Реферат на тему мейоз

Обновлено: 08.07.2024

Чтобы жизненный цикл эукариот, обладающих половым процессом, мог продолжаться, должен был развиться механизм, посредством которого из диплоидных клеток снова могли образовываться гаплоидные. Таким механизмом стал мейоз – особый вид клеточного деления, при котором число хромосом в дочерних клетках уменьшается вдвое по сравнению с родительской клеткой.

В статье Ю.Ф.Богданова, крупнейшего специалиста по эволюции мейоза, рассматриваются современные представления о происхождении механизмов мейотического деления у эукариот.

В 1831–1833 гг. Р. Браун доказал, что одним из основных компонентов эукариотической клети является ядро. Главным компонентом ядра которой является хроматин. В конце XIX в. была установлена ведущая роль ядра в хранении и передаче наследственной информации. Однако при делении клеток их ядра разрушаются, а на их месте появляются компактные структуры, хорошо окрашиваемые некоторыми красителями. В 1888 г. немецкий гистолог В. Вальдейер назвал эти структуры хромосомами.

В 1924 г. Фёльген доказал, что в состав хромосом входит ДНК. Число хромосом постоянно для каждого вида организмов

Отдельные фазы мейоза у животных описал немецкий зоолог Вальтер Флемминг (1882), а у растений – Э дуард Страсбургер (1888), а затем российский ученый В.И. Беляев. Первое подробное описание мейоза у кролика дал Уиниуортер (1900). Бельгийский зоолог ван Беденен (1883) установил, что число хромосом в клетках тела (соматических клетках) вдвое больше, чем в половых клетках.
Мейоз

Схема основных процессов в мейозе

Интерфаза I (2n4c)

Первое деление (Редукционное)

Второе деление (Эквационное)

Телофаза II
Исходное число хромосом в клетке, которая вступает в мейоз, называется диплоидным (2n). Число хромосом в клетках, образовавшихся в ходе мейоза, называется гаплоидным (n).
Мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому его называют редукционным. Во втором делении число хромосом не изменяется; поэтому его называют эквационным (уравнивающим).
Предмейотическая интерфаза

Происходит репликация ДНК и удвоение количества хромосомного материала, в результате, каждая хромосома состоит из двух хроматид.
Первое деление мейоза (редукционное, или мейоз I)
Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).

Профаза I (профаза первого деления) включает ряд стадий.

Гомологичные хромосомы находятся в состоянии конъюгации длительный период: у дрозофилы - четверо суток, у человека больше двух недель. Все это время отдельные участки хромосом находятся в очень тесном соприкосновении. Если в таком участке произойдет разрыв цепочек ДНК одновременно в двух хроматидах, принадлежащих разным гомологам, то при восстановлении разрыва может получиться так, что ДНК одного гомолога окажется соединенной с ДНК другой, гомологичной хромосомы.

При этом достигается перекомбинация наследственных свойств родителей, что увеличивает изменчивость и дает более богатый материал для естественного отбора.


  1. Диакинез (стадия расхождения бивалентов).

Формируется веретено деления. Биваленты перемещаются в экваториальную плоскость клетки выстраиваются над и под ним, отталкиваясь друг от друга.Образуется метафазная пластинка из бивалентов.
Анафаза I (анафаза первого деления).

Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки так как в отличие от митоза центромера не делится. Разъединения хромосом на хроматиды не происходит.
Телофаза I (телофаза первого деления).

Образуются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Содержание ДНК в дочерних клетках составляет 2с.
В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.

После первого деления мейоза наступает интеркинез – короткий промежуток между двумя мейотическими делениями. Интеркинез отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.
Второе деление мейоза (эквационное, или мейоз II)

В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).
Профаза II (профаза второго деления). Не отличается существенно от профазы митоза.

Центриоль делится на две и они расходятся к полюсам клетки. Хромосомы скручиваются, укорачиваются, утолщаются. Ядрышки исчезают, ядерная оболочка растворяется. Хромосома выходит в цитоплазму. Образуется веретено деления состоящее из микротрубочек. Они прикрепляются к центромерам хромосом. Хроматиды хромосом отходят друг от друга, оставаясь связанными центромерами.

Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.
Метафаза II (метафаза второго деления). Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга.
Анафаза II (анафаза второго деления). Сестринские хромосомы расходятся к противоположным полюсам и в дальнейшем называются дочерними хромосомами.
Телофаза II (телофаза второго деления). Образуются четыре гаплоидных ядра с набором хромосом nc , затем происходит цитокинез, в результате образуются четыре клетки с набором хромосом nc.
Таким образом, в результате описанной схемы мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. Дальнейшая судьба этих клеток зависит от таксономической принадлежности организмов, от пола особи и ряда других факторов.
Типы мейоза.

Известно три типа мейоза, которые отличаются местом в жизненном цикле организмов, обеспечивая редукцию числа хромосом.

Зиготный (начальный мейоз)

Происходит сразу после оплодотворения, с первыми делениями зиготы. Он обнаружен у многих водорослей и простейших. Занимает небольшой период времени, пока существует зигота.

Гаметный(конечный) мейоз. Наблюдается у животных, а так же простейших и водорослей. В этом случае мейоз происходит во время гаметогенеза.

Споровый (промежуточный) мейоз характерен для растений. В их жизненном цикле происходит чередование поколений спорофита, который размножается спорами, и гаметофита, который размножается половым путем с помощью гамет.
При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам (зооспорам). Эти типы мейоза характерны для низших эукариот, грибов и растений. Зиготный и споровый мейоз тесно связан со спорогенезом. При гаметном мейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением. Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения.

Патологии мейоза.
Основная патология мейоза — нерасхождение хромосом. Оно может быть первичным, вторичным и третичным.

Первичное нерасхождение возникает у особей с нормальным кариотипом.

При этом на стадии анафазы I нарушается разделение бивалентов и обе хромосомы из пары гомологов переходят в одну клетку, что приводит к избытку хромосом в данной клетке и недостатку в другой.

Вторичное не расхождение возникает в гаметах у особей с избытком (трисомией) одной хромосомы в кариотипе. В результате этого в процессе мейоза образуются и биваленты, и униваленты.


Третичные нерасхождения наблюдают у особей, имеющих структурные перестройки хромосом, например транслокации. Нерасхождение хромосом отрицательно влияет на жизнеспособность организма животных.
Геномные мутации характеризуются изменением числа хро­мосом, которые могут быть некратными или кратными.

Некратное изменение числа хромосом в диплоидном наборе называется гетероплоидией. Это может сопро­вождаться отсутствием одной из хромосом - моносомия по данной паре хромосом или всей пары гомологичных хромосом – нуллисомия. Наличие одной или нескольких лишних хромосом называется полисемией, которую, в свою очередь, подразделяют на трисомию, если одна хромосома лишняя, тетрасомию - при наличии двух лишних хромосом и т. д. Название в данном случае определяется количеством гомологичных хромосом, например, если к двум име­ющимся добавляется одна лишняя, то это трисомия, если лишних две, то всего таких гомологичных хромосом четыре и нарушение называется тетрасомией и т. д. Все эти изменения отражаются и на фенотипе, так как сопровождаются либо недостатком, либо, соот­ветственно, избытком генов. Причиной возникновения гетероплоидии является нарушение расхождения хромосом в процессе мейоза. Если гомологичные хромосомы или хроматиды не разошлись, то в одну из гамет попадут сразу две хромосомы, а в другую ни одной.

При оплодотворении такой яйцеклетки гаметами с гаплоидным или диплоидным набором хромосом образуются полиплоидные зиготы.

Полиплоидные организмы обычно имеют грубые пороки развития и погибают в раннем эмбриональном периоде. Возможно нарушение расхождения отдельных хромосом в наборе; образуются гаметы, в которых отсутствует или имеется лишняя хромосома. Поэтому возникающая при оплодотворении зигота характеризуется моно-, три- или тетрасомией. Чаще всего такие расстройства несовместимы с жизнью организма и приводят к спонтанным выкидышам.
Нарушения структуры или числа хромосом в половых клетках могут касаться аутосом или половых хромосом.

Из всех синдромов, возникающих вследствие нерасхождения аутосом, наиболее распространенной патологией является болезнь Дауна (95 % от числа всех трисомий по аутосомам). При болезни Дауна наблюдается трисомия 21-й хромосомы. Клиническими признаками болезни являются низкий рост, широкое круглое лицо, близко расположенные глаза с узкими глазными щелями, полуоткрытый рот.

Для болезни характерны также идиотия и дефекты сердечно-сосудистой системы (пороки сердца и крупных сосудов).

Синдром Патау, трисомия по 13-й хромосоме, характеризуется микроцефалией, полидактилией, наличием расщелины верхней губы и неба.

Частичные трисомии и частичные моносомии выявляются при анализе причин врожденных дефектов развития новорожденных детей. Несбалансированность по генам каждой из хромосом проявляется у новорожденных в виде специфических признаков. Так, например, частичная моносомия короткого плеча 5-й хромосомы дает патологию, описанную как синдром "кошачьего крика" при котором имеются аномалии развития нижней челюсти и гортани, что сопровождается характерным изменением голоса, а также микроцефалия, пороки сердца, четырехпалость и др.

При нерасхождении половых хромосом формируется группа синдромов, для которых с клинической точки зрения наиболее характерны интеллектуальное и половое недоразвитие наряду с физическими дефектами. Так, при синдроме Тернера — Шерешевского у пациента женского пола (генотип ОХ) обнаруживаются отставание в развитии (низкий рост), половой инфантилизм, бесплодие, иногда умственная отсталость, пороки сердца и др.

У женщины при трисомий X (генотип XXX) имеются умственная отсталость и нарушения физического развития. При синдроме Клайнфелтера (генотип XXY) или сверх Клайнфелтера — (XXXY) наблюдается высокий рост с непропорционально длинными конечностями, гипоплазия яичек, недоразвитие вторичных половых признаков, бесплодие, склонность к асоциальному поведению.
Некоторые мутации, например мутации в гене р53, могут приводить к безудержному росту чила клеток. Это приводит к онкологическим заболеваниям
Таблица: Хромосомные болезни человека вызванные нарушениями в мейозе

Мендель открыл основные законы наследственности приблизительно в то же время, когда другие биологи принялись изучать строение клетки. Поэтому когда законы генетики открыли заново в 1900-х годах, ученые уже смогли понять, что так называемые факторы должны соответствовать наблюдаемым в реальности структурам - хромосомам. Отождествление абстрактных понятий и реальных структур - крупнейшее достижение генетики на ранней стадии ее развития, и оно было сделано в основном благодаря исследованию природы пола.

Файлы: 1 файл

реферат по биологии.docx

Огромное влияние на жизнь человечества в наши дни оказывают генетика и связанные с ней исследования физиологических особенностей размножения человека.

Современные люди часто не помнят или забывают о прошлом и считают, что интерес к генетике и связанным с ней вопросам возник недавно. Но можно утверждать, что интерес к вопросам размножения столь же древен, как и наш собственный биологический вид.

Размножение - основное проявление жизнедеятельности для любого вида, даже если его представители этого и не осознают.

Мендель открыл основные законы наследственности приблизительно в то же время, когда другие биологи принялись изучать строение клетки. Поэтому когда законы генетики открыли заново в 1900-х годах, ученые уже смогли понять, что так называемые факторы должны соответствовать наблюдаемым в реальности структурам - хромосомам. Отождествление абстрактных понятий и реальных структур - крупнейшее достижение генетики на ранней стадии ее развития, и оно было сделано в основном благодаря исследованию природы пола.

Мейоз (от греч. meiosis - уменьшение) - особый способ деления клеток, деление созревания, в результате которого происходит редукция (уменьшение) числа хромосом и переход клеток их диплоидного состояния в гаплоидное. Мейоз - это особый тип дифференцировки, специализации клеток, который приводит к образованию половых клеток. Этот процесс занимает два клеточных цикла при отсутствии синтеза ДНК во втором мейотическом делении. Необходимо отметить, что мейоз представляет собой универсальное явление, характерное для всех эукариотических организмов. При мейозе происходит не только редукция числа хромосом до гаплоидного их числа, но происходит чрезвычайно важный генетический процесс - обмен участками между гомологичными хромосомами, процесс, получивший название кроссинговера.

Существует несколько разновидностей мейоза:

1) При зиготном (характерном для аскомицетов, базимицетов, некоторых водорослей, споровиков и др.), для которых в жизненном цикле преобладает гаплоидная фаза, две клетки - гаметы сливаются, образуя зиготу с двойным (диплоидным) набором хромосом. В таком виде диплоидная зигота (покоящаяся спора) приступает к мейозу, дважды делиться, и образуется четыре гаплоидные клетки, которые продолжают размножаться.

2) Споровый тип мейоза встречается у высших растений, клетки которых имеют диплоидный набор хромосом. В данном случае в органах размножения растений, образовавшиеся после мейоза гаплоидные клетки еще несколько раз делятся.

3) Тип мейоза, гаметный, происходит во время созревания гамет - предшественников зрелых половых клеток. Он встречается у многоклеточных животных, среди некоторых низших растений.

В случае гаметного мейоза характерно при развитии организма выделение клонов герминативных клеток, которые впоследствии будут дифференцироваться в половые клетки. И только клетки этих клонов будут при созревании подвергаться мейозу и превращаться в половые клетки.

Следовательно, все клетки развивающихся многоклеточных животных организмов можно разделить на две группы: соматические - из которых будут образовываться клетки всех тканей и органов, и герминативные, которые дадут начало половым клеткам.

Такое выделение герминативных клеток (гоноцитов) обычно происходит на ранних стадиях эмбрионального развития. Так, аскариды герминативные клетки или клетки "зародышевого пути" (А.Вейсман) выделяются на стадии 16 бластомеров, у дрозофилы - на стадии бластоцисты, у человека - первичные половые клетки (гонобласты) появляются на 3-ей неделе эмбрионального развития в стенке желточного мешка в каудальном отделе эмбриона.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Выполнил: обучающийся группы № 42

Проверил: преподаватель Пинаева А.Н.

Понимание того факта, что половые клетки гаплоидны и поэтому должны формироваться с помощью особого механизма клеточного деления, пришло в результате наблюдений, которые к тому же едва ли не впервые навели на мысль, что хромосомы содержат генетическую информацию. В 1883 г. было обнаружено, что ядра яйца и спермия определенного вида червей содержат лишь по две хромосомы, в то время как в оплодотворенном яйце их уже четыре. Хромосомная теория наследственности могла, таким образом, объяснить давний парадокс, состоящий в том, что роль отца и матери в определении признаков потомства часто кажется одинаковой, несмотря на огромную разницу в размерах яйцеклетки и сперматозоида.

Еще один важный смысл этого открытия состоял в том, что половые клетки должны формироваться в результате ядерного деления особого типа, при котором весь набор хромосом делится точно пополам. Деление такого типа носит название мейоз (слово греческого происхождения, означающее "уменьшение". Именно мейоз лежит в основе законов наследования Менделя и хромосомной теории наследственности. Название другого вида деления клеток - митоз - происходит от греческого слова, означающего "нить", в основе такого выбора названия лежит нитеподобный вид хромосом при их конденсации во время деления ядра - данный процесс происходит и при митозе, и при мейозе). Поведение хромосом во время мейоза, когда происходит редукция их числа, оказалось более сложным, чем предполагали раньше. Поэтому важнейшие особенности мейотического деления удалось установить только к началу 30-х годов XХ в. в итоге огромного числа тщательных исследований.

Интерес к мейозу резко возрос в конце 60-х годов, когда выяснилось, что одни и те же контролируемые генами ферменты могут принимать участие в процессах воспроизведения ДНК, обмене ее участками, ее чувствительности к повреждающим воздействиям. Наконец, в последнее время ряд биологов развивает оригинальную идею: мейоз у высших организмов служит гарантом стабильности генетического кода, ибо в процессе мейоза, когда пары хромосом-гомологов тесно соприкасаются, происходит проверка нитей ДНК на точность и восстановление повреждений, затрагивающих сразу обе нити [2, 3]. Изучение мейоза тесно связало методы и интересы двух наук: цитологии и генетики. Это привело к рождению новой ветви знания - цитогенетики, тесно соприкасающейся ныне с молекулярной биологией и генной инженерией.

Отдельные фазы мейоза у животных описал В. Флемминг (1882), а у растений – Э. Страсбургер (1888), а затем российский ученый В.И. Беляев. В это же время (1887) А. Вайсман теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Первое подробное описание мейоза в ооцитах кролика дал Уиниуортер (1900). Изучение мейоза продолжается до сих пор.

Мейо́з (от др.-греч. μείωσις — уменьшение) или редукционное деление клетки — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом — образованием специализированных половых клеток , или гамет , из недифференцированных стволовых .

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса .

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов . Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет (основным средством борьбы с этой проблемой является применение полиплоидных хромосомных наборов, поскольку в данном случае каждая хромосома конъюгирует с соответствующей хромосомой своего набора) . Определённые ограничения на конъюгацию хромосом накладывают и хромосомные перестройки (масштабные делеции , дупликации , инверсии или транслокации ).

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

  1. Профаза I — профаза первого деления очень сложная и состоит из 5 стадий:
  2. Лептотена или лептонема — упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).
  3. Зиготена или зигонема — происходит конъюгация — соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.
  4. Пахитена или пахинема — (самая длительная стадия) — в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы . В них происходит кроссинговер — обмен участками между гомологичными хромосомами.
  5. Диплотена или диплонема — происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток .
  6. Диакинез — ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

  1. Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки.
  2. Анафаза I — микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе .
  3. Телофаза I — хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки . В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца (абортивные дериваты первого и второго делений).

Мито́з ( др.-греч. μίτος — нить) — непрямое деление клетки , наиболее распространенный способ репродукции эукариотических клеток . Биологическое значение митоза состоит в строго одинаковом распределении хромосом между дочерними ядрами , что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений.

Митоз — один из фундаментальных процессов онтогенеза . Митотическое деление обеспечивает рост многоклеточных эукариот за счёт увеличения популяций клеток тканей . В результате митотического деления клеток меристем увеличивается количество клеток тканей растений . Дробление оплодотворённого яйца и рост большинства тканей у животных также происходит путём митотических делений.

Продолжительность митоза в среднем составляет 1—2 часа. Митоз клеток животных, как правило, длится 30—60 минут, а растений — 2—3 часа. За 70 лет в теле человека суммарно осуществляется порядка 10 14 клеточных делений.

Митоз является важным средством поддержания постоянства хромосомного набора . В результате митоза осуществляется идентичное воспроизведение клетки. Следовательно, ключевая роль митоза — копирование генетической информации.

Митоз происходит в следующих случаях:

  1. Рост и развитие. Количество клеток в организме в процессе роста увеличивается благодаря митозу. Это лежит в развитии многоклеточного организма из единственной клетки — зиготы , а также роста многоклеточного организма.
  2. Перемещение клеток. В некоторых органах организма , например, коже и пищеварительном тракте , клетки постоянно отшелушиваются и заменяются новыми. Новые клетки образуются путём митоза, а потому являются точными копиями своих предшественников. Схожим путём поисходит замена красных кровяных клеток — эритроцитов , имеющих короткую продолжительность жизни — 4 месяца, а новые эритроциты формируются путём митоза.
  3. Регенерация. Некоторые организмы способны восстанавливать утраченные части тела. В этих случаях образование новых клеток часто идёт путём митоза. Например, благодаря митозу морская звезда восстанавливает утраченные лучи.
  4. Бесполое размножение. Некоторые организмы образуют генетически идентичное потомство путём бесполого размножения . Например, гидра размножается бесполым способом при помощи почкования . Поверхностные клетки гидры подвергаются митозу и образуют скопления клеток, называемые почками. Митоз продолжается и в клетках почки, и она вырастает во взрослую особь. Сходное клеточное деление происходит при вегетативном размножении растений.

Биологическое значение мейоза заключается в поддержании постоянства кариотипа в ряду поколений организмов данного вида и обеспечении возможности рекомбинации хромосом и генов при половом процессе. Мейоз - один из ключевых механизмов наследственности и наследственной изменчивости. Поведение хромосом при мейозе обеспечивает выполнение основных законов наследственности. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Диплом на заказ

Узнать стоимость написания работы -->

МЕЙОЗ – это деление клетки, при котором происходит редукция числа хромосом и их перекомбинация у дочерних клеток по сравнению с материнской. Мейоз – основа полового размножения, при котором потомство не идентично родителям. Важнейшая его эволюционная роль – барьер на пути нежизнеспособных комбинаций хромосом и генов. Мейоз протекает в два деления, первое из которых называется редукционным (в процессе именно этого деления количество хромосом у дочерних клеток уменьшается в два раза), а второе – эквационным (в результате него происходит равномерное распределение хромосом по дочерним клеткам, оно аналогично митозу).



Половое размножение организмов осуществляется с помощью специализированных клеток, т.н. гамет, – яйцеклетки (яйца) и спермия (сперматозоида). Гаметы, сливаясь, образуют одну клетку – зиготу. Каждая гамета гаплоидна, т.е. имеет по одному набору хромосом. Внутри набора все хромосомы разные, однако каждой хромосоме яйцеклетки соответствует одна из хромосом спермия. Зигота, таким образом, содержит уже пару таких соответствующих друг другу хромосом, которые называют гомологичными. Гомологичные хромосомы сходны, поскольку имеют одни и те же гены или их варианты (аллели), определяющие специфические признаки. Например, одна из парных хромосом может иметь ген, кодирующий группу крови А, а другая – его вариант, кодирующий группу крови В. Хромосомы зиготы, происходящие из яйцеклетки, являются материнскими, а происходящие из спермия – отцовскими.

В результате многократных митотических делений из образовавшейся зиготы возникает либо многоклеточный организм, либо многочисленные свободноживущие клетки, как это происходит у обладающих половым размножением простейших и у одноклеточных водорослей.

При образовании гамет диплоидный набор хромосом, имевшийся у зиготы, должен наполовину уменьшиться (редуцироваться). Если бы этого не происходило, то в каждом поколении слияние гамет приводило бы к удвоению набора хромосом. Редукция до гаплоидного числа хромосом происходит в результате редукционного деления – т.н. мейоза, который представляет собой вариант митоза.


(23.48 Кб)

Расщепление и рекомбинация. Особенность мейоза состоит в том, что при клеточном делении экваториальную пластинку образуют пары гомологичных хромосом, а не удвоенные индивидуальные хромосомы, как при митозе. Парные хромосомы, каждая из которых осталась одинарной, расходятся к противоположным полюсам клетки, клетка делится, и в результате дочерние клетки получают половинный, по сравнению с зиготой, набор хромосом.

Для примера предположим, что гаплоидный набор состоит из двух хромосом. В зиготе (и соответственно во всех клетках организма, продуцирующего гаметы) присутствуют материнские хромосомы А и В и отцовские А' и В'. Во время мейоза они могут разделиться следующим образом:


Наиболее важен в этом примере тот факт, что при расхождении хромосом вовсе не обязательно образуется исходный материнский и отцовский набор, а возможна рекомбинация генов, как в гаметах АВ' и А'В в приведенной схеме.

Теперь предположим, что пара хромосом АА' содержит два аллеля – a и b – гена, определяющего группы крови А и В. Сходным образом пара хромосом ВВ' содержит аллели m и n другого гена, определяющего группы крови M и N. Разделение этих аллелей может идти следующим образом:


Очевидно, что получившиеся гаметы могут содержать любую из следующих комбинаций аллелей двух генов: am, bn, bm или an.

Если имеется большее число хромосом, то пары аллелей будут расщепляться независимо по тому же принципу. Это означает, что одни и те же зиготы могут продуцировать гаметы с различными комбинациями аллелей генов и давать начало разным генотипам в потомстве.

Мейотическое деление. Оба приведенных примера иллюстрируют принцип мейоза. На самом деле мейоз – значительно более сложный процесс, так как включает два последовательных деления. Главное в мейозе то, что хромосомы удваиваются только один раз, тогда как клетка делится дважды, в результате чего происходит редукция числа хромосом и диплоидный набор превращается в гаплоидный.

Во время профазы первого деления гомологичные хромосомы конъюгируют, т. е. сближаются попарно. В результате этого очень точного процесса каждый ген оказывается напротив своего гомолога на другой хромосоме. Обе хромосомы затем удваиваются, но хроматиды остаются связанными одна с другой общей центромерой.

В метафазе четыре соединенные хроматиды выстраиваются, образуя экваториальную пластинку, как если бы они были одной удвоенной хромосомой. В противоположность тому, что происходит при митозе, центромеры не делятся. В результате каждая дочерняя клетка получает пару хроматид, все еще связанных цетромерой. Во время второго деления хромосомы, уже индивидуальные, опять выстраиваются, образуя, как и в митозе, экваториальную пластинку, но их удвоения при этом делении не происходит. Затем центромеры делятся, и каждая дочерняя клетка получает одну хроматиду.

Деление цитоплазмы. В результате двух мейотических делений диплоидной клетки образуются четыре клетки. При образовании мужских половых клеток получается четыре спермия примерно одинаковых размеров. При образовании же яйцеклеток деление цитоплазмы происходит очень неравномерно: одна клетка остается крупной, тогда как остальные три настолько малы, что их почти целиком занимает ядро. Эти мелкие клетки, т.н. полярные тельца, служат лишь для размещения избытка хромосом, образовавшихся в результате мейоза. Основная часть цитоплазмы, необходимой для зиготы, остается в одной клетке – яйцеклетке.

Конъюгация и кроссинговер. Во время конъюгации хроматиды гомологичных хромосом могут разрываться и затем соединяться в новом порядке, обмениваясь участками следующим образом:


Этот обмен участками гомологичных хромосом называется кроссинговером (перекрестом). Как показано выше, кроссинговер ведет к возникновению новых комбинаций аллелей сцепленных генов. Так, если исходные хромосомы имели комбинации АВ и ab, то после кроссинговера они будут содержать Ab и aB. Этот механизм появления новых генных комбинаций дополняет эффект независимой сортировки хромосом, происходящей в ходе мейоза. Различие состоит в том, что кроссинговер разделяет гены одной и той же хромосомы, тогда как независимая сортировка разделяет только гены разных хромосом.

Читайте также: