Реферат на тему нанотехнологии как приоритетное направление в развитии науки и производства в рф

Обновлено: 03.07.2024

1 Введение
Для понятия нанотехнология, пожалуй, не существует исчерпывающего определения, но по аналогии с существующими ныне микротехнологиями следует, что нанотехнологии - это технологии, оперирующие величинами порядка нанометра. Поэтому переход от "микро" к "нано" - это качественный переход от манипуляции веществом к манипуляции отдельными атомами.


  • изготовление электронных схем (в том числе и объемных) с активными элементами, размерами сравнимыми с размерами молекул и атомов;

  • разработка и изготовление наномашин;

  • манипуляция отдельными атомами и молекулами и сборка из них макрообъектов.

Срок реализации - первая половина XXI века.
2. Геронтология. Достижение личного бессмертия людей за счет внедрения в организм молекулярных роботов, предотвращающих старение клеток, а также перестройки и улучшения тканей человеческого организма. Оживление и излечение тех безнадежно больных людей, которые были заморожены в настоящее время методами крионики.

Срок реализации: третья - четвертая четверти XXI века.

3. Промышленность. Замена традиционных методов производства сборкой молекулярными роботами предметов потребления непосредственно из атомов и молекул.

Срок реализации - начало XXI века.
4. Сельское хозяйство. Замена природных производителей пищи (растений и животных) аналогичными функционально комплексами из молекулярных роботов. Они будут воспроизводить те же химические процессы, что происходят в живом организме, однако более коротким и эффективным путем. Например, из цепочки "почва - углекислый газ - фотосинтез - трава - корова - молоко" будут удалены все лишние звенья. Останется "почва - углекислый газ - молоко (творог, масло, мясо)". Такое "сельское хозяйство" не будет зависеть от погодных условий и не будет нуждаться в тяжелом физическом труде. А производительности его хватит, чтобы решить продовольственную проблему раз и навсегда.

Срок реализации – вторая - четвертая четверть XXI века.

5. Биология. Станет возможным внедрение наноэлементов в живой организм на уровне атомов. Последствия могут быть самыми различными - от "восстановления" вымерших видов до создания новых типов живых существ, биороботов.

Срок реализации: середина XXI века.

6. Экология. Полное устранение вредного влияния деятельности человека на окружающую среду. Во-первых, за счет насыщения экосферы молекулярными роботами-санитарами, превращающими отходы деятельности человека в исходное сырье, а во-вторых, за счет перевода промышленности и сельского хозяйства на безотходные нанотехнологические методы.

Срок реализации: середина XXI века.
7. Освоение космоса. По-видимому, освоению космоса "обычным" порядком будет предшествовать освоение его нанороботами. Огромная армия роботов-молекул будет выпущена в околоземное космическое пространство и подготовит его для заселения человеком - сделает пригодными для обитания Луну, астероиды, ближайшие планеты, соорудит из "подручных материалов" (метеоритов, комет) космические станции. Это будет намного дешевле и безопаснее существующих ныне методов.

8. Кибернетика. Произойдет переход от ныне существующих планарных структур к объемным микросхемам, размеры активных элементов уменьшаться до размеров молекул. Рабочие частоты компьютеров достигнут терагерцовых величин. Получат распространение схемные решения на нейроноподобных элементах. Появится быстродействующая долговременная память на белковых молекулах, емкость которой будет измеряться терабайтами. Станет возможным "переселение" человеческого интеллекта в компьютер.

Срок реализации: первая - вторая четверть XXI века.
9. Разумная среда обитания. За счет внедрения логических наноэлементов во все атрибуты окружающей среды она станет "разумной" и исключительно комфортной для человека.

Срок реализации: после XXI века.
Основные этапы в развитии нанотехнологии:
1959 г. Лауреат Нобелевской премии Ричард Фейнман заявляет, что в будущем, научившись манипулировать отдельными атомами, человечество сможет синтезировать все, что угодно.

1981 г. Создание Бинигом и Рорером сканирующего туннельного микроскопа - прибора, позволяющего осуществлять воздействие на вещество на атомарном уровне.

1982-85 гг. Достижение атомарного разрешения.

1986 г. Создание атомно-силового микроскопа, позволяющего, в отличие от туннельного микроскопа, осуществлять взаимодействие с любыми материалами, а не только с проводящими.

1990 г. Манипуляции единичными атомами.

1994 г. Начало применения нанотехнологических методов в промышленности.

Однако принято считать, что нанотехнология "началась" когда 70 лет назад Г. А. Гамов впервые получил решения уравнения Шредингера, описывающие возможность преодоления частицей энергетического барьера даже в случае, когда энергия частицы меньше высоты барьера. Новое явление, называемое туннелированием, позволило объяснить многие экспериментально наблюдавшиеся процессы. Найденное решение позволило понять большой круг явлений и было применено для описания процессов, происходящих при вылете частицы из ядра - основы атомной науки и техники. Многие считают, что за грандиозность результатов его работ, ставших основополагающими для многих наук, Г. А. Гамов должен был быть удостоен нескольких Нобелевских премий.

Развитие электроники подошло к использованию процессов туннелирования лишь почти 30 лет спустя: появились туннельные диоды, открытые японским ученым Л. Есаки, удостоенным за это открытие Нобелевской премии. Еще через 5 лет Ю. С. Тиходеев, руководивший сектором физико-теоретических исследований в московском НИИ "Пульсар", предложил первые расчеты параметров и варианты использования приборов на основе многослойных туннельных структур, позволяющих достичь рекордных по быстродействию результатов. Спустя 20 лет они были успешно реализованы. В настоящее время процессы туннелирования легли в основу технологий, позволяющих оперировать со сверхмалыми величинами порядка нанометров (1нанометр=10 -9 м).

До сих пор создание миниатюрных полупроводниковых приборов основывалось, в основном, на технике молекулярно-лучевой эпитаксии (выращивания слоев, параллельных плоскости подложки), позволяющей создавать планарные слои из различных материалов с толщиной вплоть до моноатомной. Однако эти процессы имеют значительные ограничения, не позволяющие создавать наноскопические структуры. К этим ограничениям относится высокая температура процессов эпитаксии - до нескольких сотен градусов, при которой хоть и обеспечивается рост высококачественных пленок, однако не обеспечивается локальность формируемых областей. Кроме того, высокие температуры поверхности подложки стимулируют диффузионные процессы, "размывающие" планарные структуры. Более "холодные" технологии осаждения, типа напыления, из-за одновременности осаждения материала на всю подложку, одновременного роста в разных местах зерен осаждаемого материала и последующего образования дефектов на их границах раздела также не позволяли создавать бездефектные наноструктуры.

Формирование элементов нанометрового размера первоначально планировалось осуществлять методами электронно-лучевой литографии, дополняемой методами ионного травления. Однако высокоэнергетичный электронный луч, рассеиваясь в подложке, вызывает значительные разрушения в материале, расположенном как под, так и в районе области фокусировки, практически перечеркивая возможность создания многослойных схем с нанометровыми размерами элементов. Возникла тупиковая ситуация, решение которой было найдено в 1981 году.

2 Туннельный микроскоп.
В 1981 году кардинально новым шагом, открывающим возможность создания высоколокальных - с точностью до отдельных атомов - низкоэнергетичных технологических процессов, явилось создание Г. Бинингом и Г. Рорером, сотрудниками швейцарского отделения компании IBM, сканирующего туннельного микроскопа, за которое они в 1985 году были удостоены Нобелевской премии.

Основой изобретенного микроскопа является очень острая игла, скользящая над исследуемой поверхностью с зазором менее одного нанометра. При этом электроны с острия иглы туннелируют через этот зазор в подложку. Исключительно резкая зависимость тока туннелирующих электронов от расстояния (при изменении зазора на одну десятую нанометра ток изменяется в 10 раз) обеспечила высокую чувствительность и высокую разрешающую способность микроскопа. Стабильное удержание иглы на столь малом расстоянии от подложки обеспечивается применением электронной следящей системы, под воздействием результатов измерения туннельного тока управляющей пьезоманипулятором, перемещающим иглу, что позволяет удерживать зазор с точностью выше сотых долей нанометра. Измеряя величины управляющих сигналов, при известной чувствительности пьезоманипулятора к перемещению под действием напряжения, определяют высоту исследуемой области поверхности. Сканируя над исследуемой поверхностью, по результатам измерений высот различных областей определяют профиль поверхности с точностью до отдельных атомов.

Однако кроме исследования поверхности, создание нового типа микроскопов открыло принципиально новый путь формирования элементов нанометровых размеров. Были получены уникальные результаты по перемещению атомов, их удалению и осаждению в заданную точку, а также локальной стимуляции химических процессов.

Обычно, для того чтобы провести измерения с помощью туннельных микроскопов между зондом и проводящей подложкой, прикладывают низкие напряжения в несколько милливольт, что ограничивает максимальную энергию туннелирующих электронов величиной, меньшей энергии тепловых колебаний атомов. При проведении нанотехнологических процессов между зондом и подложкой прикладываются напряжения в несколько вольт и даже десятков вольт, что позволяет активизировать проведение атомно-молекулярных процессов, характеризующихся переносом атомов, вплоть до локального испарения, а также стимулировать локальные химические реакции.

Нанотехнологические процессы могут проводиться в различных средах: вакууме, газах и жидкостях. В вакууме, в основном, проводятся процессы полевого испарения материала с иглы на подложку и наоборот. Значительно большие технологические возможности открываются в установках с напуском технологических газов. В газовых средах проводят локальные химические реакции, позволяющие, по сравнению с вакуумными установками, расширить диапазон используемых материалов, повысить производительность технологических установок.


  • поверхностной миграции полярных молекул адсорбированного вещества к зонду;

  • поляризации вещества под зондом;

  • удаления вещества из-под зонда за счет нагрева;

  • возникновения и поглощения плазмонных колебаний;

  • межатомного взаимодействия зонда, подложки и вещества;

  • локальных химических реакций.

В жидких средах также осуществляют локальные химические реакции, хотя отвод продуктов реакции сложнее, чем в предыдущем случае.

Синтезируя подложку с определенными свойствами в газовых средах специального состава, можно создавать наноструктуры различных типов, пример показан на рис.


Ширина линии букв - десятки атомов

В последние годы для работы с диэлектрическими подложками применяются атомно-силовые микроскопы, однако они не позволяют производить локальную активацию атомов и молекул под зондом, то есть при их помощи невозможно осадить проводящий материал на диэлектрическую подложку. Что же касается современной техники на базе туннельных микроскопов, то с их помощью можно активировать лишь материал, расположенный между вершиной зонда и проводящей подложкой, а не диэлектрической, как это требуется для практических целей.

Поэтому главное направление развития технологии создания проводящих элементов на изолирующих материалах, это создание принципиально новых типов активаторов нанотехнологических процессов.

3 Электронные элементы на основе нанотехнологий.
Новые потенциальные технологические возможности нанотехнологии открыли пути к реализации новых типов транзисторов и электронных функциональных устройств, выполняющих соответствующие радиотехнические функции за счет особенности взаимодействия электронов с наноструктурами. К транзисторам новых типов относятся одноэлектронные транзисторы, предложенные К. Лихаревым, в которых доминируют эффекты поодиночного прохождения электронов через транзистор и управления параметрами данного процесса под действием потенциала управляющего электрода. Достоинством транзистора данного типа и функциональных приборов на его основе является исключительно низкое энергопотребление. К сравнительным недостаткам - наивысшие по трудности реализации требования создания нанометровых областей наименьших размеров, позволяющих осуществить работу данных устройств при комнатной температуре. К принципиально другому типу транзисторов следует отнести транзисторы Ааронова-Бома, в которых используются волновые свойства электронов. Под воздействием управляющего напряжения, создающего несимметричность параметров волнового распространения электрона по двум расходящимся, а потом сходящимся проводникам, происходит интерференция волновых функций электрона, приводящая к модуляции выходного электронного потока. К достоинствам транзисторов данного типа следует отнести сверхвысокое быстродействие, достигающее терагерцового диапазона, а к недостаткам - наивысшие требования к однородности материалов, выполнение которых необходимо для минимизации рассеяния электронов при распространении их по данным двум проводникам. К третьему типу нанотранзисторов относится полевой транзистор, сформированный на основе нанопроводников, в котором под воздействием управляющего напряжения происходит полевая модуляция проводимости проводника, по которому течет ток. Данный транзистор, хоть и не является рекордсменом по сравнению с первыми двумя по энергопотреблению и быстродействию, предъявляет наиболее простые технологические требования к технологии создания и позволяет достичь частотного диапазона в сотни гигагерц.

В 1993 г. было разработано новое семейство цифровых переключающих приборов на атомных и молекулярных шнурах. На этой основе разработаны логические элементы НЕ-И и НЕ-ИЛИ. Размер такой структуры ~ 10 нм, а рабочая частота ~ 10 12 Гц.

Разработка и успешное освоение новых технологических возможностей потребует координации деятельности на государственном уровне всех участников нанотехнологических проектов, их всестороннего обеспечения (правового, ресурсного, финансово-экономического, кадрового), активной государственной поддержки отечественной продукции на внутреннем и внешнем рынках.
Формирование и реализация активной государственной политики в области нанотехнологий позволит с высокой эффективностью использовать интеллектуальный и научно-технический потенциал страны в интересах развития науки, производства, здравоохранения, экологии, образования и обеспечения национальной безопасности России.

Содержание работы

Введение . 3
1. Основные направления развития нанотехнологий в России. 6
2. Перспективы использования нанотехнологий. 9
3. Ключевые проблемы развития нанотехнологий в России. 12
Заключение. 17
Список используемой литературы. 20

Файлы: 1 файл

Развитие нанотехнологий в Российской Федерации.doc

Московский государственный агроинженерный университет им. В.П. Горячкина

Кафедра: ремонта и надежности машин

Выполнила: Арюткина Юлия

студентка 11 группы магистратуры

факультета ТС в АПК

Проверил: Кононенко А.С.

Содержание:

1. Основные направления развития нанотехнологий в России. . 6

2. Перспективы использования нанотехнологий. . . 9

3. Ключевые проблемы развития нанотехнологий в России. . 12

Список используемой литературы. . . 20

Стратегическими национальными приоритетами Российской Федерации, изложенными в утвержденных 30 марта 2002 г. Президентом Российской Федерации "Основах политики Российской Федерации в области развития науки и технологий на период до 2010 года и дальнейшую перспективу", являются: повышение качества жизни населения, достижение экономического роста, развитие фундаментальной науки, образования и культуры, обеспечение обороны и безопасности страны.

Одним из реальных направлений достижения этих целей может стать ускоренное развитие нанотехнологий на основе накопленного научно-технического задела в этой области и внедрение их в технологический комплекс России. В основе такого подхода лежат:

- использование особенностей свойств вещества (материалов) при уменьшении его размеров до нанометрового масштаба;

- ряд выдающихся открытий последних лет в области физики низкоразмерных систем и структур (целочисленный и дробный квантовые эффекты Холла, квазичастицы с дробным зарядом и др.);

- разработка приборов и устройств на основе квантовых наноструктур (лазеры на квантовых точках, сверхбыстродействующие транзисторы, запоминающие устройства на основе эффекта гигантского магнитосопротивления);

- появление и развитие новых технологических приемов (приемы и методы, базирующиеся на принципах самосборки и самоорганизации;

- методы, основанные на зондовой микроскопии и технике сфокусированных ионных пучков; LIGA-технологии как последовательность процессов литографии, гальваники и формовки) и диагностических методов (сканирующая зондовая

микроскопия/спектроскопия; рентгеновские методы с использованием синхротронного излучения; электронная микроскопия высокого разрешения;

- создание новых материалов с необычными свойствами (фуллерены, нанотрубки, нанокерамика) и конструкционных наноматериалов с рекордными эксплуатационными характеристиками.

Актуальность и важность указанных работ определили необходимость включения научных направлений, связанных с нанотехнологиями, в перечень критических технологий Российской Федерации, утвержденный Президентом Российской Федерации.

Разработка и применение нанотехнологий и связанных с ними направлений науки, техники и производства позволят достичь следующих основных целей:

в сфере политики:

- укрепление позиций России в группе государств-лидеров мирового развития;

- повышение рейтинга России в международном разделении труда;

в сфере экономики:

- изменение структуры валового внутреннего продукта в сторону увеличения доли наукоемкой продукции;

- повышение эффективности производства;

- переориентация российского экспорта с, в основном, сырьевых ресурсов на конечную высокотехнологичную продукцию и услуги путем внедрения наноматериалов и нанотехнологий в технологические процессы российских предприятий;

в сфере национальной безопасности:

- обеспечение экономической и технологической безопасности на базе широкого внедрения нанотехнологий в модернизацию используемого и создание нового, более эффективного оборудования;

- повышение степени безопасности государства путем широкого внедрения наносенсорики для эффективного контроля присутствия следов взрывчатых веществ, наркотиков, отравляющих веществ в условиях угроз террористических

актов, техногенных катастроф и других факторов внешнего воздействия;

- совершенствование имеющегося вооружения и создание новое военной и специальной техники;

в социальной сфере:

- повышение качественных показателей жизни и экологической безопасности населения путем внедрения в практическое здравоохранение систем диагностики, базирующихся на нанотехнологиях и предназначенных для раннего обнаружения тяжелых и хронических заболеваний (ранняя диагностика рака, гепатита, сердечно-сосудистых заболеваний, аллергии), профилактики и лечения, а также развитие производства новых препаративных форм лекарств и витаминов;

создание новых рабочих мест для высококвалифицированного персонала инновационных предприятии, создающих продукцию с использованием нанотехнологий;

в сфере образования и науки:

- развитие фундаментальных представлений о новых явлениях, структуре и свойствах наноматериалов;

- формирование научного сообщества, подготовка и переподготовка кадров, нацеленных на решение научных, технологических и производственных проблем нанотехнологий, создание наноматериалов и наносистемной техники, с достижением на этой основе мирового уровня в фундаментальной и прикладной науках;

- распространение знаний в области нанотехнологий, наноматериалов и наносистемной техники.

1. Основные направления развития нанотехнологий в России

Наиболее значительные практические результаты могут быть достигнуты в следующих областях:

- в создании твердотельных поверхностных и многослойных наноструктур с заданным электронным спектром и необходимыми электрическими, оптическими, магнитными и другими свойствами с помощью конструирования их на атомном уровне (например, средствами зонной инженерии и инженерии волновых функций) и использования современных высоких технологий (различные модификации молекулярно-пучковой и молекулярно-химической эпитаксии, самоорганизация, электронная литография, технологические методы туннельной микроскопии) с получением в результате принципиально новых объектов и приборов для исследований и различных приложений - сверхрешетки, квантовые ямы, точки и нити, квантовые контакты, атомные кластеры, фотонные кристаллы, спин-туннельные структуры;

- в экстремальной ультрафиолетовой (ЭУФ) литографии на основе использования длины волны, равной 13,5 нм, обеспечивающей помимо создания наноэлектронных суперпроизводительных вычислительных систем переход в мир атомных точностей, что неизбежно скажется на смежных областях знаний и производства;

- в микроэлектромеханике, в основе которой лежит объединение поверхностной микрообработки, использующейся в микроэлектронной технологии, с объемной обработкой и применением новых наноматериалов, физических эффектов и LIGA-технологии на основе синхротронного излучения, обеспечивших прорыв в области создания микродвигателей, микророботов, микронасосов для микрофлюидики, микрооптики, сверхчувствительных сенсоров различных физических величин - давления, ускорения, температуры, а также создания сверхминиатюрных устройств, способных генерировать энергию, проводить мониторинг окружающей среды,

передвигаться, накапливать и передавать информацию, осуществлять определенные воздействия по заложенной программе или команде ("умная пыль", микророботы);

- в конструировании молекулярных устройств (наномашин и нанодвигателей, устройств распознавания и хранения информации) и в создании наноструктур, в которых роль функциональных элементов выполняют отдельные молекулы. В перспективе это позволит использовать принципы приема и обработки информации, реализуемые в биологических объектах (молекулярная электроника);

- в разнообразном применении фуллереноподобных материалов и нанотрубок, обладающих рядом особых характеристик, включая химическую стойкость, высокие прочность, жесткость, ударную вязкость, электро- и теплопроводность. В зависимости от тонких особенностей молекулярной симметрии фуллерены и нанотрубки могут быть диэлектриками, полупроводниками, обладать металлической и высокотемпературной сверхпроводимостью.

Эти свойства в сочетании с наномасштабной геометрией делают их почти идеальными для изготовления электрических проводов, сверхпроводящих соединений или целых устройств, которые с полным основанием можно назвать изделиями молекулярной электроники. Углеродные нанотрубки используются также в качестве игольчатых щупов сканирующих зондовых микроскопов, в дисплеях с полевой эмиссией, высокопрочных композиционных материалах, электронных устройствах, в водородной энергетике в качестве контейнеров для хранения водорода;

- в создании новых классов наноматериалов и наноструктур, включая:

фотонные кристаллы, поведение света в которых сравнимо с поведением электронов в полупроводниках. На их основе возможно создание приборов с быстродействием более высоким, чем у полупроводниковых аналогов;

- разупорядоченные нанокристаллические среды для лазерной генерации и получения лазерных дисплеев с более высокой яркостью (на 2-3 порядка выше, чем на обычных светодиодах) и большим углом обзора;

функциональную керамику на основе литиевых соединений для твердотельных топливных элементов, перезаряжаемых твердотельных источников тока, сенсоров газовых и жидких сред для работы в жестких технологических условиях;

- квазикристаллические наноматериалы, обладающие уникальным сочетанием повышенной прочности, низкого коэффициента трения и термостабильности, что делает их перспективными для использования в машиностроении, альтернативной и водородной энергетике;

- конструкционные наноструктурные твердые и прочные сплавы для режущих инструментов с повышенной износостойкостью и ударной вязкостью, а также наноструктурные защитные термо- и коррозионностойкие покрытия;

- полимерные композиты с наполнителями из наночастиц и нанотрубок, обладающих повышенной прочностью и низкой воспламеняемостью;

- биосовместимые наноматериалы для создания искусственной кожи, принципиально новых типов перевязочных материалов с антимикробной, противовирусной и противовоспалительной активностью;

- наноразмерные порошки с повышенной поверхностной энергией, в том числе магнитные, для дисперсионного упрочнения сплавов, создания элементов памяти аудио- и видеосистем, добавок к удобрениям, кормам, магнитным жидкостям и краскам;

- органические наноматериалы, обладающие многими свойствами, недоступными неорганическим веществам. Органическая нанотехнология на базе самоорганизации позволяет создавать слоистые органические наноструктуры, являющиеся основой органической наноэлектроники и конструировать модели биомембран клеток живых организмов для фундаментальных исследований процессов их функционирования (молекулярная архитектура);

- полимерные нанокомпозитные и пленочные материалы для нелинейных оптических и магнитных систем, газовых сенсоров, биосенсоров, мультислойных композитных мембран.

2. Перспективы использования нанотехнологий

Использование возможностей нанотехнологий может уже в недалекой перспективе принести резкое увеличение стоимости валового внутреннего продукта и значительный экономический эффект в следующих базовых отраслях экономики.

В машиностроении - увеличение ресурса режущих и обрабатывающих инструментов с помощью специальных покрытий и эмульсий, широкое внедрение нанотехнологических разработок в модернизацию парка высокоточных и прецизионных станков. Созданные с использованием нанотехнологий методы измерений и позиционирования обеспечат адаптивное управление режущим инструментом на основе оптических измерений обрабатываемой поверхности детали и обрабатывающей поверхности инструмента непосредственно в ходе технологического процесса. Например, эти решения позволят снизить погрешность обработки с 40 мкм до сотен нанометров при стоимости та кого отечественного станка около 12 тыс. долл. И затратах на модернизацию не более 3 тыс. долл. Равные по точности серийные зарубежные станки стоят не менее 300-500 тыс. долл. При этом в модернизации нуждаются не менее 1 млн активно используемых металлорежущих станков из примерно 2,5 млн станков, находящихся на балансе российских предприятий.

Стратегическими национальными приоритетами Российской Федерации, изложенными в утвержденных 30 марта 2002 г. Президентом Российской Федерации "Основах политики Российской Федерации в области развития науки и технологий на период до 2010 года и дальнейшую перспективу" [1], являются: повышение качества жизни населения, достижение экономического роста, развитие фундаментальной науки, образования и культуры, обеспечение обороны и безопасности страны.

Одним из реальных направлений достижения этих целей может стать ускоренное развитие нанотехнологий на основе накопленного научно-технического задела в этой области и внедрение их в технологический комплекс России 4.В основе такого подхода лежат:

использование особенностей свойств вещества (материалов) при уменьшении его размеров до нанометрового масштаба;

ряд выдающихся открытий последних лет в области физики низкоразмерных систем и структур (целочисленный и дробный квантовые эффекты Холла, квазичастицы с дробным зарядом и др.);

разработка приборов и устройств на основе квантовых наноструктур (лазеры на квантовых точках, сверхбыстродействующие транзисторы, запоминающие устройства на основе эффекта гигантского магнитосопротивления);

появление и развитие новых технологических приемов (приемы и методы, базирующиеся на принципах самосборки и самоорганизации;

методы, основанные на зондовой микроскопии и технике сфокусированных ионных пучков; LIGA-технологии как последовательность процессов литографии, гальваники и формовки) и диагностических методов (сканирующая зондовая микроскопия/спектроскопия; рентгеновские методы с использованием синхротронного излучения; электронная микроскопия высокого разрешения; фемтосекундные методы);

создание новых материалов с необычными свойствами (фуллерены, нанотрубки, нанокерамика) и конструкционных наноматериалов с рекордными эксплуатационными характеристиками.

Развитие перечисленных и близких к ним направлений науки, техники и технологий, связанных с созданием, исследованиями и использованием объектов с наноразмерными элементами, уже в ближайшие годы приведет к кардинальным изменениям во многих сферах человеческой деятельности ‑ в материаловедении, энергетике, электронике, информатике, машиностроении, медицине, сельском хозяйстве, экологии.

Новейшие нанотехнологий наряду с компьютерно-информационными технологиями и биотехнологиями являются фундаментом научно-технической революции в XXI веке, сравнимым и даже превосходящим по своим масштабам с преобразованиями в технике и обществе, вызванными крупнейшими научными открытиями XX века.

В развитых странах осознание ключевой роли, которую уже в недалеком будущем будут играть результаты работ по нанотехнологиям, привело к разработке широкомасштабных программ по их развитию на основе государственной поддержки.

Так, в 2000 г. в США принята приоритетная долгосрочная комплексная программа, названная Национальной нанотехнологической инициативой и рассматриваемая как эффективный инструмент, способный обеспечить лидерство США в первой половине текущего столетия. К настоящему времени бюджетное финансирование этой программы увеличилось по сравнению с 2000 г. в 2,5 раза и достигло в 2003 г. 710,9 млн долл., а на четыре года, начиная с 2005 г., планируется выделить еще 3,7 млрд долл. Аналогичные программы приняты Европейским союзом, Японией, Китаем, Бразилией и рядом других стран.

В России работы по разработке нанотехнологий начаты еще 50 лет назад, но слабо финансируются и ведутся только в рамках отраслевых программ. К настоящему времени назрела необходимость формирования программы общефедерального масштаба с учетом признания важной роли нанотехнологий на самом высоком государственном уровне.

Широкомасштабное и скоординированное развертывание на базе существующего задела работ в области нанотехнологий позволит России восстановить и поддерживать паритет с ведущими государствами в науке и технике, ресурсо- и энергосбережении, в создании экологически адаптированных производств, в здравоохранении и производстве продуктов питания, уровне жизни населения, а также обеспечит необходимый уровень обороноспособности и безопасности государства.

Нанотехнологий могут стать мощным инструментом интеграции технологического комплекса России в международный рынок высоких технологий, надежного обеспечения конкурентоспособности отечественной продукции.

Разработка и успешное освоение новых технологических возможностей потребует координации деятельности на государственном уровне всех участников нанотехнологических проектов, их всестороннего обеспечения (правового, ресурсного, финансово-экономического, кадрового), активной государственной поддержки отечественной продукции на внутреннем и внешнем рынках.

Формирование и реализация активной государственной политики в области нанотехнологий позволит с высокой эффективностью использовать интеллектуальный и научно-технический потенциал страны в интересах развития науки, производства, здравоохранения, экологии, образования и обеспечения национальной безопасности России.

В статье используются следующие термины:

нанотехнология ‑ совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, имеющие принципиально новые качества и позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба;

наноматериалы ‑ материалы, содержащие структурные элементы, геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и обладающие качественно новыми свойствами, функциональными и эксплуатационными характеристиками;

наносистемная техника ‑ полностью или частично созданные на основе наноматериалов и нанотехнологий функционально законченные системы и устройства, характеристики которых кардинальным образом отличаются от показателей систем и устройств аналогичного назначения, созданных по традиционным технологиям.

Актуальность и важность указанных работ определили необходимость включения научных направлений, связанных с нанотехнологиями, в Перечень критических технологий Российской Федерации, утвержденный Президентом Российской Федерации.

Разработка и применение нанотехнологий и связанных с ними направлений науки, техники и производства позволят достичь следующих основных целей:

Стратегическими национальными приоритетами Российской Федерации, являются: повышение качества жизни населения, достижение экономического роста, развитие фундаментальной науки, образования и культуры, обеспечение обороны и безопасности страны.

Одним из реальных направлений достижения этих целей может стать ускоренное развитие нанотехнологий на основе накопленного научно-технического задела в этой области и внедрение их в технологический комплекс России 4.В основе такого подхода лежат:

Содержание

Введение
1.Нанотехнологии в России
1.1 Основные направления развития нанотехнологий в России
1.2 Перспективы использования нанотехнологий
1.3 Ключевые проблемы развития нанотехнологий в России
2.Нанотехнологии в Ставропольском крае

Вложенные файлы: 1 файл

нанотехнологии реферат.doc

1.Нанотехнологии в России

1.1 Основные направления развития нанотехнологий в России

1.2 Перспективы использования нанотехнологий

1.3 Ключевые проблемы развития нанотехнологий в России

2.Нанотехнологии в Ставропольском крае

Стратегическими национальными приоритетами Российской Федерации, являются: повышение качества жизни населения, достижение экономического роста, развитие фундаментальной науки, образования и культуры, обеспечение обороны и безопасности страны.

Одним из реальных направлений достижения этих целей может стать ускоренное развитие нанотехнологий на основе накопленного научно-технического задела в этой области и внедрение их в технологический комплекс России 3.В основе такого подхода лежат:

использование особенностей свойств вещества (материалов) при уменьшении его размеров до нанометрового масштаба;

ряд выдающихся открытий последних лет в области физики низкоразмерных систем и структур (целочисленный и дробный квантовые эффекты Холла, квазичастицы с дробным зарядом и др.);

разработка приборов и устройств на основе квантовых наноструктур (лазеры на квантовых точках, сверхбыстродействующие транзисторы, запоминающие устройства на основе эффекта гигантского магнитосопротивления);

появление и развитие новых технологических приемов (приемы и методы, базирующиеся на принципах самосборки и самоорганизации;

методы, основанные на зондовой микроскопии и технике сфокусированных ионных пучков; LIGA-технологии как последовательность процессов литографии, гальваники и формовки) и диагностических методов (сканирующая зондовая микроскопия/спектроскопия; рентгеновские методы с использованием синхротронного излучения; электронная микроскопия высокого разрешения; фемтосекундные методы);

создание новых материалов с необычными свойствами (фуллерены, нанотрубки, нанокерамика) и конструкционных наноматериалов с рекордными эксплуатационными характеристиками.

Развитие перечисленных и близких к ним направлений науки, техники и технологий, связанных с созданием, исследованиями и использованием объектов с наноразмерными элементами, уже в ближайшие годы приведет к кардинальным изменениям во многих сферах человеческой деятельности - в материаловедении, энергетике, электронике, информатике, машиностроении, медицине, сельском хозяйстве, экологии.

Новейшие нанотехнологий наряду с компьютерно-информационными технологиями и биотехнологиями являются фундаментом научно- технической революции в XXI веке, сравнимым и даже превосходящим по своим масштабам с преобразованиями в технике и обществе, вызванными крупнейшими научными открытиями XX века.

В развитых странах осознание ключевой роли, которую уже в недалеком будущем будут играть результаты работ по нанотехнологиям, привело к разработке широкомасштабных программ по их развитию на основе государственной поддержки.

Нанотехнологий могут стать мощным инструментом интеграции технологического комплекса России в международный рынок высоких технологий, надежного обеспечения конкурентоспособности отечественной продукции.

Разработка и успешное освоение новых технологических возможностей потребует координации деятельности на государственном уровне всех участников нанотехнологических проектов, их всестороннего обеспечения (правового, ресурсного, финансово-экономического, кадрового), активной государственной поддержки отечественной продукции на внутреннем и внешнем рынках.

Формирование и реализация активной государственной политики в области нанотехнологий позволит с высокой эффективностью использовать интеллектуальный и научно-технический потенциал страны в интересах развития науки, производства, здравоохранения, экологии, образования и обеспечения национальной безопасности России.

В статье используются следующие термины:

нанотехнология - совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, имеющие принципиально новые качества и позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба;

наноматериалы - материалы, содержащие структурные элементы, геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и обладающие качественно новыми свойствами, функциональными и эксплуатационными характеристиками;

наносистемная техника - полностью или частично созданные на основе наноматериалов и нанотехнологий функционально законченные системы и устройства, характеристики которых кардинальным образом отличаются от показателей систем и устройств аналогичного назначения, созданных по традиционным технологиям.

Актуальность и важность указанных работ определили необходимость включения научных направлений, связанных с нанотехнологиями, в Перечень критических технологий Российской Федерации, утвержденный Президентом Российской Федерации.

Разработка и применение нанотехнологий и связанных с ними направлений науки, техники и производства позволят достичь следующих основных целей:

в сфере политики:

укрепление позиций России в группе государств-лидеров мирового развития;

повышение рейтинга России в международном разделении труда;

в сфере экономики:

изменение структуры валового внутреннего продукта в сторону увеличения доли наукоемкой продукции;

повышение эффективности производства;

переориентация российского экспорта с, в основном, сырьевых ресурсов на конечную высокотехнологичную продукцию и услуги путем внедрения наноматериалов и нанотехнологий в технологические процессы российских предприятий;

в сфере национальной безопасности:

обеспечение экономической и технологической безопасности на базе широкого внедрения нанотехнологий в модернизацию используемого и создание нового, более эффективного оборудования;

повышение степени безопасности государства путем широкого внедрения наносенсорики для эффективного контроля присутствия следов взрывчатых веществ, наркотиков, отравляющих веществ в условиях угроз террористических актов, техногенных катастроф и других факторов внешнего воздействия;

совершенствование имеющегося вооружения и создание новое военной и специальной техники;

в социальной сфере:

повышение качественных показателей жизни и экологической безопасности населения путем внедрения в практическое здравоохранение систем диагностики, базирующихся на нанотехнологиях и предназначенных для раннего обнаружения тяжелых и хронических заболеваний (ранняя диагностика рака, гепатита, сердечно-сосудистых заболеваний, аллергии), профилактики и лечения, а также развитие производства новых препаративных форм лекарств и витаминов;

создание новых рабочих мест для высококвалифицированного персонала инновационных предприятии, создающих продукцию с использованием нанотехнологий;

в сфере образования и науки:

развитие фундаментальных представлений о новых явлениях, структуре и свойствах наноматериалов;

формирование научного сообщества, подготовка и переподготовка кадров, нацеленных на решение научных, технологических и производственных проблем нанотехнологий, создание наноматериалов и наносистемной техники, с достижением на этой основе мирового уровня в фундаментальной и прикладной науках; распространение знаний в области нанотехнологий, наноматериалов и наносистемной техники. Эффективное достижение намеченных целей потребует системного подхода к решению целого ряда взаимоувязанных задач, основными из которых являются:

координация работ в области создания и применения нанотехнологий, наноматериалов и наносистемной техники;

создание научно-технической и организационно-финансовой базы, позволяющей сохранить и развивать имеющийся в России приоритетный задел в исследованиях и применении нанотехнологий; развитие бюджетных и внебюджетных фондов, поощряющих и развивающих исследования в области наноматериалов и нанотехнологий и стимулирующих вклады инвесторов;

формирование инфраструктуры для организации эффективных фундаментальных исследований, поиска возможных применений их результатов, развития новых нанотехнологий и их быстрой коммерциализации;

поддержка межотраслевого сотрудничества в области создания наноматериалов и развития нанотехнологий;

обеспечение заинтересованности в решении научных, технологических и производственных проблем развития нанотехнологий и наноматериалов путем либерализации налоговой политики, оптимизации финансовой политики; создание системы защиты интеллектуальной собственности;

разработка и внедрение новых подходов к обучению специалистов в области нанотехнологий.

1.Нанотехнология в России

Когда говорят о нанотехнологиях, подразумевается несколько достаточно разрозненных по целям и планируемому времени реализации научных направлений. Одно из них, работающее над качественным переходом традиционной полупроводниковой электроники с микро- на наноуровень, хорошо освещено в периодической литературе. Успехи этих работ значительны уже сегодня, но, ввиду неразрешимости ряда проблем, связанных с размерными эффектами, неизбежно возникающими при достижении транзисторами величины 30--40 нм, очевидна необходимость поиска альтернативной технологии. Одним из вариантов является молекулярная электроника, или молетроника.

нанотехнология микроскопия ионный

1.1 Основные направления развития нанотехнологий в России

Наиболее значительные практические результаты могут быть достигнуты в следующих областях:

в создании твердотельных поверхностных и многослойных наноструктур с заданным электронным спектром и необходимыми электрическими, оптическими, магнитными и другими свойствами с помощью конструирования их на атомном уровне (например, средствами зонной инженерии и инженерии волновых функций) и использования современных высоких технологий (различные модификации молекулярно-пучковой и молекулярно-химической эпитаксии, самоорганизация, электронная литография, технологические методы туннельной микроскопии) с получением в результате принципиально новых объектов и приборов для исследований и различных приложений - сверхрешетки, квантовые ямы, точки и нити, квантовые контакты, атомные кластеры, фотонные кристаллы, спин-туннельные структуры;

Читайте также: