Реферат на тему нетрадиционные возобновляемые источники энергии энергия ветра

Обновлено: 30.06.2024

Сложный процесс аккумуляции энергии;

Необходимость использования больших площадей;

Преимущества и недостатки солнечной энергии.

Солнечная энергия является одним из нетрадиционных источников энергии не случайно. Главным отличием Солнца от остальных источников энергии является возобновляемость и постоянство. Независимо от любой деятельности человечества Солнце будет долго направлять свою энергию в сторону нашей планеты. Вот только будет ли доходить эта энергия до нас постоянно и в нужном нам количестве? Плохие погодные условии могут помешать доступу солнечной энергии, в этом заключается непостоянство этого вида энергии, а точнее, непостоянство выработки солнечной энергии электростанциями данного вида.

О количестве поступающей энергии можно не беспокоиться, её хватает на все нужды человечества с огромным запасом, поэтому мы может говорить об изобилии данного источника энергии. Солнечная энергия доступная, особенно в широтах, ближе к экваториальным, чистая, экономичная, т.к. позволяет восполнить небольшие затраты энергии частного собственника, что помогает ему меньше использовать энергии из общей электросети. Солнечная энергия универсальна: солнечные батареи используются практически везде, начиная от обычных калькуляторов и часов и заканчивая космическими станциями и спутниками.

Но разработка солнечной энергии началась сравнительно недавно, создание солнечных батарей требует огромных затрат и усилий, а для обслуживания батарей также необходима энергия. Главными компонентами современных солнечных батарей являются кремний, индий, теллур, медь и кадмий. Если кремний и медь можно добыть в больших объёмах, то остальные металлы редкие и дорогие. При создании и утилизации батарей загрязняется окружающая среда, т.к. многие компоненты ядовиты. Эффективность батарей редко доходит до 20%. Остальная энергия, получаемая батареями (80%), нагревает их, из-за этого требуется энергия на их охлаждение. Мощность батареи зависит от её площади, поэтому для добычи энергии промышленными масштабами необходимы огромные пространства для солнечных батарей. Из-за непостоянства получаемой энергии (см. выше.) для обеспечения человека энергией в любое время необходимо её аккумулировать, что снова требует затрат уже для создания аккумуляторов.

Введение в инженерную деятельность

1. История использования ветровой энергии 5

2. Современные методы преобразования энергии ветра в электроэнергию 7

3. Ветроэнергетика в России и в мире 11

4 Перспективы, достоинства и недостатки ветроэнергетики 13

Список используемых источников 17

Современное развивающееся общество требует всё больше и больше электроэнергии, так как она определяет темпы роста уровня жизни. В этой связи перед энергетиками постоянно существуют две глобальные задачи: обеспечение роста выработки электроэнергии при одновременном поиске способов её экономии в части потребления.

Наряду с использованием традиционных видов электроэнергетики таких как гидроэнергетика, теплоэнергетика, энергия атома, всё чаще стали говорить об альтернативных источниках производства электроэнергии. Таких как энергия солнца, энергия ветра, энергия приливов и отливов, энергия морской волны. Само собой, что в случае, когда для достижения значительной мощности выработки электроэнергии не существует пока технологий для создания достаточно мощных солнечных панелей или приливных гидрогенераторов, то и говорить о соперничестве с теплоэнергетикой или традиционной гидроэнергетикой эти, сравнительно молодые, направления энергетики на данный момент не могут. Однако, с ветроэнергетикой ситуация несколько иная.

Одним из способов выработки электроэнергии является преобразование кинетической энергии воздуха (ветра) в электрическую, механическую и другие виды энергии. Механическая энергия используется в ветряных мельницах, парусах кораблей и т.п.

Электрическая же энергия, получаемая ветрогенераторами является универсальным типом энергоносителя и в связи с уже значительной распространённостью технологий, используется практически во всех аспектах жизнедеятельности человека.

Ветроэнергетика является одной из старейших видов мировой энергетики. Исторически, разве что теплоэнергетику можно считать более древней, так как энергию костра согревающего первобытных людей, человечество научилось использовать раньше, чем энергию ветра в парусах кораблей и лопастях ветряных мельниц.

Энергия ветра относится к возобновляемым видам энергии, так как связана и в настоящий момент ветроэнергетика переживает стадию бурного развития в связи с ростом цен на традиционные энергоносители (нефть и газ), а, так же, в связи с увеличением электрической мощности серийно производимых ветрогенераторов и привлекательностью их с точки зрения окупаемости.

Данные обстоятельства демонстрируют постоянно повышающийся интерес к ветроэнергетике по всему миру и делают настоящую работу актуальной с точки зрения общих знаний о состоянии ветроэнергетики.

Рис.1. Примеры использования ветровой энергии: небольшая мельница со станиной, ветряные мельницы и современный ветрогенератор

1. История использования ветровой энергии

Далее, развитие мельниц получило в Европе, после того как из переносных и небольших они превратились в шатровые тем самым решив их проблему переворачивания при сильном ветре.

В XVI веке в Европе появляются первые водонасосные станции с использованием гидродвигателя и ветряной мельницы. Толедо, Лондон, Париж и другие купные центры развития цивилизации брали на вооружение тогда ещё новые технологии по перекачке воды. В Нидерландах ветряные мельницы откачивали воду с земель, ограждённых дамбами, ав засушливых районах – орошали земли способствую развитию земледелия. Отвоёванные у природы непригодные для земледелия площади начинали возделываться[7].

Эра использования ветра в создании электроэнергии началась в ХIХ веке в Дании. Там в 1890 году была построена первая в мире ветроэлектростанция , а в начале ХХ века насчитывалось уже 72 электростанции мощностью от 5 до 25 кВт. Крупнейшие станции к тому времени имели высоту более 20 метров и роторы с четырьмя лопастями диаметр которых достигал 23 метра.

Прообраз современной ветроэлектростанции, какими мы их представляем сейчас, первым появился в Ялте в 1931 году и имел башню высотой 30 метров, установленную мощность 100 кВт. На момент начала Великой Отечественной Войны единичная мощность ветроэлектростанций достигла 1,25 МВт в мире. В период 1940-х по 1970-е годы развитие ветроэнергетики почти приостановилось в связи с бурным развитием распределительных электросетей и освоением энергии горных рек, нефти и газа.

Новой эрой развития ветроэнергетики стали 80-е годы ХХ века, когда в штате Калифорния были введены налоговые льготы для производителей электроэнергии из ветра.

2. Современные методы преобразования энергии ветра в электроэнергию

Рис.2. Ветрогенераторы с горизонтальной осью вращения



Рис.3. Ветрогенераторы с вертикальной осью вращения



Мощность генератора зависит от площади, ометаемой лопастями генератора и высоты над поверхностью земли. Например, турбины фирмы Vestas (Дания) при электрической мощности в 3 МВт имеют общую высоту 115 метров, высоту башни 70 метров при диаметре лопастей в 90 метров.

Современный ветрогенератор начинает производить электроэнергию при силе ветра от 3м/с и отключается в целях безопасности при силе ветра более 25 м/с. Оптимальной скоростью для работы ветрогенератора является ветер со скоростью около 15м/с. При этом мощность генератора максимальна.

Отдаваемая мощность пропорциональна третьей степени скорости ветра. Т.е. при увеличении скорости ветра в 2 раза (с 5 до 10 м/с), мощность увеличивается в 8 раз [4].

Наиболее эффективной конструкцией для территорий с малым ветровым потоком признана конструкция роторного ветрогенератора с вертикальной или горизонтальной осями вращения, так как скорость континентальных ветров обычно находится в диапазоне от 3 до 12 м/с. При таком ветрорежиме самой эффективной является вертикальная ветроустановка.

При этом, такой вид ветрогенератора имеет ещё несколько важных преимуществ: практически бесшумны, не требуют обслуживания при сроках эксплуатации до 20 лет. Пи современных разработках систем торможения, ветрогенератор гарантирует стабильную работу даже при периодических порывах ветра до 60 м/с[5].

С точки зрения выгодности установки ветрогенераторов, самыми перспективными зонами выработки электроэнергии из энергии ветра являются прибрежные зоны. Но при этом, стоимость сооружения в связи со сложностью прибрежного рельефа увеличивается в 1,5-2 раза по сравнению с установкой ра равнинной местности.

Как правило, генерирующие компании специализирующиеся на производстве использовании ветрогенераторов объединяют десятки мощных ветрогенераторов в так называемые ветропарки, получая в сумме выработку в сотни мегаватт, что при минимальных затратах на обслуживание уже может составить реальную конкуренцию электростанциям с классическими видами энергоносителей.

3. Ветроэнергетика в России и в мире

В настоящее время экономический потенциал применения ветроэнергетики эквивалентен примерно трети производимой электроэнергии всеми электростанциями нашей страны.

По данным Российской ассоциации ветроиндустрии, использование в нашей стране ветропарков эффективнее всего в районах Чёрного и Азовского морей, в акваториях рек Кама, Волга и Дон, и на северном побережье страны от Кольского полуострова до Камчатки. Из перечисленных регионов активней всего идёт использование ветроэнергии в настоящее время в южной части страны [1].

Ежегодно развитие ветроэнергетики заставляет производителей электроэнергии совершенствовать выпускаемые и разрабатывать новые типы гидрогенераторов. Конечно же одним из самых важных критериев при этом является установленная мощность ветрогенератора. От года к году этот показатель постоянно растёт.

К началу 2016 года общая установленная мощность всех ветрогенераторов составила 432 гигаватта и, таким образом, превзошла суммарную установленную мощность атомной энергетики (однако на практике использованная в среднем за год мощность ветрогенераторов в несколько раз ниже установленной мощности, в то время как АЭС почти всегда работает в режиме установленной мощности). В 2014 году количество электрической энергии, произведённой всеми ветрогенераторами мира, составило 706 тераватт-часов (3 % всей произведённой человечеством электрической энергии). Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, на 2015 год в Дании с помощью ветрогенераторов производится 42 % всего электричества; 2014 год в Португалии — 27 %; в Никарагуа — 21 %; в Испании — 20 %; Ирландии — 19 %; в Германии — 8 %; в ЕС в целом — 7,5 % [3] . В 2014 году 85 стран мира использовали ветроэнергетику на коммерческой основе. По итогам 2015 года в ветроэнергетике занято более 1 000 000 человек во всем мире [4] (в том числе 500 000 в Китае и 138 000 в Германии).

4. Перспективы, достоинства и недостатки ветроэнергетики

Запасы ветровой энергии превышают запасы энергии всех рек планеты более чем в 100 раз. Китай, Япония, Индия и Евросоюз одним из приоритетных направлений в ветроэнергетике считаю т энергию ветра и по установленным планам развития в этих странах к 2020-2030 годам планируется достигнуть показателей, при которых мощности ветровых парков и электростанций на традиционных энергоносителях станут соизмеримы и будут достигать 1,5-2,5 ГВт.

Как и любая промышленная технология, ветроэнергетика имеет свои достоинства и недостатки.

К достоинствам, прежде всего, относятся снижение выбросов углекислого газа в целом при выработки электроэнергии на планете так как ветрогенератор не сжигает органическое топливо. Так же не присутствует в технологическом цикле использование воды, что так же является положительным фактором. Третьим, но немаловажным положительным фактором является минимальное использование земли так как ветрогенератор практически не занимает места и при достаточных высотах установки позволяет использовать землю вокруг опорной башни под другие виды деятельности, например как сельхозугодия, пастбища и т.п.

Не обошлось тут и без недостатков.

Прежде всего, это климат. Ветрогенераторы при массовом их использовании изымают часть кинетической энергии движущихся воздушных масс тем самым несколько замедляя скорость ветра в определённой местности и теоретически влияя на влажность. Так же, есть опасность снижения ветров при продувании ими промышленных центров (повышается вероятность образования смога в промышленных районах или центрах густонаселённых городов с плотной застройкой и большим количеством автотранспорта). Пока в данной области только начинают разворачиваться исследования по влиянию ветрогенераторов и поэтому в настоящий момент нельзя дать точную оценку негативности влияния на климат.

Ещё одним негативным фактором при использовании энергии ветра является шум (от работы механических и электрических компонентов, который в современных моделях практически сведён на нет). Ветрогенераторы производят механический шум и аэродинамический (при взаимодействии лопастей ветроустановки с ветровым потоком. При этом при прохождении лопасти мимо несущей колонны, звук от неё отражаясь усиливается). В некоторых странах Европы (Дания, Германия, Англия и т.д.) приняты на законодательном уровне ограничения по шуму для ветровых установок различные для дневного и ночного времени. Так же, регламентируются минимальные расстояния установки ветрогенераторов от человеческого жилья и населённых пунктов. Теми же законами учтено влияние низкочастотных вибраций, имеющихся у мощных ветроустановок, которые передаются по земле на расстояниях до 100-150 метров [1].

Дополнительно, можно сказать об обледенении лопастей при высокой влажности и снижении температур окружающего воздуха. При пуске ветрогенератора под действием механических сил, осколки льда могут разлетаться на расстояния более 100 метров, хотя при наличии небольшого обледенения имелись случаи улучшения аэродинамических характеристик лопастей.

Так же, субъективным фактором воздействия ветрогенератора является визуальная составляющая. Для её снижения привлекаются ландшафтные архитекторы, хотя исследования на тему отрицательного визуального влияния пока проводятся в редких случаях и в виде социологических опросов.

Нельзя не упомянуть о негативном воздействии на фауну. Ежегодно отмечаются случаи гибели птиц при столкновении с лопастями ветрогенератора. В связи с постоянным ростом числа ветроустановок, статистика в цифрах весьма противоречива и поэтому здесь не приводится.

Сделаем только одно уточнение, что летучие мыши, живущие вблизи ветроустановки страдают больше чем птицы в силу отличий строения лёгких у одних и других при создании ветрогенераторами областей с пониженным давлением при интенсивном вращении.

И в заключении обзора недостатков, необходимо упомянуть проблему создания ветрогенераторами электропомех. Это вызвано наличием металлических деталей в лопастях ветроустановки и приводит к искажениям либо ослаблению радиосигналов. В отдельных случаях в качестве средства борьбы с данным эффектом устанавливались дополнительные ретрансляторов радиосигналов.

Ветроэнергетика, как отдельная отрасль уже сформировалась и доказала свою состоятельность в мировой энергетике иногда являясь безальтернативным вариантом для локального электроснабжения удалённых от стационарных электросетей потребителей.

Перспективной задачей в энергетическом комплексе 21 века является использование и внедрение возобновляемых источников энергии. Это позволит снизить нагрузку на экологическую систему планеты. Применение традиционных источников негативно влияет на экологию и приводит к исчерпанию земных недр. К ним относятся:

  • уголь;
  • природный газ;
  • нефть;
  • уран.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Альтернативная энергетика – система новых способов и методов получения, передачи и применения энергии, которые используются слабо, однако являются выигрышными для окружающей среды.

Альтернативные источники энергии (АИЭ) – вещества и процессы, которые существуют в природной среде и дают возможность получать необходимую энергию.

Структура и обоснованная необходимость в их применении

К нетрадиционным источникам энергии относят:

  • солнечную;
  • ветровую;
  • геотермальную;
  • энергию морей, рек, приливов;
  • биоэнергетику;
  • энергию атмосферного электричества и грозовую энергетику.

Увеличение населения Земли требует больших энергетических затрат. Запас полезных ископаемых, представляющих традиционные источники, не безграничен. Поэтому ведется активный поиск путей решения энергетической проблемы. Переход на использование чистых, природных источников является важной вехой в развитии человечества.

Основные причины, побуждающие к переходу на АЭИ:

  1. Глобально-экологическая. Применение традиционных энергодобывающих технологий ведет мир к глобальной экологической катастрофе. Одно из таких последствий – изменение климата, которое длится уже несколько лет.
  2. Политическая. Страна, освоившая АЭИ первой, сможет диктовать цены на топливные ресурсы.
  3. Экономическая. Переход на нетрадиционные энергетические технологии даст возможность перераспределить топливные ресурсы для развития промышленности. Стоимость альтернативной энергии значительно ниже, чем электроэнергии, получаемой из традиционных источников.
  4. Социальная. С ростом численности населения становится сложным найти место для строительства АЭС и ГРЭС, которое было бы безопасным для окружающих. Исследования показали, что у населения, проживающего неподалёку от таких станций, подтвержден больший процент онкологических и других тяжелых заболеваний.
  5. Эволюционно-историческая. Объем топливных ресурсов ограничен, биосфера и атмосфера страдают от их использования. Эти факторы тормозят процесс эволюции человечества. Переход на альтернативные источники энергии будет толчком к новому этапу развития.

Виды нетрадиционных источников энергии, преимущество и недостатки

Виды нетрадиционных источников энергии

Преимущества ВИЭ:

  • неисчерпаемость ресурсов;
  • уменьшение негативного воздействия на окружающую природу и здоровье людей.

Недостатки ВИЭ:

  • небольшая плотность энергетического потока;
  • скачкообразность объемов выработки энергии;
  • высокая стоимость оборудования энергодобывающих установок.

Солнечная энергия

Гелиоустановки используют энергию Солнца для потребностей теплоснабжения и для производства электричества. Способов преобразования солнечного излучения существует множество. Оптимальным и наиболее распространенным считают метод, основанный на использовании фотоэлектрических преобразователей. Такие фотоэлементы объединяют в солнечные батареи.

В 80 странах мира ведется активное строительство солнечных электростанций. Крупная фотоэлектрическая установка расположена в Канаде, в провинции Онтарио (Sarnia PV рlant). Площадь электростанции – 385 гектаров. Она способна снабжать электроэнергией свыше 12 000 домохозяйств.

В 100 км от Рима находится самая крупная электростанция в Италии – Montalto di Castro. Она оснащена аэрационной системой, которая защищает модули установки от возникновения коррозии под влиянием соленого морского воздуха.

В России насчитывается свыше 40 солнечных электростанций, которые расположены преимущественно в Крыму, Оренбургской и Астраханской областях, Республике Башкортостан, Республике Алтай.

Преимущества солнечной энергии:

  • возобновляемый источник;
  • бесшумная работа;
  • экологически чистое преобразование солнечного излучения в другие виды энергии.

Недостатки:

  • высокая стоимость оборудования для гелиоустановок;
  • привязанность интенсивности излучения Солнца к сезонам и времени суток;
  • строительство солнечных электростанций занимает большие территории;
  • использование токсичных соединений при создании фотоэлектрических элементов, что приводит к проблеме их утилизации.

Ветровая энергия

Начало использования энергии ветра восходит к появлению ветряных мельниц, которые были принесены крестоносцами в Европу в 13 веке.

Принцип действия ветрогенератора прост. Сила ветра заставляет двигаться ветряное колесо, вращение которого передается ротору электрогенератора.

Ветроэнергетические установки распространены в США, Китае, Индии.

Мировой лидер по установленной мощности ветрогенератов на душу населения Дания обеспечивает 47% спроса на электроэнергию за счет них. К 2030 году власти планируют полностью отказаться от использования полезных ископаемых для производства электроэнергии.

Крупнейший в мире морской ветропарк Walney Extension расположен в Великобритании и насчитывает 87 ветряных турбин. Они способны обеспечить электроэнергией около 600 000 домохозяйств.

Среди наземных ветропарков следует выделить расположенные в США Fowler Ridge (штат Индиана) и Penascal (штат Техас).

В России расположено 16 действующих ветровых электростанций (Крым, Ульяновская, Оренбургская и Калининградская области, Республика Калмыкия).

Преимущества ветряных электростанций:

  • неисчерпаемость энергии;
  • не наносит вред экологии.

Недостатки:

  • отдельный ветрогенератор обладает слабой мощностью;
  • переменчивость силы ветра;
  • шум, производимый ветрогенераторами, нарушает перелеты птиц и насекомых;
  • поблизости от таких станций возникают помехи в радиоволнах и работе военных.

Для того, чтобы не нарушать природный баланс, в США перед строительством ветряных парков проводят исследования путей миграции птиц. В дальнейшем производится установка радаров, которые улавливают приближение стай и временно отключают ветрогенераторы.

Геотермальная энергия

Большие объемы тепловой энергии хранятся в глубине Земли, что объясняется высоким температурным показателем земного ядра. В качестве источников геотермальной энергии используют вулканические области, горячие источники воды или пара.

Геотермальные электростанции преобразовывают энергию горячих подземных вод в электричество.

Значимой ГеоЭС называют бинарную электростанцию в Новой Зеландии (вблизи Таупо, остров Северный). Она способна обеспечивать дома электричеством, отоплением и горячим водоснабжением. Страна – мировой лидер по производству геотермальной энергии. Её доля в энергетике Новой Зеландии составляет 14%.

Крупнейшей в мире одиночной ГеоЭс являеется электростанция в Кении Оликария 4, мощностью 140 мегаватт.

Мощный геотермальный комплекс расположен в США. Он состоит из 22 геотермальных электростанций, суммарная мощность которых составляет 1517 МВт.

На территории России расположены 4 ГеоЭС. Первая из них была создана во времена СССР на Камчатке.

Преимущества геотермальной энергетики:

  • неисчерпаемость источников;
  • сезонная и суточная независимость.

Среди минусов выделяют:

  • минерализация и, изредка, токсичность термальных вод, что вызывает необходимость после переработки закачивать воды обратно в подземные недра;
  • вероятность возникновения землетрясений при вмешательстве в слои Земли.

Энергия приливов и волн

Мировой океан создает энергию разнообразных видов:

  • энергия биомассы;
  • приливов и отливов;
  • энергия океанических течений;
  • тепловая.

По мнениям исследователей, к 2050 году энергией, вырабатываемой из Мирового океана можно будет заменить энергетические мощности 250 ядерных реакторов.

В Японии (префектура Кагошима) создали установку, генерирующую электроэнергию из океанических течений.

Цель Шотландии состоит в переходе к 2030 году на энергию альтернативных источников. Шотландские приливы самые мощные в Европе, что позволило запустить строительство самой крупной в мире приливной электростанции. За её счет 175 000 домохозяйств будут обеспечены электричеством.

Лидером по разработке технологий развития приливной энергетики выступает Великобритания.

Единственная приливная электростанция в России расположена в губе Кислая Баренцева моря, возле поселка Ура-Губа Мурманской области.

Плюсы использования энергии приливов:

  • экологичность;
  • низкая себестоимость добычи энергии.

Недостатки:

  • высокая стоимость строительства установок;
  • зависимость мощности от времени суток.

Биоэнергетика

Данный альтернативный источник относится к вторичным, его вырабатывают из биотоплива. Промышленные и сельскохозяйственные предприятия всё чаще получают необходимую им электроэнергию путём выделения её из органического мусора.

К альтернативному биотопливу относят:

  • отходы сельского хозяйства и деревообработки (твердое);
  • биодизель, биомазут, метанол, этанол, бутанол (жидкое);
  • водород, метан, биогаз (газообразное).

Преимущества использования биотоплива:

  • утилизация органического мусора;
  • снижение уровня загрязнения окружающей среды;
  • изготовляется из возобновляемых ресурсов;
  • снижение выброса парниковых газов в атмосферу;
  • культуры, выращиваемые для биотоплива, поглощают оксид углерода;
  • лёгкое в транспортировке;
  • отличается высокой энергоплотностью.

К недостаткам относят:

  • территориальное ограничение (для выращивания биотопливных культур подходит местность с определенными климатическими условиями);
  • представляет угрозу продовольственной безопасности (земли могли бы использоваться для выращивания сельскохозяйственных культур);
  • разрушение малых экосистем вследствие применения пестицидов для удобрения.

Энергия малых рек

К альтернативным источникам гидроэнергетики относят малые гидроэлектростанции. Такие установки обладают мощностью 5-10 МВТ.

Малая гидроэнергетика – наиболее освоенный вид возобновляемых нетрадиционных источников энергии. Мировым лидером в этой сфере выступает Китай. Малые ГЭС широко используются в ряде других стран: Германии, Австрии, Испании, Канаде, Японии, Украине, Беларуси, Бразилии, России (Алтайский край).

Преимущества развития малой гидроэнергетики:

  • строительство в короткие сроки;
  • низкая степень воздействия на окружающую среду;
  • постоянный источник энергии;
  • надежность электроснабжения;
  • близость к потребителю.

Недостатки:

  • малые источники могут промерзать, останавливая работу системы;
  • высокие затраты на строительство;
  • необходимость строительства плотины, что не всегда может быть одобрено природным законодательством.

Атмосферное электричество и грозовая энергетика

Процессы испарения, образования облаков, переноса тепла и влаги, происходящие в нижних атмосферных слоях, сопровождаются явлениями электризации. Вследствие этих факторов, в атмосфере образуется энергетический ресурс.

Исследования в отрасли атмосферного электричества начали проводить с 1850-1860-х годов. Свой вклад внёс и Никола Тесла, который предложил способ преобразования высокого постоянного атмосферного напряжения в низкое переменное.

Новые исследования бразильских ученых дали возможность найти способ преобразования электрических зарядов в атмосфере в электрический ток.

Преимущества атмосферных электростанций:

  • экологически чистая энергия;
  • независимость от времени года или суток;
  • оборудование станций расположено в воздухе, что экономит земные территории.

Недостатки:

  • невозможность создавать запасы, кроме как, преобразовывая в другие соединения (водород);
  • существует вероятность нарушения глобального электрического контура;
  • высокое напряжение представляет опасность для персонала;
  • расположение оборудования на высоте может представлять опасность для авиации.

Грозовая энергетика находится на стадии освоения. Для удержания и использования энергии молнии требуются мощные и дорогостоящие системы. Специалистами NASA проведены исследования и разработана карта, показывающая все точки мира с наиболее частыми ударами молнии. В дальнейшем эти теоретические разработки помогут опредделить наиболее перспективную территорию для получения грозовой энергии.

Ухудшение экологии и истощение природных ресурсов заставляет задумываться о том, как получать электричество и тепло из возобновляемых источников.

В этой статье рассказываем, как работает альтернативная энергия и почему многие страны делают выбор в её пользу.

Что такое альтернативная энергия?

альтернативные источники энергии

Энергия бывает возобновляемой (альтернативной) и невозобновляемой (традиционной).

Невозобновляемые источники – это нефть, природный газ и уголь. Им ищут замену, потому что они могут закончиться. Ещё их использование связано с выбросом углекислого газа, парниковым эффектом и глобальным потеплением.


Человечество получает энергию, в основном за счёт сжигания ископаемого топлива и работы атомных электростанций. Альтернативная энергетика – это методы, которые отдают энергию более экологичным способом и приносят меньше вреда. Она нужна не только для промышленных целей, но и в простых домах для отопления, горячей воды, освещения, работы электроники.

Ресурсы возобновляемой энергии

  • Солнечный свет
  • Водные потоки
  • Ветер
  • Приливы
  • Биотопливо (топливо из растительного или животного сырья)
  • Геотермальная теплота (недра Земли)

Альтернативные виды энергии

1. Солнечная энергия

альтернативный источник энергии солнца

Один из самых мощных видов альтернативных источников энергии. Чаще всего её преобразуют в электричество солнечными батареями. Всей планете на целый год хватит энергии, которую солнце посылает на Землю за день. Впрочем, от общего объёма годовая выработка электроэнергии на солнечных электростанциях не превышает 2%.

Солнечное электричество распространено там, где оно дешевле обычного: отдалённые обитаемые острова и фермерские участки, космические и морские станции. В тёплых странах с высокими тарифами на электроэнергию, оно может покрывать нужны обычного дома. Например, в Израиле 80% воды нагревается солнечной энергией.

Батареи также устанавливают на беспилотные автомобили, самолёты, дирижабли, поезда Hyperloop .

2. Ветроэнергетика

ветряные мельницы

Запасов энергии ветра в 100 раз больше запасов энергии всех рек на планете. Ветровые станции помогают преобразовывать ветер в электрическую, тепловую и механическую энергию. Главное оборудование – ветрогенераторы (для образования электричества) и ветровые мельницы (для механической энергии).

Этот вид возобновляемой энергии хорошо развит – особенно в Дании, Португалии, Испании, Ирландии и Германии. К началу 2016 года мощность всех ветрогенераторов обогнала суммарную установленную мощность атомной энергетики.

Недостаток в том, что её нельзя контролировать (сила ветра непостоянна). Ещё ветроустановки могут вызывать радиопомехи и влиять на климат, потому что забирают часть кинетической энергии ветра – правда, учёные пока не знают хорошо это или плохо.

3. Гидроэнергия

гидроэлектростанция

Чтобы преобразовать движение воды в электричество нужны гидроэлектростанции (ГЭС) с плотинами и водохранилищами. Их ставят на реках с сильным потоком, которые не пересыхают. Плотины строят для того, чтобы добиться определённого напора воды – он заставляет двигаться лопасти гидротурбины, а она приводит в действие электрогенераторы.

Строить ГЭС дороже и сложнее относительно обычных электростанций, но цена электричества (на российских ГЭС) в два раза ниже. Турбины могут работать в разных режимах мощности и контролировать выработку электричества.

4. Волновая энергетика

волновая электростанция wave star energy

Есть много способов генерации электричества из волн, но эффективно работают только три. Они различаются по типу установок на воде. Это камеры, нижняя часть которых погружена в воду, поплавки или установки с искусственным атоллом.

Такие волновые электростанции передают кинетическую энергию морских или океанических волн по кабелю на сушу, где она на специальных станциях преобразуется в электричество.

Этот вид используется мало – 1% от всего производства электроэнергии в мире. Системы тоже дорогие и для них нужен удобный выход к воде, который есть не у каждой страны.

5. Энергия приливов и отливов

приливная электростанция

Эту энергию берут от естественного подъёма и спада уровня воды. Электростанции ставят только вдоль берега, а перепад воды должен быть не меньше 5 метров. Для генерации электричества строят приливные станции, дамбы и турбины.

Приливы и отливы хорошо изучены, поэтому этот источник более предсказуем относительно других. Но освоение технологий было медленным и их доля в глобальном производстве мала. Кроме того, приливные циклы не всегда соответствуют норме потребления электричества.

6. Энергия температурного градиента (гидротермальная энергия)

гидротермальная станция

Морская вода имеет неодинаковую температуру на поверхности и в глубине океана. Используя эту разницу, получают электроэнергию.

Первая установка, которая даёт электричество за счёт температуры океана была сделана ещё в 1930 году. Сейчас есть океанические электростанции закрытого, открытого и комбинированного типа в США и Японии.

7. Энергия жидкостной диффузии

осмотическая станция

Это новый вид альтернативного источника энергии. Осмотическая электростанция, установленная в устье реки, контролирует смешение солёной и пресной воды и извлекает энергию из энтропии жидкостей.

Выравнивание концентрации солей даёт избыточное давление, которое запускает вращение гидротурбины. Пока есть только одна такая энергетическая установка в Норвегии.

8. Геотермальная энергия

геотермальная станция в исландии

Геотермальные станции берут внутреннюю энергию Земли – горячую воду и пар. Их ставят в вулканических районах, где вода у поверхности или добраться до неё можно пробурив скважину (от 3 до 10 км.).

Извлекаемая вода отапливает здания напрямую или через теплообменный блок. Ещё её перерабатывают в электричество, когда горячий пар вращает турбину, соединённую с электрогенератором.

Недостатки: цена, угроза температуре Земли, выбросы углекислого газа и сероводорода.

Больше всего геотермальных станций в США, Филиппинах, Индонезии, Мексике и Исландии.

9. Биотопливо

дрова биотопливо

Биоэнергетика получает электричество и тепло из топлива первого, второго и третьего поколений.

  • Первое поколение – твёрдое, жидкое и газообразное биотопливо (газ от переработки отходов). Например, дрова, биодизель и метан.
  • Второе поколение – топливо, полученное из биомассы (остатков растительного или животного материала, или специально выращенных культур).
  • Третье поколение – биотопливо из водорослей.

Биотопливо первого поколения легко получить. Сельские жители ставят биогазовые установки, где биомасса бродит под нужной температурой.

Самый традиционный способ и древнейшее топливо – дрова. Сейчас для их производства сажают энергетические леса из быстрорастущих деревьев, тополя или эвкалипта.

Плюсы и минусы альтернативной энергии

работник изучает солнечные батареи

Главная перспектива альтернативных источников – существования человечества даже в условиях жёсткого дефицита нефти, газа и угля.

Преимущества:

  • Доступность – не нужно обладать нефтяными или газовыми месторождениями. Правда, это относится не ко всем видам. Страны без выхода к морю не смогут получать волновую энергию, а геотермальную можно преобразовывать только в вулканических районах.
  • Экологичность – при образовании тепла и электричества нет вредных выбросов в окружающую среду.
  • Экономия – полученная энергия имеет низкую себестоимость.

Недостатки и проблемы:

  • Траты на этапе строительства и обслуживание – оборудование и расходные материалы дорогие. Из-за этого повышается итоговая цена электроэнергии, поэтому она не всегда оправдана экономически. Сейчас главная задача разработчиков снизить себестоимость установок.
  • Зависимость от внешних факторов: невозможно контролировать силу ветра, уровень приливов, результат переработки солнечной энергии зависит от географии страны.
  • Низкий КПД и маленькая мощность установок (кроме ГЭС). Вырабатываемая мощность не всегда соответствует уровню потребления.
  • Влияние на климат. Например, спрос на биотопливо привёл к сокращению посевных площадей для продовольственных культур, а плотины для ГЭС изменили характер рыбных хозяйств.

Возобновляемая энергия в мире

солнечные батареи в Китае

Главный потребитель возобновляемых источников энергии – Евросоюз. В некоторых странах альтернативная энергетика вырабатывает почти 40% от всей электроэнергии. Там уже прижились разные меры поддержки: скидочные тарифы на подключение и возврат денег за покупку оборудования. Не отстают страны Востока и США.

Германия

40% электроэнергии в Германии дают возобновляемые источники. Она лидер по числу ветровых установок, которые генерируют 20,4 % электричества. Оставшаяся доля приходится на гидроэнергетику, биоэнергетику и солнечную энергетику. Немецкое правительство поставило план: вырабатывать 80% энергии за счёт альтернативных источников к 2050 году, но закрывать атомные электростанции пока не хочет.

Исландия

У Исландии очень много горячей воды, потому что она расположилась в зоне вулканической активности. Страна обеспечивает 85% домов отоплением из геотермальных источников и покрывает ими 65% потребностей населения в электроэнергии. Мощность источников настолько велика, что они хотят наладить экспорт энергии в Великобританию.

Швеция

После нефтяного кризиса 1973 года страна стала искать другие источники энергии. Началось всё с ГЭС и АЭС. Из-за атомных станций шведов часто критиковали Greenpeace, но с конца 80-х доля энергии от АЭС не растёт.

Начиная с 90-х Швеция строит оффшорные ветропарки в море. На выбросы предприятиями углерода в атмосферу введён дополнительный налог, а для производителей ветровой, солнечной и биоэнергии есть льготы.

Ещё Швеция активно использует энергию от переработки мусора и даже планирует его закупать у соседних стран, чтобы отказаться от нефти. Некоторые города получают тепло от мусоросжигательных заводов.

Китай

Крупнейшие ветровые ресурсы тоже здесь (три четверти из них поставлены в море). К 2020 году страна планирует выработать при их помощи 210 ГВт.

Ещё тут 2 700 геотермальных источников и делают 63% устройств для преобразования солнечной энергии. Китай занимает третье место в производстве биотоплива на основе этанола.

Альтернативная энергия в Россиисаяно-шушенская гэс

Разное географическое положение регионов и специфика климатических поясов в России не позволяют развивать эту отрасль равномерно. Нет инвестиций и есть пробелы в законе.

Виды возобновляемой энергии в России

Солнечная энергия

Ветровая энергетика

Гидроэнергетика

Геотермальная энергетика

За счёт обилия вулканов этот вид энергетики распространён на Камчатке. Там 40% потребляемой энергии генерируется на геотермальных источниках. По данным учёных, потенциал Камчатки оценивается в 5000 МВт, а вырабатывается только 80 МВт энергии в год. Ещё геотермальные станции есть на Курилах, Ставропольском и Краснодарском крае.

Биотопливо

Наша страна входит в тройку экспортёров пеллет на европейском рынке. В России есть заводы, создающие из остатков древесины пеллеты и брикеты, которыми топят котлы и печки.

Сельскохозяйственные отходы преобразуют в жидкое топливо и биогаз для дизельных двигателей. А вот свалочный газ не используется вообще, его просто выбрасывают в атмосферу, нанося ущерб окружающей среде.

Компании, которые занимаются возобновляемыми источниками энергии

монтаж солнечной батареи

Рост инвестиций в возобновляемую энергетику и поддержка правительства помогает многим компаниям успешно вести бизнес.

First Solar Inc.

Эта американская компания была образована в 1990 году и стала известной благодаря производству солнечных батарей. Сейчас это крупнейшая фирма, которая продаёт солнечные модули, поставляет оборудование и отвечает за технический сервис.

Vestas Wind Systems A/S

Старейший производитель ветрогенераторов из Дании. Компания основана в 1898 году и на сегодняшний день ей удалось установить более 60 тысяч ветровых турбин в 63 странах. Vestas продаёт отдельные генераторы, комплексные станции и обслуживает устройства.

Atlantica Yield PLC

Эта компания с офисом в Лондоне владеет классическими линиями электропередач, солнечными и ветровыми станциями в Северной Америке, Испании, Алжире, Южной Америке и Южной Африке.

ABB Ltd. Asea Brown Boveri

Шведско-швейцарская компания, известная автомобильными двигателями, генераторами и робототехникой. С 1999 года бренд занимается преобразованием солнечной и ветровой энергии. В 2013 году компания стала мировым лидером в области оборудования фотоэлектрической энергии.

Читайте также: