрезок, соединяющий центр окружности с любой ее точкой). По-латыни radius – это спица колеса.

1.2. Длина окружности.

Если разрезать окружность в какой-либо точке и распрямить её, то получим отрезок, длина которого и есть длина окружности.

Отношение длины окружности к её диаметру есть одно и то же число для всех окружностей. Установлено, что какой бы ни была окружность, отношение ее длины к диаметру является постоянным числом. Это число принято обозначать буквой π.

Более точное его значение 3,1415926535897932… [1, стр.189]

Обозначим длину окружности буквой С, а ее диаметр буквой d , то, тогда формулы для вычисления длины окружности С = πd.

Если известен радиус окружности, то формула длины окружности будет выглядеть следующим образомC = 2πr.

1.3. Круг. Площадь круга

Круг – это часть плоскости, ограниченная окружностью.

1.4. Исторические сведения

Это позволяло вычислять значение π не практически – ниткой и линейкой, а математически, что обеспечивало гораздо большую точность. [3, стр. 65-72]

Известный ученый Архимед нашел значение π =, что дает величину 3.1428. В Древней Греции вскоре после Архимеда было получено более точное приближение к числу π = .

В V веке н.э. китайским математиком Цзу Чунчжи было найдено более точное значение π =3,1416927… .

Спустя полтора столетия в Европе нашли число π только с 9 правильными десятичными знаками, сделав 16 удвоений числа сторон многоугольников, но при этом Ф.Виету принадлежит первенство в открывшейся возможности отыскания π. Это открытие имело огромное значение, так как позволило вычислять число π с какой угодно точностью. [4]

В настоящее время число Пи вычислено с точностью до 10 триллионов знаков после запятой.

Первый миллион знаков после запятой в числе Пи состоит из: 99959 нулей, 99758 единиц, 100026 двоек, 100229 троек, 100230 четвёрок, 100359 пятёрок, 99548 шестёрок, 99800 семёрок, 99985 восьмёрок и 100106 девяток.

Если рассчитать длину экватора с точностью до 1 см – предполагая, что мы знаем длину его диаметра вполне точно – нам достаточно было бы взять π всего с 9 цифрами после запятой. А взяв вдвое больше цифр (18) , мы могли бы вычислить длину окружности, имеющей радиусом расстояние от Земли до Солнца, с погрешностью не свыше 0,0003 мм (волос в 100 раз толще этой возможной ошибки!)

В штате Иллинойс (США) официально принят закон о том, чтобы чисто Пи считать равным 4! [6]

14 марта объявлено Всемирным днем числа π. [7]

Вывод: Число π захватывает умы гениев всего мира.

(приложение 1. Портрет числа π)

Глава 2. Исследовательская часть 2.1. Эксперимент 1. Нахождение длины окружности с помощью нити

Практическая работа состояла в том, чтобы найти отношение длины окружности к её диаметру.

Берём шесть круглых предметов, в частности вазу, несколько стаканов и чашек разных размеров.

С помощью нити измеряем длину окружности.

Поставив предмет на лист бумаги, обводим его карандашом, вырезаем бумажный круг, сгибаем пополам и линейкой измеряем длины диаметров.(приложение 2)

Составим таблицу с измеренными данными, последний столбец таблицы вычислительного характера: вычислим с помощью калькулятора отношение длины окружности (столбец 2) к диаметру (столбец 3) .

Круг и окружность – одни из самых древнейших геометрических фигур, философы древности придавали им большое значение. Круг – воплощение нескончаемого Времени и Пространства, символ всего сущего, Вселенной. “Из всех фигур прекраснейшая – круг”, – считал Пифагор.

Вокруг нас много круглых предметов. Представьте себе на секунду, что вдруг случилась беда: на Земле исчезло все круглое! Казалось бы – пусть все будет квадратным. Разве нельзя прожить без круглых труб, а к квадратным колесам нельзя привыкнуть? Можно ли вообще представить жизнь человека без использования круга? Почему так много тел имеют круглую форму? Чтобы найти ответы на все эти вопросы, в первую очередь, необходимо рассмотреть историю возникновения этих понятий и дальнейшее их развитие.

История возникновения и развития геометрических понятий “круг” и “окружность”.

Для первобытных людей важную роль играла форма окружавших их предметов. По форме и цвету они отличали съедобные грибы от несъедобных, пригодные для построек породы деревьев от тех, которые годятся лишь на дрова, вкусные орехи от горьких и т.д. Особенно вкусными казались им орехи кокосовой пальмы, похожие на шар. Специальных названий для геометрических фигур, конечно, не было. Говорили: “такой же, как кокосовый орех” или “такой же, как соль” и т.д. Так, овладевая окружающим их миром, люди знакомились с простейшими геометрическими фигурами.

Круглые тела еще в древности заинтересовали человека. В Древнем Египте для постройки знаменитых египетских пирамид никаких технических сооружений еще не было. Даже шлифовать огромные каменные глыбы приходилось вручную, а перемещали их с помощью бревен круглой формы. Заметили, что перекатка проще, если взять кусок дерева с почти одинаковой толщиной в начале и в конце. Так люди познакомились с одним из важнейших тел – цилиндром. Скалками цилиндрической формы пользовались и женщины, раскатывая белье после стирки. Перевозить грузы на катках было довольно тяжело, потому что сами древесные стволы весили много. Чтобы облегчить работу, стали вырезать из стволов тонкие круглые пластинки, которые катились уже легче и с их помощью перетаскивали грузы. Так появилось первое колесо. К сожалению, неизвестен непосредственный изобретатель колеса.

Не только в процессе работы люди знакомились с различными фигурами. Издавна они любили украшать себя, свою одежду, свое жилище. И многие, созданные давным-давно украшения, имели ту или иную форму. Бусинки были шарообразными, браслеты и кольца имели форму окружности. Древние мастера научились придавать красивую форму бронзе, золоту, серебру, драгоценным камням. Художники, расписывавшие дворцы, тоже использовали окружность. Со времени изобретения гончарного круга люди научились делать круглую посуду – горшки, вазы, амфоры. Круглыми были и колонны, подпирающие здания.

Математические знания египтян и вавилонян были разрозненные и представляли собой свод правил, проверенных практикой. В Древней Греции все разрозненные знания привели в систему, геометрия стала бурно развиваться как наука. Только в Древней Греции “окружность” и “круг” получили свои названия, почти все названия геометрических фигур греческого происхождения, как и само слово геометрия (“гео” – земля, а “метрио” – мерить). Однако эти слова вошли в русский язык не непосредственно с греческого, а через латинский язык.

В Древней Греции многие свойства фигур, в том числе круга и окружности были сформулированы в виде теорем и доказаны. Наиболее удачно была изложена геометрия, как наука о свойствах геометрических фигур, греческим ученым Евклидом (III в. до н. э.) в своих книгах “Начала”. В течение многих веков “Начала” были единственной учебной книгой, по которой молодежь изучала геометрию. И даже сейчас, в наше время, учебники написаны под большим влиянием “Начал” Евклида.

Окружность и круг – это плоские фигуры . Мы живем в мире трех измерений. А в какое геометрическое тело превратятся окружность и круг, если попадут в пространство? Это сфера и шар. “Сфера” – произошло от греческого слова “сфайра”, в переводе – “мяч”. Кроме этого геометрия пространства рассматривает и другие круглые тела – это “цилиндр” (от греческого слова “кюлиндрос”, что означает “валик”, “каток”) и “конус” (от греческого слова “конос”, означающего “сосновая шишка”). Самым важным среди круглых тел был шар.

Итак, в Древней Греции круг и окружность считали венцом совершенства. “В каждой своей точке окружность устроена одинаковым образом, что позволяет ей двигаться самой по себе”. Это свойство окружности стало толчком к возникновению колеса (Приложение 5). (Приложение 2).

Круг – “циркулус” – латинское слово, от него же и “циркуль”, без которого бы мы не построили круг. Циркуль и линейка – самые старые чертежные инструменты на Земле. (Приложение 3.)

Элементы окружности и круга (Приложение 2):

Радиус окружности – это отрезок, соединяющий центр окружности с любой ее точкой (по-латыни – спица колеса).

Диаметр окружности – это хорда, проходящая через центр окружности (с греческого – “поперечник”).

Хорда окружности – отрезок, соединяющий любые две точки на окружности (с греческого– “струна”).

Дуга окружности – это часть окружности, ограниченная двумя точками.

Часто в практических задачах нужно узнать длину окружности. А как измерить длину окружности, если сама окружность – кривая линия, а единица измерения длины – отрезок? Есть несколько способов измерения длины окружности (Приложение 1).

Однако эти способы непосредственного измерения длины окружности малоудобны и дают приближенные результаты. Поэтому уже с древних времен начали искать более совершенные способы измерения длины окружности. В процессе измерений заметили, что между длиной окружности и длиной ее диаметра имеется определенная зависимость: С:d ≈ 3,1.

Многие ученые – математики пытались доказать, что это отношение есть число постоянное, не зависящее от размеров окружности, его стали обозначать греческой буквой π-ο ервая буква греческого слова “периферия” – круг.

С:d = π, где С – длина окружности, d – длина диаметра, отсюда и формула длины окружности C = πd или C = 2πr.

Изучив исследования ученых математиков, мы провели следующие измерения и вычисления:

1. Вычисление числа пи : а) с помощью тонкой нити измерили длину окружности С некоторых предметов быта; б) чтобы точнее найти длину диметра d, приложили этот предмет к листу бумаги и обвели карандашом, вырезали, свернули пополам, линия сгиба – это диаметр, измерили его с помощью линейки; в) нашли отношение С:d, данные занесли в таблицу:

Предметы Длина окружности С Диаметр d Отношение С:d
Стакан 22 см 7 см 3.1428
Ведро 82 см 26 см 3.1538
Тарелка 62 см 19,5 см 3,1794
Кастрюля 69 см 22 см 3.1363
Бидон 52 см 16,5 см 3,1515

2. Границы значения числа пи: а) с помощью циркуля вписали круг в квадрат: если диаметр равен 1,то длина окружности равна π . Периметр квадрата со стороной 1 равен 4. Значит π меньше 4. (Приложение 6. Рис.1). б) в этот же круг вписали правильный шестиугольник: диаметр круга снова 1, длина окружности равна π . Сторона правильного шестиугольника равна радиусу, т.е.0,5,а периметр равен 6·0,5=3,значит π больше 3 (Приложение 6. Рис.2).

В результате мы убедились, что отношение длины окружности к ее диаметру (число π) есть число постоянное и 3 ‹ π ‹ 4 ,т.е. мы подтвердили исследования ученых – математиков.

Одна из загадок числа π состоит в том, что оно не может быть выражено какой – либо точной дробью. История числа π достойна восхищения, многие математики затратили на его вычисления не один десяток лет. Уточнялись нижняя и верхняя оценки числа и предпринимались неудачные попытки представить π в виде дроби и, таким образом, окончательно найти его значение (Приложение 4). Пока рекорд принадлежит японскому математику, в 2004 году – Ясума Канада из Токио рассчитал число π на компьютере до 1,24 триллиона знаков.

π -3,141 592 653 589 793 238 462 643 383279 502 884197 169 399 375 105 ….

Зачем нужно π, да еще с такой точностью? Число π чрезвычайно важно для ученых и инженеров. Все, что круглое и все, что движется по кругу (как колеса или планеты), содержит π. Без π люди не могли создать автомобили, понять движение планет или сосчитать сколько гороха поместится в консервную банку. Но загадка таинственного числа не разрешена вплоть до сегодняшнего дня, и, по-прежнему, волнует ученых. В настоящее время с числом π связано труднообозримое множество формул, математических и физических фактов. Их количество продолжает стремительно расти. Все это говорит о возрастающем интересе к важнейшей математической константе, изучение которой насчитывает уже более двадцати двух веков.

Изучив литературу и проделав собственные измерительные исследования с окружностью и кругом, мы пришли к следующим выводам: окружность и круг – это удивительно гармоничные фигуры. Окружность – единственная кривая, которая может “скользить сама по себе”, вращаясь вокруг центра. Это свойство окружности дает ответ на вопросы, почему для ее вычерчивания используют циркуль, и почему колеса делают круглыми, а не квадратными или треугольными.

Круг в окружающей жизни.

Исследуя вопрос о роли круга в окружающей жизни, мы провели анкетирование обучающихся 5-9 классов и педагогов МО ШИСП (всего 90 человек):

  1. Какие круглые тела вы встречаете в окружающей жизни?
  2. Какое значение имеет круг в других науках?
  3. Какие практические задачи повседневной жизни решаются, используя знания о круге и окружности?
  4. Как вы считаете, почему встречается так много круглых тел в природе?

Ответы на первый вопрос представлены в презентации.

Круговые процессы-циклы: круговорот воды и веществ в природе.

Круглую форму имеют клетки крови, цилиндрическую – клетки многих желез.

Стебли растений и стволы деревьев, кости человека – круглые.

Кровообращение идет по кругу.

Овощи и фрукты имеют шарообразную или конусовидную форму.

От слова круг образовано множество различных слов: круглый, кругленький, округлить, округлиться, округлый, кругом, вокруг, окружать, кружить и многое другое.

Проанализировав ответы на третий вопрос анкеты, мы поняли, что знания о круге и окружности позволяют человеку решать многие практические задачи в повседневной жизни: разбить клумбу или фонтан, сделать круглую крышу, окно или крышку, сшить головной убор, связать салфетку, сделать елочную игрушку, сделать выкройку платья или юбки, нарисовать узор и т.п.

Таким образом, круг в жизни человека имеет очень важную роль, и в жизни без круглых предметов обойтись невозможно.

Не все, кого мы анкетировали, смогли дать ответ на четвертый вопрос.

Здесь мы помещаем самые интересные и распространенные ответы:

  • Только круглые предметы могут катиться, и поэтому их легче перемещать.
  • Потому что, куда бы мы не пошли, мы возвращаемся, т.е. идем по кругу.
  • У круга нет углов, и поэтому он удобен в применении, например, круглые монеты не могут порвать карман, о них не уколешься, не порежешься.
  • Мячик не может быть квадратным, он не будет отпрыгивать.
  • Посуду делали из глины, и округлую форму было легче придать, чем квадратную. Круглую посуду легче мыть, не надо выскребать из углов, в ней удобней размешивать.
  • Легче изготовить круглое, чем угловатое. Многие технические процессы легче для тел вращения.
  • На круглую форму идет меньше материала, чем на квадратную.
  • Круглая крышка люка никогда не провалится, в отличие от квадратной.
  • Все банки и крышки круглой формы, т.к. каждая точка окружности является точкой концентрации напряжения, и ее легко открыть, у прямоугольной формы такими точками являются только углы.
  • Потому ,что солнце круглое, а без солнца мы не могли бы существовать.
  • Круглая форма универсальна в природе.

Почему же на самом деле встречается так много круглых тел? Мы обратились к научным источникам. На этот вопрос можно ответить, рассмотрев мыльный пузырь, т.к. он идеально круглой формы. Силы поверхностного натяжения не дают лопнуть мыльному пузырю и стремятся придать мыльному пузырю максимально компактную форму. Самая компактная форма в природе – это шар. При шарообразной форме воздух внутри пузыря равномерно давит на все участки его внутренней стенки.

В небе много круглых объектов: Солнце, Луна, планеты, звезды. Почему не быть хотя бы одной некруглой планете? Ну, пусть одна, будет кубическая или пирамидальная. Но это невозможно? Есть сила, которая во всей Вселенной превращает миры в гладкие шары. Эта сила – сила тяготения. Каждый предмет имеет свою гравитацию, притягивает к себе другие тела, а также и свои части. Чем больше тело, тем сила тяжести увеличивается. Земля наша огромная, поэтому она имеет свою большую силу тяжести, которая заставляет притягиваться все к ее центру, а тело преобразовываться в шар. Если бы в силу каких-то причин удалось изменить нашу планету и придать ей иную форму, не шара, то спустя некоторое время она снова стала бы шарообразной. С телами на земле это не происходит, потому что их сила очень маленькая и сила тяжести Земли препятствует этому. Но если взять, например, каплю воды и запустить в космос, она сразу же преобразуется в шар. Именно жидкость способна преобразовываться в шарообразную форму. Земля состоит в основном из магмы (жидкости) поэтому и имеет форму шара.

Таким образом, мы пришли к выводам, что сама природа выбирает эту удобную и компактную форму – шара.

Кроме того, окружность и круг в виде сферы и шара – самая распространенная форма во Вселенной.

Круг и окружность – это еще и траектория движения Земли вокруг Солнца, это перемещение звезд на небе, это цикличность всех процессов, происходящих в мире. Если бы необходимо было бы выбрать форму, наиболее точно передающую устройство мира, то это были бы окружность и круг.

Изучив научную литературу, мы сделали вывод, что с незапамятных времен люди используют в своей жизни круг.

1. Около 3300 года до нашей эры стали применять гончарный круг, делать круглую посуду – тарелки, вазы, кастрюли, горшки, сковородки. У посуды есть окружность (верхний край) и круг (дно).

2. Мы не можем представить свою жизнь без машин: автобус, трактор, велосипед, швейная, стиральная и пишущая машинки, самолет, вездеход, луноход, различные станки, подъемный кран…Они не похожи друг на друга, но присмотримся к ним повнимательнее. Есть у них у всех похожие части – детали, и одна из них – колесо. Сначала колеса были круглые и гладкие, чтобы по земле легко катились, а потом человек придумал много разных колес. Зубчатые колеса спрятаны внутри многих машин, одно колесо заставляет вращаться другое, колеса с желобком –блоки, помогающие поднимать тяжелые грузы. Машины из века в век совершенствовались и совершенствуются, но неизменным остается использование в них колеса, как основной детали.

3. Круг и окружность широко применяются в архитектуре и искусстве: круглые арки, своды, купола. Круг – это форма кочевых шатров и поселений, у многих народов символизирующая динамизм и бесконечное движение в противовес квадратам домов, участкам земли и городам оседлых и зерносеющих народов. Еще древние греки обнаружили, что с помощью циркуля и линейки можно построить множество фигур, включая шестиугольники, квадраты и другие правильные многоугольники, и создавать волшебные узоры.

4. Необозрима сфера применения круга в математике: тригонометрический круг, круги Эйлера, задачи на построение, круговые диаграммы и т.д. Многие приборы имеют круглую шкалу, в математике таким прибором является транспортир (Приложение 7).

Есть в математике задачи, которые до сих пор не разрешены, например, знаменитая задача о “квадратуре круга” – о построении квадрата, равновеликого данному кругу и т.д.

5. Картинки с волшебными кругами люди используют в медицинских целях, когда на них смотришь, кажется, что они двигаются. Если смотреть на них несколько минут, то проходит головная боль (Приложение 8).

6. Также человек использует круг, как универсальный символ, означающий целостность, непрерывность, первоначальное совершенство, бесконечность, отсутствие начала и конца, верха и низа, цикличность, повторяемость, завершенность. Три концентрических круга символизируют прошлое, настоящее и будущее; три сферы земли: землю, воздух и воду; небесные миры, землю и преисподнюю; фазы луны; восходящее, полуденное и заходящее солнце. Многие народы используют круг в религии, как символ связи земного с космосом.

В последнее время в разных местах земного шара стали появляться круги на полях, которые создают посланцы иных миров, желая о чем-то предупредить землян. (Приложение 9).

7. В энциклопедии мы нашли еще много понятий связанных с кругом: кругловязальная машина, круглочулочный автомат, круглогубцы, кругломер, “круговая система” в спорте, кругозор, круг друзей, круг общения, спасательный круг, святой круг, спиритический круг, круговая оборона, круговая порука, круглосуточная аптека, круги вокруг глаз.

В обычной жизни нам приходится замечать множество предметов, которые по своей форме напоминают окружности и круги, но редко кто задумывается о том, чем окружность отличается от круга и что у них общего.

Окружность– это замкнутая плоская кривая, все точки которой равноудалены от заданной точки (центра окружности). Окружностью называют линию, которая ограничивает круг. Правильную окружность можно изобразить с помощью циркуля. Ножку с иголкой нужно установить в задуманную точку, и тогда ножка с карандашиком начертит замкнутую линию. Эта линия разделяет плоскость на две части: внутреннюю, ограниченную линией окружности, и внешнюю, безграничную, т. к. плоскость в общем понимании не имеет границ. Для отличия, можно заштриховать внутреннюю область. Часть, которая осталась внутри, называется кругом.

Окружность имеет центр - это начальная точка нарисованная циркулем. Если задуманная точка лежит на окружности, это означает, что она ей принадлежит. Можно обозначить дуги окружности, ими будут любые 2 точки, ограничивающие окружность, т. е. любые две точки A и B окружности разбивают ее на две части; каждая из этих частей и называется дугой. Если провести линию через эти точки, то получим хорду. А хорда, проходящая через центр окружности, имеет название диаметра. Если же от центра провести линии к точке на окружности, то получится радиус окружности.

Круг– является геометрической фигурой, граница которой состоит из бесчисленного множества точек, равноудаленных от центра круга. Пространство, закрепленное границей, включая центр круга принадлежит кругу. Если провести линию от одной точки на границе круга до другой через центр, то такое расстояние будет называться диаметром круга. Если от центра круга провести прямую линию до любой отметки на его границе, то это расстояние называется радиус. Два радиуса, равноудалённые от центра круга, будут соответствовать его диаметру. Следовательно, диаметр в два раза больше радиуса. Если от одной точки круга провести хорду, то хорда и соответствующая ей дуга будет образовывать сегмент круга. Окружность и круг имеют общий радиус и диаметр.

Отличие окружности и круга

Окружность, как любая линия имеет длину, а круг, как любая геометрическая фигура имеет площадь. Круг имеет площадь, но её нет у окружности. Круг содержит центр окружности, а окружность, содержит сам круг. Без окружности не было бы круга, но она существует самостоятельно. Окружность проводит границу круга снаружи, а круг – внутренняя часть окружности. И круг, и окружность имеют одинаковый центр.

Пример: Таким образом, круг является некоторым участком плоскости, а окружность - всего лишь граница этого участка. Чтобы лучше понять это, представьте себе кольцо (я возьму что-нибудь круглое и съедобное, например, бублик). Это и будет нашей окружностью. Бублик имеет дырочку. Дырочка к бублику не относится, дырочку от бублика съесть нельзя, а вот сам бублик можно кушать. Понимаете? Всё, что лежит внутри окружности, к самой окружности не относится (за исключением окружности с нулевым радиусом). Теперь мысленно вставим в бублик круглую булочку, так, чтобы булочка идеально вписалась в бублик (чтобы не было зазоров и проч.). Булочка и бублик образуют круг. Бублик будет границей этого круга, частью круга (бублик принадлежит кругу, а так как за бублик мы взяли окружность, то окружность принадлежит кругу). И булочку, и бублик можно съесть. Пример с бубликом и булочкой является самым наглядным примером, который при желании можно повторить дома, хотя здесь достаточно всё представить мысленно.

Когда людям задают вопрос, чем отличается сфер от шара, многие попросту пожимают плечами, думая, что фактически это одно и то же (аналогия с кругом и окружностью).

Пример: Апельсин, футбольный мяч, арбуз, похожи на шар. Из всех тел заданного объёма шар имеет наименьшую поверхность. Поверхность шара называют сферой. Расстояние от точек сферы до её центра называется радиусом сферы и обычно обозначается R. Радиусом также называется любой отрезок, соединяющий точку сферы с её центром.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Исследовательская работа

Окружность и круг

Работу выполнил: обучающийся 6 класса

Паздников Никита

Руководитель: учитель математики

Куданенко Г. И.

Актуальность выбора темы:

hello_html_m41eb25c3.jpg

Формы круга, окружности мы

встречаем повсюду: это и колесо машины

и велосипеда, и линия горизонта, и

монеты, и диск Луны.

Любой дошкольник может

показать из ряда предложенных ему

геометрических фигур кружок. На первый

взгляд, кажется, что круг - очень обычная

и простая фигура, но это далеко не так. На

самом деле окружность и круг таят в себе

множество загадок и тайн, имеют

увлекательную историю их изучения.

Математики стали активно заниматься

изучением этих геометрических фигур

Окружность и круг – это понятия, которые изучаются в школьном курсе математики с начальных классов, но они недостаточно хорошо усваиваются. Поэтому особенно важно изучить свойства этих фигур, особенности, связанные с ними закономерности.

Проблема: Как изменятся длина окружности и площадь круга, если увеличить или

уменьшить радиус? Нужны ли детям рисунки для раскрашивания?

Гипотеза: длина окружности прямо пропорциональна длине радиуса;

площадь круга пропорциональна квадрату длины радиуса;

созданная книжка-раскраска поможет малышам занимать

свое время, учиться применять разноцветные карандаши,

чтобы получать красивые рисунки, которыми можно

радоваться самим и окружающим детям.

Цель работы: исследование зависимости между радиусом, длиной

окружности и площадью круга, создание книжки – раскраски

для дошкольников

1. Изучить теоретические сведения о круге и

2. Исследовать изменение длины окружности и площади круга

в зависимости от изменения длины радиуса.

3.Опытным путем вычислить число π.

4. Изучить историю числа.

5. Показать применение материалов исследований при решении

6.Научиться работать циркулем и разработать рисунки.

7.Подарить книжки – раскраски детям из неблагополучных семей.

Проверка гипотезы

Изучение теоретического материала

Понятие окружности и круга

Для построения окружностей имеется специальный инструмент - циркуль .

Обратим внимание на то, что при проведении окружности точка А все время находится на одном и том же расстоянии от точки О, называемой центром окружности, а отрезок ОА называется радиусом окружности. Следовательно , окружность – это замкнутая кривая линия, все точки которой находятся на одном и том же расстоянии от ее центра.

Радиус окружности – это отрезок, соединяющий центр окружности с некоторой точкой окружности.

Окружность ограничивает на плоскости определенную часть.

Часть плоскости, которая ограничивается окружностью, называется кругом.

ОКРУЖНОСТЬ КРУГ

Длина окружности

Впервые понятие длины окружности даётся в учебнике математика 6 класса.

1. Вырежьте из картона, фанеры или другого материала круг, поставьте его ребром на лист бумаги, где начерчена прямая линия. Отметьте на прямой и на окружности точку их касания А. Затем плавно катите круг по прямой до тех пор, пока отмеченная точка А на окружности не окажется на прямой в точке В. Отрезок АВ тогда будет равен длине окружности. Измерив его с помощью избранной единицы длины, мы тем самым измерим и длину окружности.

2. Оберните вырезанный из картона (фанеры или другого ма­териала) круг веревочкой по окружности так, чтобы конец веревочки совпал с началом в одной и той же точке окружности. Затем растяните эту веревочку и измерьте ее длину. Длина веревочки будет равна длине окружности.

hello_html_8f4216c.jpg


Однако эти способы непосредственного измерения длины окружности мало удобные и дают они приближенные результаты измерения.

Поэтому уже с древних времен начали искать более совершенные способы измерения длины окружности. В процессе измерений заметили, что между длиной окружности и длиной ее диаметра имеется определенная зависимость.

Чтобы убедиться в этом, я проделал следующий опыт.

hello_html_34bf6a04.jpg

hello_html_58175039.jpg

С=24,9см

hello_html_m1563f158.jpg

π ≈3,1142857…

hello_html_31bd9b5e.jpg

Взял несколько кругов, измерил непосредственным способом их окружности и их диаметры, а затем нашёл отношения длины каждой окружности к своему диаметру. Я получил одно и то же значение этого отношения, близкое к числу 3,1.

Таким образом, для вычисления длины окружности была установлена известная формула C : D = r , отсюда

C = π D

где С -длина окружности, π = 3,14. D - диаметр окружности.

Так как диаметр окружности вдвое больше её радиуса, то длина окружности с радиусом r равна C = 2π r . Получили другую формулу для длины окружности:

Подсчёты показали, что с точностью до десятитысячных = 3,1415…. Если значение округлить до сотых, то получим значение 3,14.

Площадь круга

На рисунке изображены круг и два квадрата ABCD и EFKM .

Радиус круга равен r , поэтому длина стороны квадрата ABCD равна 2 r , а площадь квадрата 4 r 2 . Площадь треугольника EOF вдвое меньше площади квадрата AEOF , поэтому площадь квадрата EFKM вдвое меньше площади квадрата ABCD , то есть равна 2 r 2 . Площадь круга S больше площади квадрата EFKM , но меньше площади квадрата ABCD : 2 r 2 S круга r 2

Примерно площадь круга равна 3 r 2 . Можно доказать, что S = πR 2

Можно предложить ещё один интересный и понятный способ вычисления площади круга.

Возьмём круг радиуса R и разрежем его на несколько равных секторов (сектор – это часть круга, ограниченная двумя радиусами и дугой окружности, соединяющей их концы). Для наглядности половину секторов заштрихуем.

А теперь из этих секторов составим другую фигуру. Боковые стороны фигуры можно сделать вертикальными. Для этого нужно разрезать пополам крайний (например, левый) сектор и приставить одну половинку с другой стороны. Площадь новой фигуры такая же, как у круга. А сама фигура похожа на прямоугольник.

hello_html_m4e7210c1.jpg

hello_html_m28bc7427.jpg

Если мы будем разрезать круг на ещё более мелкие секторы, то новая фигура будет ещё более походить на прямоугольник.

hello_html_m3f241247.jpg

Нам известно, что площадь прямоугольника равно произведению его длины на ширину. Ширина прямоугольника - это радиус данной окружности, значит равна R , а длина образована дугами секторов – закрашенных и незакрашенных.

Следовательно, длина равна половине длины окружности, то есть .

Так как C = 2 πR , то = = π R .

Следовательно, площадь прямоугольника равна S = π R ∙ R = π R 2

Но у рассматриваемого первоначально круга площадь была такая же. Вот мы и получили формулу для вычисления площади круга

Зависимость длины окружности от длины её радиуса

Как изменится длина окружности, если её радиус увеличить в 2 раза?

Такой вопрос был задан при социологическом опросе учащимся 5 – 11классов, а также учителям начальных классов и учителям предметов гуманитарного цикла.

Данные, полученные при ответе на этот вопрос, приведены в следующей диаграмме. Всего было опрошено человека: 59 учеников, 16 учителей.

Как видно из диаграммы, большинство опрошенных учащихся и учителей, чья деятельность не связана с математикой, считают, что при увеличении радиуса в 2 раза длина окружности также увеличивается, но только небольшая часть уточняет, что именно в 2 раза.

Чтобы выяснить, так ли это, рассмотрим пример.

Пусть радиус равен 6см, тогда длина окружности равна С = 2π ∙6 = 12 π

Увеличим радиус в 2 раза, то есть он станет 12 см, тогда длина окружности равна С1 = 2 π ∙12 = 24 π.

Узнаем, во сколько раз увеличилась длина окружности:

Получается, что при увеличении радиуса в 2 раза длина окружности увеличивается также в 2 раза.

После рассмотрения нескольких аналогичных примеров делаем вывод:

при изменении радиуса окружности (увеличении или уменьшении) в k раз её длина изменяется (увеличивается или уменьшается) также в k раз.

Следовательно, длина окружности пропорциональна её радиусу.

Зависимость площади круга от длины его радиуса

Данные, полученные при ответе на этот вопрос, представлены в диаграмме.

Как видно из диаграммы, большинство опрошенных, чья деятельность не связана с математикой, считают, что при увеличении радиуса в 3 раза площадь круга также увеличивается, причём также в 3 раза, и только небольшая часть понимает, что не в 3, а в 9 раз. А вот большинство старшеклассников ответили, что при увеличении радиуса в 3 раза площадь круга увеличивается в 9 раз.

Чтобы выяснить, кто из них прав, рассмотрим пример.

Пусть радиус равен 2см, тогда площадь круга равна S = π ∙ 2 2 = 4π

Чтобы выяснить, кто прав, рассмотрим пример.

Увеличим радиус в 3 раза, то есть он станет 6 см, тогда площадь круга равна S = π ∙ 6 2 = 36 π .

Узнаем, во сколько раз увеличилась площадь круга:

Получается, что при увеличении радиуса круга в 3 раза его площадь увеличивается в 9 раз.

После рассмотрения нескольких аналогичных примеров получаем вывод:

при изменении радиуса круга в k раз его площадь изменяется также в k ² раз.

Изменение радиуса окружности при изменении её длины

на данное число.

Пусть первоначальный радиус окружности равен R 1метров, тогда первоначальная длина окружности равна

Увеличим длину окружности на a метров, то есть она станет C 2 = C 1 + a (метров), тогда увеличится и радиус окружности, он станет равен

Найдём увеличение радиуса:

Интересно, что в окончательный ответ не входит величина первоначального радиуса. Поэтому результат получится одинаковый для любой окружности. Вообще, разность длин двух концентрических окружностей не зависит от их радиусов, а только от расстояния между ними. Прибавка одного сантиметра к радиусу земной орбиты увеличила бы её длину настолько, насколько удлинится от такой же прибавки радиуса окружность, например, пятака. На этом геометрическом парадоксе (парадокс – истина, кажущаяся неправдоподобной) основано много любопытных задач.

Математические парадоксы

Вообразите, что Вы обошли Земной шар по экватору. На сколько при этом верхушка Вашей головы прошла более длинный путь, чем кончик Вашей ноги, если Ваш рост 1,7м?

Ответ: на 10,7 м

Решение. Пусть R – радиус Земного шара, тогда ноги прошли путь . Верхушка же головы при этом прошла путь 2π( R + 1,7). Разность пройденных расстояний равна 2π( R + 1,7) - 2π R = 2π R + 3,4π - 2π R = 3,4π ≈ 3,4 ∙ 3,14 = 10,676 ≈10,7, то есть рост человека , умноженный на 2 π .

Если обтянуть земной шар по экватору проволокой и затем прибавить к её длине 1м, то сможет ли между проволокой и землёй проскочить мышь?

Обычно отвечают, что промежуток будет тоньше волоса: что значит прибавка в один метр по сравнению с 40 миллионами метров земного экватора. В действительности же величина промежутка равна (100 : 2π)см ≈ 16см. Не только мышь, но и крупный кот проскочит в такой промежуток.

hello_html_6212c133.jpg

У. Джонсон в 1706 г.

В клинописных табличках Древнего Междуречья содержится запись о том, что длина окружности в 3 раза больше диаметра.

А так выглядит 101 знак числа “ пи” без округления:

3, 14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679.

В наше время с помощью ЭВМ число  вычислено с миллионами правильных знаков после запятой. Но такая точность не нужна ни в каких вычислениях и представляет скорее технический, чем научный интерес.

Ч исло π присутствует в чертежах и вычислениях, выполняемых электронными машинами при подготовке и проведении полетов в космос; оно представляет необходимое количество своих десятичных знаков всякий раз, когда они нужны инженерам, рассчитывающим цилиндрические, сферические или конические части машин, физикам и астрономам, когда они проводят приближенные вычисления по формулам, в которых среди фундаментальных постоянных появляется и π . Куда бы мы ни обратили свой взор, мы видим проворное и трудолюбивое число π: оно заключено и в самом простом колесике, и в самой сложной автоматической машине.

Мнемоническое правило для запоминания числа π

hello_html_7eb44ab6.jpg

Чтобы нам не ошибаться,

Читайте также: