Реферат на тему металлы и сплавы в машиностроении

Обновлено: 08.07.2024

Металлы и их сплавы повсеместно используются для изготовления конструкций машин, оборудования, инструмента и т. д. Несмотря на широкий круг искусственно созданных материалов (керамики, клеев), металлы служат основным конструкционным материалом и в обозримом будущем по-прежнему будут доминировать.

Файлы: 1 файл

ткм реферат.docx

Металлы и их сплавы повсеместно используются для изготовления конструкций машин, оборудования, инструмента и т. д. Несмотря на широкий круг искусственно созданных материалов (керамики, клеев), металлы служат основным конструкционным материалом и в обозримом будущем по-прежнему будут доминировать.

Металлами называются вещества, атомы которых располагаются в определённом геометрическом порядке, образуя при этом кристаллы. Им присущ специфический металлический блеск. Кроме того, металлы обладают хорошей пластичностью, высокой теплопроводностью и электропроводностью. Это дает возможность обрабатывать их под давлением (прокатка, ковка, штамповка, волочение). Металлы обладают хорошими литейными свойствами, а также свариваемостью, способны работать при низких и высоких температурах. Металлические изделия и конструкции легко соединяются с помощью болтов, заклепок и сварки. Наряду с этим металлы обладают и существенными недостатками: имеют большую плотность, при действии различных газов и влаги коррозируют, а при высоких температурах значительно деформируются.

Чистые металлы обладают высокой пластичностью и низкой прочностью, что не обеспечивает требуемых физико-химических и технологических свойств. Поэтому их применение в строительстве и технике в качестве конструкционных материалов сильно ограничено. Наиболее широко используют сплавы, обладающие более высокой прочностью, твердостью и износостойкостью и т. д.

Сплавы – это системы, состоящие из нескольких металлов или металлов и неметаллов. Так, например, прочность технического железа составляет примерно 250 МПа, при введении в железо углерода в количестве 0,9 мас.

Металлические материалы обычно делятся на две большие группы: железо и сплавы железа (сталь и чугун) называют черными металлами, а остальные металлы и их сплавы — цветными. Кроме того, все цветные металлы, применяемые в технике, в свою очередь, делятся на следующие группы:

  • легкие металлы Mg, Be, Al, Ti с плотностью до 5 г/см 3 ;
  • тяжелые металлы Pb, Mo, Ag, Au, Pt, W, Та, Ir, Os с плотностью, превышающей 10 г/см 3 ;
  • легкоплавкие металлы Sn, Pb, Zn с температурой плавления 232; 327; 410 °С соответственно;
  • тугоплавкие металлы W, Mo, Та, Nb с температурой плавления выше, чем у железа (> 1536 °С);
  • благородные металлы Au, Ag, Pt с высокой устойчивостью против коррозии;
  • урановые металлы или актиноиды, используемые в атомной технике;
  • редкоземельные металлы (РЗМ) — лантаноиды, применяемые для модифицирования стали;
  • щелочные и щелочноземельные металлы Na, К, Li, Ca в свободном состоянии применяются в качестве жидкометаллических теплоносителей в атомных реакторах; натрий также используется в качестве катализатора в производстве искусственного каучука, а литий — для легирования легких и прочных алюминиевых сплавов, применяемых в самолетостроении.

Свойства металлов разнообразны. Ртуть замерзает при температуре минус 38,8 °С, вольфрам выдерживает рабочую температуру до 2000 °С (Тпл = = 3420 °С), литий, натрий, калий легче воды, а иридий и осмий — в 42 раза тяжелее лития. Электропроводность серебра в 130 раз выше, чем у марганца. Вместе с тем металлы имеют характерные общие свойства. К ним относятся:

  • высокая пластичность;
  • высокие тепло- и электропроводность;
  • положительный температурный коэффициент электрического сопротивления, означающий рост сопротивления с повышением температуры и сверхпроводимость многих металлов (около 30) при температурах, близких к абсолютному нулю;
  • хорошая отражательная способность (металлы непрозрачны и имеют характерный металлический блеск);
  • термоэлектронная эмиссия, т. е. способность к испусканию электронов при нагреве;
  • кристаллическое строение в твердом состоянии.

1 Классификация металлических сплавов

Все металлы и образованные из них сплавы делят на две группы: черные и цветные.

К черным металлам относятся железо и сплавы на его основе – стали и чугуны, остальные металлы являются цветными. В строительстве в основном применяют черные металлы – чугуны и стали для каркасов зданий, мостов, труб, кровли, арматуры в бетоне и для других металлических конструкций и изделий.

К цветным металлам относятся все металлы и сплавы на основе алюминия, меди, цинка, титана. Цветные металлы являются более дорогостоящими и дефицитными.

Чугун получают в ходе доменного процесса, основанного на восстановлении железа из его природных оксидов коксом при высокой температуре. Процесс восстановления железа оксидом углерода в верхней части доменной печи можно представить по обобщенной схеме: Fe2O3 > Fe3O4 > >FeO > Fe. Опускаясь в нижнюю часть печи, расплавленное железо соприкасается с коксом и превращается в чугун.

Чугуны в зависимости от состава и структуры подразделяются на серые (углерод в виде цементита и свободного графита) и белые (углерод в виде цементита). В зависимости от формы графита и условий его образования различают: серый, высокопрочный и ковкий чугуны.

Стали можно подразделить на две основные группы – углеродистые и легированные (рис. 1).

Углеродистые стали – основной конструкционный материал, который используется в различных областях промышленности. Они дешевле легированных и проще в производстве. В углеродистой стали свойства зависят от количества углерода, поэтому эти стали классифицируются на низкоуглеродистые, средне- и высокоуглеродистые.

Легированные стали содержат специально вводимые элементы для получения заданных свойств. По степени легированости стали подразделяются на низколегированные, средне- и высоколегированные.

Классификация сталей по качеству основывается на содержании вредных примесей серы и фосфора. Различают углеродистую сталь обыкновенного качества, сталь качественную конструкционную и сталь высококачественную.

По назначению стали подразделяются на три группы: конструкционные, инструментальные и с особыми свойствами. Конструкционные углеродистые стали содержат углерод в количестве 0,02 – 0,7 мас.%, к ним относятся и строительные стали, содержащие до 0,3 мас.% углерода. Низкое содержание углерода обусловлено тем, что строительные конструкции соединяются сваркой, а углерод ухудшает свариваемость. Стали, содержащие углерод в пределах 0,7 – 1,5 мас.%, используют для изготовления режущего и ударного инструмента. К группе сталей и сплавов с особыми свойствами относятся коррозионностойкие, нержавеющие и кислотоупорные, жаропрочные и жаростойкие стали и т. д.

2. Черные металлы и сплавы

Черными сплавами или черными металлами условно называют железо и его сплавы – чугуны, стали иногда и ферросплавы. Остальные металлы и сплавы, в отличие от черных металлов и сплавов, называют цветными

Основное представление о строении железоуглеродистых сплавов дает широко известная диаграмма состояний железо-углерод. (Рис.2)

Принято называть чугунами железоуглеродистые сплавы, содержащие более 2%С (2,14%), а сталями, соответственно – менее 2%С.

Ферросплавы – это вспомогательные материалы, применяемые для обработки сталей и чугунов.

Сталь (от нем. Stahl) — сплав (твёрдый раствор) железа с углеродом (и другими элементами), характеризующийся эвтектоидным превращением. Содержание углерода в стали не более 2,14 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.

Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется содержащий не менее 45 % железа сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь).

Сталь — важнейший конструкционный материал для машиностроения, транспорта, строительства и прочих отраслей промышленности.

Стали с высокими упругими свойствами находят широкое применение в машино- и приборостроении. В машиностроении их используют для изготовления рессор, амортизаторов, силовых пружин различного назначения, в приборостроении — для многочисленных упругих элементов: мембран, пружин, пластин реле, сильфонов, растяжек, подвесок.

Пружины, рессоры машин и упругие элементы приборов характеризуются многообразием форм, размеров, различными условиями работы. Особенность их работы состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточная деформация. В связи с этим все пружинные сплавы кроме механических свойств, характерных для всех конструкционных материалов (прочности, пластичности, вязкости, выносливости), должны обладать высоким сопротивлением малым пластическим деформациям. В условиях кратковременного статического нагружения сопротивление малым пластическим деформациям характеризуется пределом упругости, при длительном статическом или циклическом нагружении — релаксационной стойкостью.

Стали делятся на конструкционные и инструментальные. Разновидностью инструментальной является быстрорежущая сталь.

По химическому составу стали делятся на углеродистые и легированные; в том числе по содержанию углерода — на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,3—0,55 % С) и высокоуглеродистые (0,6—2 % С); легированные стали по содержанию легирующих элементов делятся на низколегированные — до 4 % легирующих элементов, среднелегированные — до 11 % легирующих элементов и высоколегированные — свыше 11 % легирующих элементов.

Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.

По структуре сталь разделяется на аустенитную, ферритную, мартенситную, бейнитную и перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.

1.6. Конструкционные (машиностроительные) цементируемые (нитроцементуемые) легированные стали.

1.7. Конструкционные (машиностроительные) улучшаемые легированные стали.

1.8. Стали с повышенной обрабатываемостью резанием.

1.9. Мартенситно-стареющие высокопрочные стали.

1.10. Высокопрочные стали с высокой пластичностью (ТРИП- или ПНП-стали)

1.11. Рессорно-пружинные стали общего назначения.

1.12. Шарикоподшипниковые стали.

1.13. Износостойкие стали.

1.14. Коррозионно-стойкие и жаростойкие стали и сплавы.

1.15. Криогенные стали.

1.16. Жаропрочные стали и сплавы.

2. Инструментальные стали и твердые сплавы.

2.1. Стали для режущего инструмента.

2.2. Стали для измерительного инструмента.

2.3. Стали для штампов холодного деформирования.

2.4. Стали для штампов горячего деформирования.

2.5. Твердые сплавы.

3. Стали и сплавы с особыми физическими свойствами.

3.1. Магнитные стали и сплавы.

3.2. Металлические стекла (амфорные сплавы).

3.3. Стали и сплавы с высоким электрическим сопротивлением для нагревательных элементов.

3.4. Сплавы с заданным температурным коэффициентом линейного расширения.

3.5. Сплавы с эффектом “памяти формы”.

4. Тугоплавкие металлы и их сплавы.

5. Титан и сплавы на его основе.

5.2. Сплавы на основе титана.

6. Алюминий и сплавы на его основе.

6.2. Классификация алюминиевых сплавов.

6.3. Деформируемые алюминиевые сплавы, упрочняемые термической обработкой.

6.4. Деформируемые алюминиевые сплавы, не упрочняемые термической обработкой.

6.5. Литейные алюминиевые сплавы.

7. Магний и сплавы на его основе.

7.2. Сплавы на основе магния.

8. Медь и сплавы на ее основе.

8.2. Сплавы на основе меди.

9. Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой, цинковой и алюминиевой основах.

10. Композиционные материалы с металлической матрицей.

11. Конструкционные порошковые материалы.

1. Общие сведения о неметаллических материалах.

1.1. Особенности свойств полимерных материалов.

2. Пластические массы.

2.1. Состав, свойства пластмасс.

2.2. Термопластичные пластмассы.

2.3. Термореактивные пластмассы.

2.4. Газонаполненные пластмассы.

3. Композиционные материалы с неметаллической матрицей.

3.1. Общие сведения, состав.

4. Резиновые материалы.

4.1. Общие сведение, состав и классификация резин.

4.2. Резины общего назначения.

4.3. Резины специального назначения.

5. Клеящие материалы и герметики.

5.1. Общие сведение, состав пленкообразующих материалов.

5.2. Конструкционные, смоляные и резиновые клеи.

5.3. Неорганические клеи.

6. Неорганические материалы.

6.2. Неорганическое стекло.

6.3. Керамические материалы.

I РАЗДЕЛ

Конструкционные стали и сплавы

Конструкционными называются стали, предназначенные для изготовления деталей машин (машиностроительные стали), конструкций и сооружений (строительные стали).

Углеродистые конструкционные стали

Углеродистые конструкционные стали подразделяются на стали обыкновенного качества и качественные.

Стали обыкновенного качества, особенно кипящие, наиболее дешевые. Стали отливают в крупные слитки, вследствие чего в них развита ликвация и они содержат сравнительно большое количество неметаллических включений.

С повышением условного номера марки стали возрастает предел прочности (sв) и текучести (s0.2) и снижается пластичность (d,y). Ст3сп имеет sв=380¸490МПа, s0.2=210¸250МПа, d=25¸22%.

Из сталей обыкновенного качества изготовляют горячекатаный рядовой прокат: балки, швеллеры, уголки, прутки, а также листы, трубы и поковки. Стали в состоянии поставки широко применяют в строительстве для сварных, клепанных и болтовых конструкций.

С повышением содержания в стали углерода свариваемость ухудшается. Поэтому стали Ст5 и Ст6 с более высоким содержанием углерода применяют для элементов строительных конструкций, не подвергаемых сварке.

Физические свойства металлов: пластичность, электропроводность, теплопроводность, твердость, плотность, температура плавления и кипения. Химические свойства этих элементов. Виды сплавов и требования к ним. Применение конструкционных материалов в технике.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 23.11.2010
Размер файла 46,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное агентство по образованию

Государственного образовательного учреждения высшего профессионального образования

Кафедра гражданского права и процесса

Студент группы ЭПЗВ-09

Металлы и сплавы как основа современных конструкционных материалов

1. Общая характеристика металлов

1.1 Физические свойства металлов

1.2 Химические свойства металлов

2. Понятие о сплавах

2.1 Классификация сплавов. Требования к сплавам

3. Металлы и сплавы как основа конструкционных материалов

3.1 Применение конструкционных материалов в технике

Список использованных источников

Человек с самого раннего возраста привыкает к окружающим его металлическим предметам домашнего обихода. Мы к ним настолько привыкли, что не замечаем и не задумываемся, откуда они берутся.

Современную жизнь нельзя представить без таких металлов и сплавов, как чугун, сталь, алюминий, медь, титан, бронза, золото, серебро и др. Будущее человечества тесно связано с использованием новых сплавов и металлов на металлической основе. Металл - фундамент современной цивилизации, основа основ технического прогресса. И чем выше поднимается человечество по ступеням развития, тем больше его нужда в металлах.

Металлы хорошо проводят тепло и электрический ток, т. е. они теплопроводны и электропроводны. Самую высокую электропроводность имеют серебро Ag, медь Си, алюминий Al, золото Au и железо Fe. Из меди и алюминия делают электрические провода.

Характерным свойством металлов является пластичность. Пластичностью называется свойство металлов изменять форму.

Металлы изменяют свою форму при ударе. В сильно нагретом состоянии они куются. Их можно прокатывать в листы, вытягивать в проволоку. Следовательно, металлы пластичны и ковки. Только марганец Mn, сурьма Sb и висмут Bi хрупки.

Триумфом периодического закона было открытие металлов, предсказанных на его основе Д. И. Менделеевым, - галлия, скандия и германия. В середине XX в. с помощью ядерных реакций были получены трансурановые элементы - не существующие в природе радиоактивные металлы.

Современная металлургия получает свыше 60 металлов и на их основе более 5000 сплавов. В основе структуры металлов лежит кристаллическая решетка из положительных ионов, погруженная в плотный газ подвижных электронов. Эти электроны компенсируют силы электрического отталкивания между положительными ионами и тем самым связывают их в твердые тела.

Такой тип химической связи называют металлической связью. Она обусловила важнейшие физические свойства металлов: пластичность, электропроводность, теплопроводность, металлический блеск.

Актуальность темы обусловлена быстрым развитием и применением в различных областях промышленности на основе металлов и сплавов конструкционных изделий.

Объектом курсовой работы являются металлы и сплавы.

Предмет курсовой работы применение металлов и сплавов в конструкционных материалах.

Цель работы выявить особенности использования металлов и их сплавов в производстве конструкционных материалов.

Для решения поставленной цели были выдвинуты следующие задачи:

1. Рассмотреть основные свойства металлов и сплавов.

2. Охарактеризовать конструкционные материалы и их практическое применение.

В работе использовались следующие основные методы: сбор информации, ее направленное преобразование; теоретический анализ литературы по теме исследования; конкретизация, аналогия, сравнение и синтез полученной информации; обобщение.

1. Общая характеристика металлов

1.1 Физические свойства металлов и сплавов

Металлы хорошо проводят тепло и электрический ток, т. е. они теплопроводны и электропроводны. Самую высокую электропроводность имеют серебро Ag, медь Си, алюминий Al, золото Au и железо Fe. Из меди и алюминия делают электрические провода.

Характерным свойством металлов является пластичность.

Пластичность - способность изменять форму при ударе, вытягиваться в проволоку, прокатываться в тонкие листы. В ряду - Au, Ag, Cu, Sn, Pb, Zn, Fe уменьшается.

Блеск, обычно серый цвет и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл квантами света.

Электропроводность. Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. В ряду - Ag, Cu, Al, Fe уменьшается. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение "электронного газа" [1,с.10,22].

Теплопроводность. Закономерность та же. Обусловлена высокой подвижностью свободных электронов и колебательным движением атомов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность - у висмута и ртути.

Твердость. Самый твердый - титан, хром (режет стекло); самые мягкие - щелочные металлы - калий, натрий, рубидий и цезий - режутся ножом.

Плотность. Она тем меньше, чем меньше атомная масса металла и чем больше радиус его атома (самый легкий - литий (r=0,53 г/смі); самый тяжелый - осмий(r=22,6г/смі). Металлы, имеющие r

Не все материалы пригодны ля изготовления машиностроительных изделий. Например, гранит характеризуется высокой твёрдостью, но чрезвычайно сложен в обработке, а керамика обладает повышенной хрупкостью. Материалы в машиностроении – это вещества искусственного или естественного происхождения, которые способны обрабатываться любыми способами без нарушения своей целостности.

Металлы и сплавы, используемые в машиностроении

Материалы, которые находят применение в качестве сырья для любого вида строительства или производства организованным способом инженерного применения, известны как инженерные материалы. Например, компьютер, соковыжималка, станок или ручка, которые мы используем, производятся с помощью контролируемых инженерных процессов. При этом используются такие материалы, как разнообразные пластмассы, медь, алюминий, олово и т. д.

Всё, что мы используем в повседневной жизни, может быть адаптировано для использования в конкретных случаях. Это можно сделать эффективно, если нам заранее известны свойства каждого материала. Таким образом, любое вещество тщательно тестируется на предмет характерных ему свойств, после чего может быть отнесено к одной из следующих групп:

  • металлы;
  • неметаллы;
  • полимеры;
  • нановещества;
  • композиты.

По совокупным свойствам представителей этих групп можно узнать о сферах их целесообразной применимости. Преобладающее положение в этой структуре занимают металлы – чёрные и цветные, а также их сплавы.

Металлы обычно характеризуются чётко выраженной кристаллической структурой и связаны между собой характерными связями, устойчивость которых поддерживается электронным облаком. Оно, в частности, определяет высокую электро- и теплопроводность, блеск, твёрдость и, в большинстве случаев – высокую пластичность.

Чугун

Чугун - это сплав железа с углеродом, при содержании последнего в металлической матрице свыше 2,14 %. Кроме углерода, в чугуне содержится также 1…3% кремния и ряд второстепенных элементов. Чугун также можно модифицировать путём легирования небольшими количествами марганца, молибдена, церия, никеля, меди, ванадия и титана, которые добавляются в исходное сырьё перед литьём.

технология машиностроения материалы

В зависимости от содержания кремния в чугуне он подразделяется на белый или серый чугун, а также ковкий чугун, который отличается повышенной механической обрабатываемостью.

Широкое применение чугуна обусловлено его отличными литейными характеристиками и дешевизной. Кроме того, свойства чугуна можно легко изменить, регулируя состав и скорость охлаждения без значительных изменений в технологии производства.

Чугун имеет ряд преимуществ перед обычной сталью, среди которых:

  • простота обработки;
  • виброустойчивость;
  • стойкость против коррозии;
  • прочность на сжатие.

Для увеличения коррозионной стойкости чугун легируют кремнием, никелем, хромом, молибденом и медью.

Машиностроительные материалы на основе серого чугуна используются при изготовлении блоков цилиндров двигателей внутреннего сгорания, массивных маховиков, картеров коробок передач, трубопроводов, роторов дисковых тормозов, кухонной посуды.

Из белого чугуна производят шламовые насосы, шаровые мельницы, подъемные штанги, экструзионные форсунки, миксеры для цемента, фитинги, фланцы, дробилки и пр. Благодаря хорошему пределу прочности на разрыв, вязкости и пластичности ковкий чугун используется для изготовления электрической арматуры и оборудования, ручных инструментов, шайб, кронштейнов, сельскохозяйственного оборудования, оборудования для горнодобывающей промышленности и т.п.

Сталь

Сталь - общий термин для большого семейства железоуглеродистых сплавов, которые являются пластичными в определённом температурном диапазоне сразу после затвердевания из расплавленного состояния.

Сталеплавильное производство - это процесс рафинирования передельного чугуна, а также чугунного лома путём удаления нежелательных элементов из расплава.

Первичной реакцией в большинстве сталеплавильных производств является соединение углерода с кислородом с образованием газа. Если растворённый кислород не удалить из расплава, то газообразные продукты продолжат выделяться во время затвердевания. Чтобы избежать этого, сталь раскисляют добавляя необходимые раскисляющие элементы. Тогда газ не выделяется, и такую сталь называют спокойной. Соответственно при неполном раскислении стали называют полуспокойными. Степень раскисления влияет на некоторые свойства стали.

Помимо кислорода жидкая сталь содержит соизмеримые количества растворённого водорода и азота. Для некоторых марок сталей могут использоваться специальные методы раскисления, а также вакуумная обработка, уменьшающие количество и состав растворённых газов.

Стали также содержат различные количества других элементов, в основном марганец (который действует как раскислитель и облегчает обработку), кремний, фосфор и серу. Последние два химических элемента считаются примесями, и их количество при выплавке ограничивают.

Все марки сталей отличаются отличными литейными характеристиками и деформируемостью. Поэтому технология машиностроения, материалы в которой изучаются наиболее тщательно, считает сталь наиболее универсальным продуктом.

Твердые сплавы

Твёрдые сплавы - это металлические композиции на основе Fe, Ni или Co, которые содержат до 50 % твёрдой фазы. Это делает их идеальными для изготовления изделий, которые подвергаются значительным эксплуатационным нагрузкам, например, рабочих деталей металлорежущего и штампового инструмента.

Твёрдые сплавы получают методами порошковой металлургии, что позволяет в широких пределах изменять гранулометрический состав и фракционирование конечного продукта.

Алюминий и алюминиевые сплавы

Уникальное сочетание свойств делает алюминий и его сплавы одним из самых универсальных инженерных и строительных материалов. Простое перечисление эксплуатационных характеристик впечатляют: лёгкость, прочность, коррозионная стойкость, нетоксичность.

Алюминий и его сплавы обладают хорошей электро- и теплопроводностью, а также высокой отражательной способностью для тепла и света. Данные металлы пластичны и легко принимают широкий спектр отделки поверхности.

Прочность чистого алюминия относительно невысока, поэтому для отвественных применений используют сплавы алюминия с марганцем, цинком, медью и кремнием, а также упрочняют полуфабрикат в процессе его пластической деформации или термообработки.

Другие металлы

Из остальных металлов применение в машиностроении находят:

  1. Медь и её сплавы (электротехническое и электронное машиностроение).
  2. Свинец (атомная энергетика).
  3. Олово (точное приборостроение).
  4. Хром, никель, молибден (производство нержавеющих сталей, энергетическое машиностроение).
  5. Титан (аэрокосмическая промышленность).
  6. Вольфрам (оборонная промышленность).

В качестве легирующих добавок используют также ванадий, ниобий, кобальт и ряд других металлов.

Неметаллические материалы в машиностроении

В основном, используются искусственно созданные композиции, например, полимеры. Они аморфны по природе, поэтому не имеют кристаллической структуры, отличаются низкой теплопроводностью, являются диэлектриками.

Полимеры термостойки и эластичны, при высокой молекулярной массе имеют низкую плотность. Находят применение в электротехнике, машиностроительных узлах, действующих в условиях повышенного трения, при производстве приборов.

Из материалов естественного происхождения необходимо выделить слюду, которая широко используется в радиоприборостроении.

Важно: все материалы, применяемые в машиностроении, должны отвечать экологическим нормам.

Гост

ГОСТ

Материалы, используемые в машиностроении

В машиностроении любое изделие, оборудование, деталь из которых они состоят, изготавливают из материалов, которые удовлетворяют техническим, экологическим, экономическим, эксплуатационным и другим требованиям, обеспечивая при этом выполнение их назначения. Такие материалы называются конструкционными.

Такие детали несомненно должны выдерживать как внешнее, так и внутреннее физическое воздействие (шумоизоляция, теплоизоляция, герметизация и т.п.).

Данные способности материалов проверяются при анализе их свойств.

Существует довольно широкий спектр конструкционных материалов, выбором наиболее подходящего для того или иного изделия материала, удовлетворяющего все требования и себестоимость, занимаются конструкторы.

Металлы и сплавы

В машиностроении под металлами может пониматься как химический элемент, так и его примеси, или сплавы, которые различаются рядом свойств:

  1. Металлический блеск
  2. Высокая тепло- и электропроводность
  3. Непрозрачность
  4. Способность подвергаться обработке в холодном и горячем состоянии

Металлы хорошо образуют химические соединения с неметаллами (оксиды, нитриды, бориды и т.п.), а также с другими металлами (интерметаллиды). Машиностроительные предприятия активно используют более 60 видов металлов, на их основе более 5000 сплавов.

Сплав – это твердый материал, образованный путем смешивание двух и более компонентов

Сплавы могут создаваться как при чистом физическом процессе (плавка, растворение, перемешивание), так и химическими воздействиями между элементами.

Сплавы на основе металлов называются черными, на основе других элементов – цветными.

Легкие цветные металлы сделаны на основе алюминия, магния, титана и имеют малую плотность, тяжелые же, с высокой плотностью изготовлены на основе олова, свинца, меди.

Готовые работы на аналогичную тему

Чугун

Один из наиболее распространенных металлов в машиностроении. Чугун подразделяется на белый, серый, ковкий, высокопрочный.

Белый чугун используется в основном для переделки в сталь, он получается при быстром охлаждении при заливки металла в форму. Имеет уменьшенное количество кремния или повышенное содержание магния.

При долгом отжиге белого чугуна получают ковкий чугун, он довольно хрупкий и применяется при производстве зубчатых колес, звеньев цепей, хомуты, муфты и т.п., так как не предусматривает механического воздействия.

Серый чугун имеет повышенное содержание кремния, и является основным материалом для изготовления отливок. Со временем путем воздействия на графит в момент нахождения в жидком состоянии, удалось вывести модифицированный чугун, который имеет повышенную прочность.

Сталь

Сталь наиболее распространенный материал в машиностроении. Он обладает ковкостью, высокой прочностью, вязкостью, хорошо обрабатывается.

Стали разделяются на углеродистые и легированные.

Из стали изготавливаются такие изделия как: прокат, штамповые болты, штыри, свариваемые детали, сверла, зубила, валу, зубчатые колеса и т.п.

Твердые сплавы

Свое место твердые сплавы нашли в горнодобывающей, металлообрабатывающей и других отраслях промышленности. Режущие инструменты, изготовленные из твердых сплавов могут работать в несколько раз более производительнее, чем простые режущие сплавы.

Одним из самых прочных, но довольно молодых сплавов считается титан. К тому же такие сплавы вдвое легче. Такие сплавы применяются в изготовлении сверхзвуковых самолетов, так как титан способен выдерживать температуры превышающие 500 градусов.

К тому же титан обладает коррозийной стойкостью, не окисляясь в агрессивной среде.

Алюминий и алюминиевые сплавы

Алюминиевые сплавы широко применяются при производстве автомобилей, самолетов, приборостроении, тракторной промышленности, многие отрасли промышленности используют алюминий на производстве.

Алюминий наиболее распространенный химический элемент после кислорода. Отлично поддается штамповки, ковке, и отливу. К тому же он гораздо легче чугуна и стали. Обладает хорошей электропроводностью.

Другие металлы

Медь широко применяется в производстве токопроводящих деталей. Медь тяжелее стали и чугуна. Обладает хорошей пластичностью.

Свинец плохой проводник тепла и тока. В промышленности применяется при производстве аккумуляторов, кабеля и т.п. Он очень мягкий и пластичный. Часто используется в соединении с другими металлами.

Цинк, своего рода тяжелый металл с сильным металлическим блеском. Большое количество цинка используется для шинкования деталей. В основном цинк применяется в сплавах. Так же цинк применяют при производстве белил.

Олово, довольно мягкий металл, широко применяемы в быту и промышленности, за счет устойчивости к воздуху, воды, слабым кислотам. Так же олово входит в состав припоев, антифрикционных сплавов и бронз.

Баббиты – это сплав на основе меди, цинка и олова, алюминия. В основном применяются для заливки подшипников в двигателях, турбин, насосов и т.п.

Бронза, разделяется на оловянную бронзу и без оловянную. Оловянные бронзы обладают высокой антикоррозийностью, а также высокими литейными свойствами. Но широкого применения они не нашли, так как олово достаточно дорогой и дефицитный металл. Зато без оловянные бронзы нашли широкое применение в промышленности.

Неметаллические материалы, используемые в машиностроении

Основой машиностроения служат металлы, но также свое применение находят и ряд неметаллических материалов. Практически все они плохо передают тепло, прочные, легкие, а также на порядок дешевле металлов.

Читайте также: