Реферат на тему молекулярная кухня

Обновлено: 02.07.2024

Вы когда-нибудь пробовали жареное мороженое? Прозрачные пельмени? Привычную картошечку фри без единого грамма масла? Невероятно? Все это уже с успехом внедряет молекулярная кулинария.

Она решает сверхзадачу: оставляя вкус, убирает лишнее и неудобоваримое, создает блюда-трансформеры. Обжигающе-ледяные снаружи и горячие внутри. Блюдо понятное визуально, а на вкус совершенно новое. Это как открытие! Озарение. Шокирующее, потрясающее.

Способов сотворения кулинарного шедевра масса. У каждого повара свои секреты. И рестораны, в которых гении кулинарии колдуют над каждой тарелкой, называются гастрономическими. Увидеть, как создается очередное творение, настоящая удача. Это секретная лаборатория, где каждый повар – немного алхимик, немного художник и обязательно сам гурман. Он прекрасно знает, что его клиент тот, кто ищет новых ощущений, кто приходит за экспериментом. И готов в нем участвовать.

В гастрономическом ресторане вас никогда не посадят на веранде. Кроме вкуса, блюдо несет еще и запах. Ветер и непогода сведут на нет усилия кулинарного гения и молекулярное блюдо потеряет половину своего эффекта. Как важна здесь каждая деталь!

Во Франции, Испании, Италии и США, а затем и по всему миру один за другим стали открываться гастрономические рестораны с молекулярной кулинарией. Когда-то посмодернистский фьюжн в ресторанном бизнесе должен был поставить точку. Куда же идти дальше! Совмещают несовместимое. Ан нет. Как нет предела совершенству. И появляются в меню гастрономических ресторанов желированный стейк и соус на инертном газе.

Прогресс налицо. В каждом ресторане всегда есть домашние заготовки. При заказе блюда повар должен так умело приготовить и украсить продукт, чтобы гость никогда не догадался, что в тарелке заготовка. В молекулярной кухне на стадии заготовки вкус продукта обогащается путем ввода ароматизаторов, специй. Блюдо доводится до самых высоких вкусовых стандартов.

Замороженное мясо приобретает вкус охлажденного. Если мясо будет жариться или коптиться, неминуема потеря веса на 30-50%. Это знает даже начинающая хозяйка. Белок сворачивается, вода испаряется – вес теряется. В молекулярной кухне при применении новейших технологий вещества, удерживающие воду, не разрушаются и вес готового блюда увеличивается на 180%. Вкус при этом потрясающе новый, сочный.

Какие еще секреты молекулярной кухни? Пироги получаются более мягкими, если шприцем впрыснуть в них ром. Проэнзимы свежевыжатого ананасного сока значительно смягчают мясо. Холодное пирожное с горячей начинкой получается с помощью впрыскивания в сухую заготовку сладкого ликера, быстрого замораживания и нагревания готового блюда в СВЧ-печи.

Хестон Блюменталь – известный шеф-повар лондонского ресторана The Fat Duck. Его авторские блюда всегда открытия для гостей: манго с красным луком, печень с жасмином, банан с петрушкой. И его знаменитый десерт – клубника с апельсиновым соком и засахаренным сельдереем.

Технологические инновации приходят в нашу жизнь повсеместно. Не обошли они и высокую кухню. Главное, чтобы творческие мысли шеф-поваров шли на пользу клиентам, чтобы пища была здоровой и несла созидание.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ Актуальность исследования. Кулинарные традиции сопровождают человека с древних времен. За всю свою жизнь человек съедает невероятное количество продуктов. Количество съеденной еды напрямую зависит от многих факторов, например, таких, как место жительства, физическая форма, состояние здоровья, возраст, финансовое благополучие и так далее… Но все равно можно примерно рассчитать, что человек за всю свою жизнь съедает более 50 тонн продуктов, а также выпивает более 42 тысяч литров жидкостей. Под воздействием научной технической революции в последнее время кулинария невероятно быстро эволюционировала, превратившись на сегодняшний день во что-то ярко-технологичное, прекрасное и эстетично-полезное знание.

Цель исследования:

приготовить новое блюдо из доступных продуктов с применением новых знаний.

В основу исследования положена гипотеза: приготовление блюд молекулярной кухни не всегда требует больших материальных затрат и можно попробовать сотворить что-то необычное и удивить новым блюдом друзей, хотя специалисты отмечают, что приготовить полноценное ресторанное блюдо в домашних условиях невозможно.

Цель и гипотеза обусловили следующие задачи исследования :

Изучить, систематизировать и проанализировать теоретический материал о молекулярной кухне.

Углублённо изучить принципы и приёмы, особенности молекулярной кулинарии, систематизировать и конкретизировать полученную информацию.

Выяснить степень безопасности молекулярных блюд.

Поставленные задачи решались с использованием различных методов исследования, основными из которых являлись следующие: анализ и синтез, экспериментальный.

Объектом исследования в данной работе является наличие возможности внедрения молекулярной кухни при приготовлении необычных блюд в домашних условиях.

Предметом исследования является развитие молекулярной кулинарии как модного веяния современной кулинарии.

Освоение теоретического материала: принципы и приёмы, особенности молекулярной кулинарии.

Навыки, получаемые в ходе работы: работа с веществами, фотосъёмка и работа с изображениями.

Роль учителя: общее руководство за выполнением работы, консультативная помощь, обеспечение реактивами и специальной литературой.

Техника безопасности: работа может выполняться как в школьной лаборатории, так и в домашних условиях.

Раздел 1. ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ МОЛЕКУЛЯРНОЙ КУХНИ

1.1. Основоположники и их приемники

Физическая и химическая стороны кулинарии интересовали учёных еще в Древнем Египте, но лишь в 1988 г. появилась отдельная отрасль - молекулярная гастрономия благодаря английскому профессору физики Николасу Курти и французскому химику Эрве Тису [2].

Физик Николас Курти любил готовить дома, а на работе создавал атомную бомбу и исследовал эффекты сверхнизких температур. Однажды Курти охладил кусок теста до -200 о С – и придумал десерт Frozen Florida (горячая сладкая масса внутри, мороженое сверху) [2]. Так родилась молекулярная кухня. Тис вывел молекулярные формулы для всех типов французских соусов, научно обосновав особенности их рецептуры и технологии приготовления [3].

Открытие молекулярной кулинарии стало возможным благодаря работам и других ученых–Пьер Ганьер,Ферран Адриа, Хестон Блюменталь, Дмитрий Шуршаков, Евгений Бубнов, Анатолий Комм – русский шеф-повар, впервые воплотивший свою идею молекулярной кухни по-русски [4].

Итак, именно они открыли, что между отдельными продуктами существуют связи на молекулярном уровне. Возможности, которые открыла эта кухня - почти безграничны, подвластно все: запах, вкус, цвет. Для достижения этих целей используются специальные приёмы, сырьё, оборудование и технологии.

1.2. Приёмы, сырьё и оборудование молекулярной кухни

Использование приемов молекулярной кухни позволяет получить необычные блюда из обычных продуктов.Например, эспумизация любой продукт превращает в пенообразную массу. Эта смесь активизирует вкусовые рецепторы. Эмульсификация позволяет слиться воедино жидкости и жирам и насытить блюдо воздухом, криогенные технологии - появиться фантастическим блюдам обжигающе ледяным снаружи и горячим внутри. С помощью сублимации можно сильно изменить вкус и ощущение от еды, благодаря ароматному дыму от сухого льда. Сферификация позволяет образоваться капсулам в тончайшей пленке, наполненным съедобными субстанциями. Раскусил — имеешь взрыв вкуса.

Вопреки сложившемуся мнению, для приготовления блюд молекулярной кухни используется сырьё на основе натуральных компонентов: агар-агар, каррагинан,альгинат натрия – экстракты водорослей для приготовления желе и превращения жидкости в шарики; белок яйца в порошке даёт более плотную структуру, чем свежий белок; глюкоза замедляет кристаллизацию и предотвращает потерю жидкости; лецитин соединяет эмульсии и стабилизирует взбитую пену; не даёт частицам жира соединяться; тримолин (инвертированный сироп) препятствует кристаллизации; ксантан (экстракт сои и кукурузы) стабилизирует взвеси и эмульсии.

1.3. Научный подход к кулинарии

Благодаря молекулярной кулинарии было установлено, что осязательные ощущения во время еды влияют на вкусовые ощущения. Попробуйте мороженое с закрытыми глазами, одновременно поглаживая бархат, а потом прикоснитесь к наждачной бумаге. Когда мороженое было вкуснее? Консистенция и звук, запах и текстура, форма и цвет блюда тоже сильно влияют на вкус [6].

Молекулярная гастрономия дала ответ и на вопрос: как при варке овощей сохранить их зеленый цвет. Как выяснилось, самым важным для этого является качество воды, а именно – содержание в ней кальция. Поэтому в ресторанах молекулярной кухни принято использовать минеральную воду с содержанием кальция, не превышающим 20 мг на литр [7].

Раздел 2. ПРАКТИЧЕСКИЕ АСПЕКТЫ МОЛЕКУЛЯРНОЙ КУХНИ

2.1. Техники молекулярной кухни

"Modernist cuisine", а именно так еще называют молекулярную кухню, требует определенных навыков работы с продуктами и наличия специальных приспособлений. Самыми популярными техниками, которые сегодня используют знаменитые шеф-повара, являются:

2.1.1. Замораживание

Суть техники – в обработке продуктов жидким азотом. Температура этого вещества составляет минус 196 о С. Это дает возможность моментально замораживать любой по консистенции продукт. Кроме того, жидкий азот и испаряется мгновенно, так что делать лед из любого соуса, крема или сока можно прямо перед посетителями ресторана, что многие рестораторы и практикуют в своих заведениях.

Первой использовать жидкий азот для приготовления мороженого попыталась еще в далеком 1877 году Аньес Маршал. Из современников этот способ обработки продуктов для своего меню ввел Блюменталь. Заморозка с помощью жидкого азота, во-первых, изрядно экономит время (мороженое, например, можно охладить до требуемой температуры всего за несколько секунд). Во-вторых, дает возможность полностью сохранить все свойства продуктов, их цвет, влажность, витаминный состав. 2.1.2. Эмульсификация

Нежнейшая пенка из фруктового или овощного сока – это сам вкус в своем чистейшем виде. Впервые такую технику в собственном ресторане ввел Ферран Адриа, но основы приготовления эспумов были известны еще в XVII веке.

Пенками из фруктов, овощей и напитков теперь удивить не сложно, гуру кулинарии пошли дальше. Эспумы делают из разных видов мяса, грибов, какао и кофе. Получается легкий невесомый соус. В качестве примера можно привести блюдо Анатолия Комма. Нежнейший мусс из бородинского хлеба с нерафинированным маслом и солью способен покорить сердце любого гурмана.

Создают эффект эспума с помощью добавки – соевого лецитина, который добывают из соевого масла (предварительно отфильтрованного). Используется для приготовления глазури, шоколадных изделий, водно-масляных и воздушно-водных эмульсий.

2.1.3. Вакуумизация

Техника приготовления в вакууме под названием "sous-vide" – это усовершенствованный процесс тепловой обработки продуктов на водяной бане. Ингредиенты закрываются в специальные вакуумные пакеты, в которых потом и варятся при температуре около 60 о С на протяжении многих часов и иногда даже дней. Мясные продукты, приготовленные таким образом, остаются сочными и нежными, а также безумно ароматными. Вакуумным способом хорошо мариновать мясо, фрукты и овощи. 2.1.4. Желатинизация

Желе можно сделать и в домашних условиях, обычное из пакетика или с помощью желатина. В чем подвох? Молекулярная желатинизация – это искусство создания обычных, казалось бы на первый взгляд, блюд, из необычных продуктов. Яйцо со вкусом манго, спагетти из рукколы, медовая икра – такие изыски на тарелке приятно удивят.

Добиваются эффекта желатинизации с помощью таких добавок:

агар-агар– натуральный загуститель на основе морских водорослей, очень стойкий, диетический;

каррагинан – еще один загуститель на основе водорослей, придает веществу вязкости или желеобразной структуры.

2.1.5. Сферизация

Одна из самых эффектных техник молекулярной кухни, с которой общественность познакомил Ферран Адриа. Альгинат натрия при разведении в жидкости становится загустителем, при контакте с лактатом кальция действует как желирующее вещество. Именно таким способом создают искусственную икру с любым вкусом [10].

2.2. Экспериментальная часть работы

Специалисты отмечают, что приготовить полноценное ресторанное блюдо в домашних условиях невозможно. В любом случае непрофессионал не сможет придать ему того вкуса, с которым легко справится настоящий мастер-шеф. Впрочем, не углубляясь в технологию кулинарии будущего, но зная базовые понятия молекулярной кухни, можно попробовать сотворить что-то необычное и удивить новым блюдом любимого или друзей.

Нажмите, чтобы узнать подробности

Молекулярная кухня – это анализ и применение физико-химических законов при приготовлении пищи и использование новейших открытий в различных научных областях для создания необычных рецептов.


ТЕХНОЛОГИИ МОЛЕКУЛЯРНОЙ КУХНИ

студентка группы 131

Теоретическая часть 4

История молекулярной кухни 4

Физико-химические методы в молекулярной кухне 6

Практическая часть 12

Список использованных источников 15

Молекулярная кухня – это анализ и применение физико-химических законов при приготовлении пищи и использование новейших открытий в различных научных областях для создания необычных рецептов.

Вообще молекулярной кухни не существует – этим понятием чаще оперируют журналисты. Как это часто бывает – услышали звон, но не поняли, где он. Так была названа докторская диссертация французского химика Эрве Тиса. Речь идет о том, что, когда вы бросаете сахар в чай, происходит химический процесс на молекулярном уровне. Сахар тает, чай становится сладким. Но что конкретно происходит с точки зрения физики, человеку, который пьет этот чай, все равно. Так вот технологу пищевого производства в XXI веке не должно быть все равно. Молекулярная кухня – это знание современного шеф-повара и технолога о продукте на молекулярном уровне.

То есть молекулярная кухня – это наука! Если в XIX–XX веках поварами становились те, кто плохо учился в школе, и готовили они, как их научила бабушка, то теперь повар, а тем более технолог пищевого производства обязан иметь образование и понимать, что он делает.

Знания помогают создавать что-то очень интересное, с точки зрения простого обывателя – даже чудесно-невозможное, хотя на самом деле это все делается обычными человеческими руками.

Теоретическая часть

История молекулярной кухни

Приготовление пищи – это первое, чему научился человек и что он возвел до уровня творчества. Эта область человеческой деятельности и по сей день, непосредственно связана с нашим культурным развитием. И хотя процесс приготовления пищи был изучен химиками и инженерами-технологами достаточно подробно, повара еще долгое время подходили к своему искусству традиционно. А ввиду их недостаточных научных познаний ученые не спешили объяснять им принципы подрумянивания или желирования.

Основоположником молекулярного направления считают парижского гастронома-химика и автора кулинарных томов Эрве Тиса, который с помощью добавления в дешевый зерновой дистиллят ванилина создал напиток, не отличимый по вкусу от элитного виски. Готовый к экспериментам и новшествам в мире кулинарии, Тис уверяет, что управление молекулярными структурами может помочь разнообразить и улучшить качество продуктов не только в условиях профессиональной кухни, но и в домашней обстановке. Так, по его словам, отсутствие грибов для блюда, где этот ингредиент незаменим, можно компенсировать октенолом или бензилом транс-2-метилбутеноатом, которые придадут яству настоящий грибной вкус. Одно смущает – каждая ли домохозяйка имеет в своем распоряжении бензил транс-2-метилбутеноат? Тем не менее, молекулярная кухня сегодня – самое популярное и модное направление гастрономии.

Физико-химические методы в молекулярной кухне

Молекулярная кухня использует научные достижения для создания невероятных, фантастических блюд и вкусовых сочетаний. Поэтому, молекулярную гастрономию часто называют научной или современной кулинарией - modernist cuisine. Для получения блюд удивительной формы, цвета, консистенции и вкуса используются сверхвысокие или сверхнизкие температуры, давление и специальное оборудование. Это позволяет удивлять посетителей лучших ресторанов планеты съедобными меню, жидким хлебом и вином в газообразном состоянии! Правда заключается и в том, что химические реакции происходят на вашей кухне всякий раз, когда вы что-то готовите, - будь то обычная яичница или более сложное блюдо. Молекулярная гастрономия просто развивает и усложняет химические процессы, происходящие при приготовлении пищи. Компоненты для молекулярной кухни абсолютно натуральны и используются уже давно - десятилетиями и даже веками.

Самые эффектные и доступные приемы креативной кулинарии - сферификация, эмульсификация, желатинизация и сгущивание.

Сферификация - одна из самых впечатляющих техник молекулярной кухни. Впервые ее применил испанский шеф-повар Ферран Адриа в своем ресторане El Bulli в 2003 г. Эта техника позволяет заключать жидкости и некоторые продукты в прозрачные сферические оболочки. Они могут свободно плавать в напитке или же подаваться как отдельные блюда и коктейли! До экспериментов знаменитого испанца никто и представить не мог что такое возможно за барной стойкой или на обычной кухне. Вообразите мохито в виде множества сфер с листиками мяты внутри! Или лопающиеся во рту шарики с фруктовыми соками - это настоящий взрыв вкуса! Молекулярные добавки для техники сферификации: альгинат натрия, лактат кальция

Впервые особенности альгината натрия были изучены в 1881 году английским химиком Стенфордом. Он выделил некое вещество из водорослей семейства Ламинария при помощи щелочного раствора и назвал его algin. Во многих видах водорослей это вещество отвечает за их гибкость и эластичность. Причем водоросли, обитающие в воде с бурным течением, содержат значительно больше альгината, чем те же самые водоросли "растущие" в спокойной воде. В пищевой промышленности альгинат натрия используется для производства соусов, сиропов и некоторых молочных продуктов. В молекулярной гастрономии альгинат натрия в сочетании с кальциевыми солями (лактат кальция) используют для эффекта сферификации. Наибольшую известность в ключе креативной кулинарии альгинат приобрел после экспериментов ресторатора Феррана Адриа. Альгинат натрия популярен в молекулярной кухне в связи с двумя особенностями. При разведении в жидкости он работает как загуститель, а при контакте с кальцием формируется желе. В отличие от агар-агара, образование желе происходит при низкой температуре.



Рис. 1. Водоросли семейства Ламинарии. Химическая структура альгината натрия.

Лактат кальция - кальциевая соль, выделенная из молочной кислоты. Молочная кислота образуется в результате деятельности микроорганизмов в отсутствии кислорода. В природе возникает в результате молочнокислого брожения - скисания молока, квашения капусты и т. п. В мышцах человека молочная кислота выделяется митохондриями из-за недостаточного снабжения кислородом вследствие интенсивной физической нагрузки.
В последние десятилетия лактат кальция получают в результате ферментации из сахаров растений, поэтому он безвреден для людей с аллергией на лактозу. Лактат кальция очень широко используется в пищевой промышленности, например, как регулятор кислотности и для консервации фруктов и джемов. В медицине лактат кальция применяют для профилактики и лечения заболеваний, связанных с недостатком кальция в организме.
В креативной кулинарии используется для сферификации.


Рис. 2. Лактат кальция

Эмульсификация - создание воздушных пенок из сока или из любого напитка и многих продуктов. При их заморозке получаются объемные съедобные "скульптуры". Меняйте форму и структуру, высвобождайте новые вкусовые оттенки о которых вы никогда раньше не подозревали! Некоторые секреты приготовления эмульсий были известны давно, - они упоминаются во французской кулинарной книге еще в 1674 г. А благодаря экспериментам современных поваров появились десятки новых рецептов, - среди них бесподобные кокосовые пузырьки и фантастическое блюдо из замороженного шоколада. Молекулярные добавки для техники эмульсификации: соевый лецитин.

Лецитин относится к фосфолипидам и присутствует в клетках всех живых существ. Лецитин является абсолютно необходимым для организма веществом, в основном вырабатывается печенью. Одни из основных функций в организме - обновление поврежденных клеток и транспортировка питательных веществ и витаминов к клеткам.
Своим названием лецитин обязан Морису Гобли - французскому химику и фармацевту. В середине 19 века он выделил жироподобное вещество из желтка куриного яйца и назвал его греческим lecithos (греч. яичный желток). С момента открытия лецитин используется для профилактики и лечения болезней печени, суставов и нервной системы. Лецитин бывает как животного так и растительного происхождения. Лецитина очень много в яичных желтках, однако в них также содержится избыточное количество насыщенных жиров. Соевый лецитин добывают из соевых бобов, точнее, из отфильтрованного соевого масла. В индустрии питания лецитин применяется в качестве натурального эмульгатора при изготовлении глазури, хлебобулочных изделий. Используется при изготовлении практически всей продукции на основе шоколада, продающейся в современных супермаркетах, - он является антиоксидантом, а следовательно, препятствует "старению" продуктов. В молекулярной гастрономии лецитин используется для приготовления эффектных эмульсий на водно-масляной или на воздушно-водной основе.


Рис 3. Соевый лецитин

Желатинизация - это процесс превращения напитков и продуктов в желеобразные структуры с разными свойствами и формой. Как вам спагетти из рукколы или фруктовых соков? Что вы скажете о медовой икре и тающих во рту тонких ромовых листочках. Молекулярные добавки для техники: агар-агар, каррагинан, желатин.

Желатин (лат. gelatos - застывший, замерзший) - чувствительный к нагреву загуститель белкового происхождения. Традиционно используется для приготовления таких знаменитых блюд как французское pot-au-feu - тушеная говядина с овощами и португальского cozido. Используется в молекулярной кухне для приготовления необычной выпечки, кондитерских изделий и даже коктейлей! Желатин не имеет вкуса и запаха. Его основой является коллаген - наиболее распространенный животный белок. Желатин получают путем расщепления коллагена, являющегося своего рода строительным материалом для соединительной ткани. Поэтому желатин с успехом применяется для лечения и профилактики заболеваний суставов. В желатине также содержатся аминокислоты положительно влияющие на умственную активность и укрепляющие сердечную мышцу. В кулинарии желатин нашел очень широкое применение. Помимо мясных блюд о которых мы уже упомянули, желатин используется в самых разных дессертах: бисквитах, панна котте, баварском креме и многих других блюдах. Домашние кулинары используют желатин для приготовления кондитерских изделий не реже чем профессионалы. Приверженцам молекулярной миксологии желатин позволяет создавать совершенно потрясающие коктейли, ведь он сохраняет свои свойства при концентрациях алкоголя до 40%. Вообразите текилу, ром или любой другой алкогольный напиток в виде жемчужинок которые мгновенно тают во рту!

Каррагинан - природный полимер, получаемый из морских водорослей, загуститель естественного происхождения. Молекулы каррагинана большие и очень гибкие, могут образовывать цепочки. При растворении в жидкости эти цепочки сплетаются между собой и образуют гели. Первое документированное упоминание о каррагинане появилось в Ирландии и датируется 1810 годом. Отвар из водорослей применялся для лечения простудных заболеваний, о чем остались записи. Слово каррагинан возможно гаэльского (язык шотландских кельтов) происхождения и буквально означает водоросли, мох. Наибольшее распространение приобрел во время. Второй мировой войны. Считается, что каррагинан из ирландского мха обладает противоспалительными и антивирусными свойствами, его используют для смягчения и заживления небольших воспалений кожи. Каррагинан способен превратить жидкость в крем или полупрозрачное желе. Применяется в качестве загустителя при изготовлении фруктовых йогуртов, сливочного мороженого и пудингов. Существует очень много типов каррагинана, получаемого не только из разных водорослей, но и из одного вида на разных стадиях развития. Каждый тип каррагинана характеризуется своими желирующими и гелеобразующими свойствами. В индустрии питания обычно используются каррагинаны, полученные из нескольких видов водорослей red algae. Различают йотта-, каппа- и лямбда-каррагинан.

Йотта-каррагинан в присутствии кальция образует очень гибкие и эластичные желе, устойчивые к разным температурным режимам. Йотта-каррагенан не растворим в холодной воде.

Каппа-каррагинан при взаимодействии с кальцием образует плотные и хрупкие желебразные структуры. Они тают при нагревании и возвращаются в первоначальное состояние при понижении температуры.

Лямбда-каррагинан способствует повышению вязкости, но с его помощью нельзя получить гели или желе.



Рис. 4. Морские водоросли – источники каррагинана. Химическая структура каррагинана.

Агар, или как его иногда называют агар-агар (на малайском - "желе") - возможно самая древняя из всех пищевых добавок, получивших широкое распространение. Этот натуральный продукт получают из красных водорослей, растущих в Тихом океане на глубине около 80 метров. Основные центры производства агара - Китай, Япония и США. На западе получил известность относительно недавно в качестве вегетарианского аналога желатину. Японская легенда гласит, что Агар-агар научились добывать в середине 17 века. Однажды хозяин трактира угощал посетителей блюдом из вареных водорослей. То что осталось от трапезы он вынес на двор и забыл про котелок с остатками ужина на несколько дней. Ночами температура опускалась до нескольких градусов ниже нуля, а днем припекало солнце. Впоследствии, трактирщик обнаружил в котелке некое светлое вещество, которое он прокипятил еще несколько раз, пока оно не стало кристально белым. Так на свет появился агар-агар, который японцы стали активно использовать в приготовлении еды. Ту же самую процедуру с несколькими циклами заморозки и нагревания применяют и сейчас для получения чистого белого порошка агар-агар из морских водорослей.

В современной пищевой промышленности агар-агар используется для приготовления фруктовых желе, мармелада, пастилы, зефира и других кондитерских изделий. В джемах агар-агар гораздо эффективнее пектина - он как бы высвобождает и усиливает вкус фруктов, поэтому требуется гораздо меньше сахара. Это вещество не содержит калорий, поэтому с его помощью готовят диетические джемы и конфитюры. Агар-агар очень полезен и обладает общеукрепляющими свойствами; богат йодом, как и многие морепродукты. Помимо использования в медицине и пищевой промышленности, применяется в микробиологических лабораториях как питательная среда для бактерий в "чашках Петри". Агар-агар - один из флагманов молекулярной гастрономии. Благодаря ему, получаются блюда с необычный текстурой и самой невероятной формы. Он устойчив к высоким температурам, поэтому используется в приготовлении легких пенок и желе, прекрасно подходящих для сервировки.

В креативной кулинарии техника сгущивания позволяет достигать невероятных результатов. Соусы получаются мягкими и легкими, потому что в них сохраняется множество воздушных пузырьков. Но настоящие чудеса начинаются когда мы готовим коктейли! Представьте себе кусочки фруктов, которые словно "парят" в вашем напитке и совершенно игнорируют гравитацию. Для приготовления алкогольных коктейлей также есть множество спецэффектов, в основном для достижения эффекта слоев. Молекулярные добавки для техники сгущивания: ксантановая смола.

Ксантановая смола - это натуральный загуститель, который получают в процессе воздействия бактерий Xanthomonas Campestris на глюкозу или сахарозу. Ксантановая смола была получена группой американских ученых из института сельского хозяйства и появилась на рынке в начале 60-х. Бактериальную культуру для образования ксантановой смолы получают в специальных крупногабаритных емкостях. Основой для роста бактерий Xanthomonas Campestris являются некоторые сорта пшеницы. Главное свойство ксантановой смолы - это способность повышать вязкость любой жидкости при концентрации всего в 1%. Часто служит добавкой для салатов и соусов, заменяет некоторые жиры и масла. Ксантановая смола часто используется, чтобы снизить содержание жиров в соусах при сохранении пластических свойств, сделать блюда пригодными для диетического питания.

Профессия повара одна из самых древних на Земле. Еще пещерные люди, научившись жарить мясо добытых мамонтов на костре, стали доверять это тем из своих соплеменников, у которых это получалось лучше всего: мясо было сочнее и вкуснее. Эти люди и были самыми первыми шеф-поварами. С развитием цивилизаций, хорошие повара ценились монархами и знатными людьми на вес золота. Но массовый характер эта профессия приобрела лишь тогда, когда начал развиваться ресторанный бизнес.

Введение



"Молекулярная кухня", или молекулярная гастрономия — направление исследований, связанное с изучением физико-химических процессов, которые происходят при приготовлении пищи. Она изучает механизмы, ответственные за преобразование ингредиентов во время кулинарной обработки пищи, а также социальные, художественные и технические составляющие кулинарных и гастрономических явлений в целом (с научной точки зрения). "Молекулярной кухней" называют модную тенденцию в кулинарии, обозначающую различные блюда с необычными свойствами и сочетаниями компонентов. Это сочетание научных знаний и кулинарных навыков. Она была создана как лекарство от скуки на обычной кухне. Повара, после получения адекватных знаний о свойствах растений, контроли температуры, окисление жира, имеют большее влияние на вкус и текстуру пищи. Это делает их кухня удивительной, даже более совершенной, хотя иногда немного авангардной.

Кстати, следует различать молекулярную кулинарию и индустрию фаст-фуда. Картофельные чипсы, конфеты и напитки с множеством вкусов – это достижения химической промышленности. В молекулярной кулинарии используются только натуральные ингредиенты. Поэтому блюда молекулярной кухни сбалансированы и полезны.

Мясо, рыба, овощи, фрукты – да все, что угодно – предстает в виде пены, мусса, желе или мороженого, а может быть, порошка или суфле. Вы ни за что не узнаете, что это, пока не попробуете. Яичница со вкусом фруктов, прозрачные пельмени, арбузная икра, кофе в виде печенья – эти блюда призваны поразить внешним видом и неожиданным вкусом. Фантазия повара здесь безгранична, а цель его не столько накормить гостей, тем более что порции блюд миниатюрные и воздушные - сколько устроить настоящее шоу и вызвать бурю ощущений – вкусовых, зрительных, осязательных и обонятельных. Огромное внимание повара молекулярной кухни уделяют не только вкусу и технологии приготовления блюд, но и их эстетическим качествам. Мастера соревнуются в оригинальности, экспериментируют с формой и консистенцией, чтобы их творения выглядели необычно и привлекательно, имели восхитительный аромат, радовали даже слух и осязание. Многие блюда молекулярной гастрономии похожи на настоящие произведения искусства в духе футуризма.

Кто-то восторгается молекулярной кухней или мечтает попробовать подобные блюда, а кто-то уже разочарован непонятной и непривычной пищей или боится химии, использованной при приготовлении блюд. Однако возможности молекулярной кухни столь велики, что она продолжает осваивать новые приемы и технологии, благодаря интересу и активному участию профессиональных поваров по всему миру.

Молекулярная кухня по праву считается одним из самых модных и оригинальных направлений современной гастрономии, волшебным праздником для гурманов, торжеством необычного вкуса. Если вы перепробовали уже все, что можно, и мечтаете о новых ощущениях, молекулярная кухня – единственно правильное решение. А пока давайте ближе познакомимся с ее особенностями.

Отцы движения



В середине 20 века учёных больше интересовал состав продуктов и их влияние на человека. Лишь в конце 20 века появилась отдельная отрасль – молекулярная гастрономия, применившая знания из области химии и физики к продуктам. Основоположниками молекулярной гастрономии и кулинарии были ученые Николай Курти и Эрве Тис.

Гастроном-любитель Николас Курти знал толк в ресторанном мастерстве и сам активно способствовал накоплению нового кулинарного знания. Выйдя в середине 1970-х годов на пенсию, он занялся систематизацией данных о физических и химических процессах приготовления пищи. Курти демонстрировал экстравагантные способы применения научных законов на кухне, например, поджаривал сосиски, подсоединяя их к клеммам автомобильного аккумулятора.

Исследование как начало


Научный подход к приготовлению еды помог поварам развенчать многие кулинарные мифы и лучше понять, что происходит с продуктами при обработке.

Вся наша пища состоит в основном из воды, будь это клетки растений или ткани животных, поэтому свойства воды и водных растворов – один из важнейших вопросов молекулярной кулинарии. К кулинарии применимы все законы физики и химии. С точки зрения химии, нет ничего странного в том, что алкоголь коагулирует белок, но если перенести это знание в область кулинарии, окажется, что сырое яйцо можно приготовить, оставив его на определённое время (около месяца) в спирте или спиртосодержащем напитке. Химия и физика помогли лучше понять процессы, происходящие в продуктах, и развенчали некоторые кулинарные мифы. Например, при варке зелёных овощей вовсе не обязательно добавлять соль для сохранения вкуса и цвета; соль не усиливает кипение, а лишь добавляет в воду кислорода, растворенного в кристаллах, за счет чего образуется бурление; повышение температуры кипения при этом незначительно. Существует энзим, разрушающий хлорофилл, а следовательно и зеленый цвет. Этот энзим становится активным в теплой воде и разрушается выпариванием, соль поднимает температуру кипения и помогает удержать воду в точке кипения при добавлении в воду стручков, таким образом не давая сработать энзиму. Но это не так. Самым важным для сохранения цвета является качество самой воды, в частности, содержание в ней кальция. Кальций – враг зеленых овощей; они утрачивают зеленый цвет при высоком уровне содержания кальция в воде. Так что, если вода содержит не больше 20 мг кальция на литр, и если, после добавления зеленых овощей к кипящей воде она возвращается в точку кипения практически сразу же, то овощи сохранят свой зеленый цвет. Так что энзим, разрушающий хлорофилл, оказывается в общем-то и невиновен.

Одним из революционных открытий молекулярной кулинарии явилась низкотемпературная тепловая обработка мяса. Тепловая обработка мяса имеет две цели – высвободить вкус и аромат мяса, и сделать его мягким и нежным. Рассматривая мясо с точки зрения приготовления, оно состоит из постных тканей, белков - коллагена, и воды (примерно 75%). Коллаген очень важен при приготовлении мяса, потому что именно он определяет время, которое необходимо затратить на приготовление. При приготовлении мяса важно знать о следующих температурных стадиях: при 40°С начинают разрушаться белки в мясе; при 50°С коллаген начинает сжиматься; при 55°С коллаген начинает умягчаться; при температуре 70-75 °С мясо перестает удерживать кислород и принимает серый цвет; при 100°С из мяса начинает испаряться вода. Если мясо готовится при температуре 100°С, то создаваемое испарением давление разрушает как мясо, так и его соки. Многим такой подход может показаться очень странным и ненадежным, но, как ни удивительно, именно низкие температуры дают самые наилучшие результаты, самое мягкое и сочное мясо. Для мяса специалисты определили оптимальную температуру приготовления — 56°С. Время тепловой обработки при этом зависит не от веса одного куска, а от расстояния между краями и центром.

Так, например, Курти обнаружил, что ананасовый сок, впрыснутый в мясо перед запеканием, делает блюдо нежнее, и дал этому научное объяснение: сок превращает белки коллагеновых волокон в молекулы желатина, они задерживают жидкость и изменяют структуру мяса. А Тис вывел молекулярные формулы для всех типов французских соусов, попутно став рекордсменом по взбиванию майонеза. Ученый обнаружил, что если добавить в определенной пропорции в белок воду, пена увеличивается до фантастических размеров. Из одного яйца он мог создать до 20 л майонеза.

Читайте также: