Реферат на тему медицина будущего

Обновлено: 02.07.2024

Биотех и медицина – одни из самых модных, востребованных и интересных направлений в высокотехнологичном бизнесе. Тысячи амбициозных стартапов привлекают миллиарды инвестиций и представляют продукты, которым место скорее на страницах фантастических романов. Хирурги, которые видят ваше тело насквозь, неразличимые глазом датчики, анализирующие информацию о вашем самочувствии, кибернетические конечности для инвалидов, лазерные скальпели, генная терапия, роботы-сиделки и многое другое. Как все это меняет мир медицины и что нас ждет в ближайшем будущем?

Диагностика

Основа лечения — правильный диагноз, поэтому почти треть современных компаний в биотехе так или иначе связаны с мониторингом физического состояния человека. Наиболее перспективное направление развития — внедрение в организм микродатчиков. Это могут быть небольшие таблетки вроде создаваемых FitBit, или биометрические татуировки, такие как VivaLNK, или RFID — микрочипы, имплантируемые под кожу. Подобные датчики не только в режиме реального времени измеряют все важные параметры здоровья, но и создают полноценную медицинскую карту в облаке, которую может использовать лечащий врач.

Проекты вроде Qualcomm Tricorder X Prize или Viatom Check Me, измеряющие пульс, температуру тела, насыщение ее кислородом, систолическое и артериальное давление, физическую активность и сон, открывают новую страницу в медицинской помощи. Вместо текущих симптомов врач видит динамику на протяжении месяцев. Сами пациенты получают возможность оперативнее замечать негативные изменения в своем состоянии, а медицинские и страховые компании использовать больше данных для оптимизации расходов на лечение и страхование.

Замена и модификация органов

Медицинская 3D-печать и биотехнологическая промышленность заново проектируют весь мир фармацевтики и донорских органов. 2016 был годом успешной 3D-печати печени, артерии и кости. Пересаженные органы показали успешное приживление: поскольку новые ткани основаны на генетической карте самого пациента, то риск отторжения при удачной пересадке минимален. Более того, новые органы сами развивали в себе сеть сосудов и капилляров. В этом году Harvard’s Wyss Institute вплотную приблизился к созданию искусственной почки. И уже в ближайшем будущем врачи смогут напечатать замену для любого органа в нашем теле. Аналогичная ситуация в фармацевтике – 3D-принтеры будут готовить для пациентов дозы лекарств, распечатанных на месте по модели, подготовленной индивидуально лечащим врачом.

Параллельно с печатью живых органов развивается индустрия создания киборгов. Сейчас автоматизированные протезы имеют замещающий характер: миллионы пациентов носят имплантированные дефибрилляторы или кардиостимуляторы, роботизированные конечности, подключенные к нервной сети. Но потенциал развития данного направления гораздо выше, чем простое замещение. Достижения в области будущей медицинской техники будут направлены не столько на ремонт физических недостатков, сколько на создание органов более совершенных, чем спроектированные эволюцией. Зрение во всех областях спектра, усиленные мышцы, сердце, которое никогда не перестанет биться, легкие, позволяющие дышать под водой или в удушливом дыму и т. д. Но пока такие направления остаются чисто теоретическими, работают гораздо более простые, но тем не менее эффективные проекты вроде е-NABLING. Это программа по свободному обмену 3D-моделями доступных протезов плюс инструкции по их печати и эксплуатации.

Исследования

Следующее важнейшее направление биотеха — модернизация процесса R&D. В этой области отчетливо заметны два крупнейших направления: изучение генома человека и моделирование физических процессов с помощью специализированных программ. В мире уже испытывается целая серия микрочипов, которые могут быть использованы в качестве моделей человеческих клеток, органов или целых физиологических систем. Преимущества такой инновации неоспоримы: вместо долгих и опасных исследований компании могут программировать поведение и реакцию человека на тот или иной раздражитель в контексте биотеха на разрабатываемые лекарства. Эта технология спровоцирует революцию в области клинических испытаний и полностью заменит тестирование на животных и людях.

Проект расшифровки генома человека начался около 30 лет назад, но настоящие прорывы были связаны с ростом вычислительной производительности компьютеров. Сейчас эта работа близка к завершению, определено большинство функций генов в ДНК-цепочке человека. На практике это означает начало эры персонализированной медицины, когда каждый пациент сможет получить индивидуальную терапию с настраиваемыми лекарствами и дозировками. Уже сейчас существуют сотни основанных на фактических данных приложений для персональной геномики. Метод быстрого генетического секвенирования был впервые применен командой Стивена Кингсмора для спасения жизни маленького мальчика в 2013 году. Тогда это было невероятным, крайне затратным и уникальным по своей эффективности случаем. Уже в ближайшем будущем это станет обыденной медицинской практикой.

Операции будущего и новое образование

В медицине еще долго будет необходимо присутствие живых врачей. Но благодаря технологиям у них в распоряжении будет нечто большее, чем два обычных глаза: на помощь придет дополненная реальность. Уже сейчас эта, на первый взгляд развлекательная, технология начинает проникать в медицинскую сферу. Цифровые контактные линзы от Google корректируют курс лечения диабета через измерение уровня глюкозы в слезных протоках. Разработка Microsoft Hololens (использование AR во время операций) уже проходит тестирование в Германии. Получаемые через сканирование данные проецируются на очки хирургу, так что доктор буквально может смотреть сквозь тело пациента, видеть кровеносные сосуды перед началом разреза, определять плотность и структуру ткани. Как дополнительное улучшение можно использовать интеллектуальные инструменты: например, хирургический нож iKnife от Imperial College работает как световой меч джедаев. Электрический ток позволяет делать надрезы с минимальной потерей крови, а испаренный дым анализируется масспектрометром в режиме реального времени, давая хирургу полную картину по составу тканей организма.

Еще одна сфера применения AR – программы медицинского обучения. В 2016 году доктор Шафи Ахмед провела первую операцию с использованием камер виртуальной реальности в больнице Royal London. Каждый желающий мог наблюдать за ней в режиме реального времени через две камеры, дающие обзор в 360 градусов. Технологии могут совершенно изменить форматы профильного образования: молодые медики будут изучать анатомию на виртуальных таблицах рассечения, а не на человеческих трупах, а сотни учебных томов будут преобразованы в виртуальные 3D-решения и модели с использованием дополненной реальности. Именно в этом направлении сейчас работают такие компании, как Anatomage, ImageVis3D и 4DAnatomy: интерактивный софт, построенный на дополненной реальности и моделировании ресурсов.

Забота о пациентах и медицинский суперкомпьютер

Роботы постепенно входят в мир заботы о пациентах. Работа врача – поставить диагноз, назначить лечение или провести операцию, а круглосуточный уход можно переложить на плечи разумных автоматов. Сейчас на рынке развиваются сразу несколько подобных проектов. Робот TUG – мобильное устройство, способное нести несколько стоек, тележек или отсеков, содержащих препараты, лабораторные образцы или другие чувствительные материалы. RIBA и Robear используются в работе с пациентами, которые нуждаются в помощи: оба могут поднимать и перемещать пациентов в постели, помочь пересесть в инвалидную коляску, встать или приподняться, чтобы предотвратить пролежни, взять ряд анализов и передать их врачи.

Помимо механических помощников в медицине активно используются методики машинного обучения. Разрабатываемый IBM Watson – искусственный интеллект в области медицины, будет помогать врачам в анализе больших данных, мониторинге как отдельных пациентов, так и целых социальных групп, принятии важных клинических и профилактических решений. Watson имеет возможность прочитать 40 млн. документов в течение 15 секунд и предложить наиболее подходящие методы лечения. Также суперкомпьютеры привлекаются к разработке лекарственных средств для моделирования их влияния на различные болезни, сокращения побочных эффектов и поиска оптимальных химических формул. Еще одно направление – статистика и администрирование. Google Deepmind Health использует данные медицинской документации, чтобы обеспечить наиболее востребованные, эффективные и быстрые услуги в области здравоохранения.

В качестве резюме

Нельзя не упомянуть и о рисках, которые несут в себе прогрессивные технологии. Например, развитие видеоигр спровоцировало синдром зависимости и даже посттравматические расстройства, шлемы виртуальной реальности вызывают привыкание и проблемы со зрением и координацией. Медицинский 3D-принтер наверняка сможет распечатывать не только полезные витамины, но и героин. А лекарства на основе генома в руках террористов – потенциальная угроза появления биологического оружия. Как и любой аспект прогресса, развитие медицины несет в себе множество угроз, и какая чаша весов в итоге перевесит, предсказать невозможно.


2. Абрамова Г.С. Возрастная психология: Учебное пособие для студентов вузов/ Г. С. Абрамова // – 4-е изд. – М.: Академич. проект, 2003. – 670 с.

9. Савченков М.Ф. Здоровый образ жизни как фактор активного долголетия / М.Ф. Савченков, Л.М. Соседова // Сибирский медицинский журнал (Иркутск). 2011. – Т. 103, № 4. – С. 138–143.

10. Широкова И. Будущее медицины: взгляд за горизонт / И. Широкова // Ремедиум. Журнал о российском рынке лекарств и медицинской технике. – 2009. – № 8–9. – С. 8–14.

В настоящее время медицина является одной из самых интенсивно прогрессирующих областей науки, в которую активно интегрируют применение высоких технологий с целью ее улучшения. Например, уже сегодня производится внедрение специального программного обеспечения, в задачи которого входят диагностика состояния здоровья человека, наблюдение, анализ и, по необходимости, дальнейшее направление отчетов соответствующим медицинским специалистам. Будущее медицины в конечном итоге направлено на продление жизни. Но медицина будущего намного интереснее, чем лекарства от рака или лечения болезни Альцгеймера.

Если медицине и не удастся пока качественно выращивать органы, то есть и второй вариант – киборгизация человека. К примеру, остановившееся сердце человека можно будет заменить на более стойкий к износу аналог. Стоит отметить, что в 2011 году одному из американских пациентов полностью удалили сердце и поставили вместо него два ротора, качающих кровь [6].

Относительно давно уже на сердце ставят искусственные стимуляторы, и основной проблемой таких устройств было то, что их нужно было менять через каждые несколько лет. Сегодня же израильскими учеными разработаны стимуляторы (и не только стимуляторы, но и другие искусственные приспособления), которые питаются биотоками человеческого тела, возникающими от мышечного сокращения [6].

Ну и какое же будущее в медицине возможно без развития ранней диагностики? На самом деле большинство неизлечимых или трудноизлечимых заболеваний возникают именно из-за того, что пациенты слишком поздно обращаются за профессиональной медицинской помощью или же из-за некачественного оборудования.

Новые технологии будут максимально простыми, удобными в использовании, а главное – очень точными. Благодаря им медики смогут определять возникновение всех заболеваний на очень ранних стадиях, а значит, процесс лечения тоже упростится, и будет менее болезненным и дорогостоящим.

Наука уже сделала существенные шаги в этом направлении, вспомнить хотя бы всевозможные приборы, позволяющие следить за давлением человека, уровнем сахара в крови, и т.д.

В будущем планируется создание небольших датчиков, которые можно будет вживлять в кожу человека или же вшивать в его одежду. При помощи таких биосенсорных механизмов каждый сможет следить за общим состоянием своего организма, в том числе и о таких показателях, как частота сердечных сокращений, давление, уровень сахара в крови, уровень гормонов и о многих других, не менее важных. Эти данные будут передаваться вашему лечащему врачу, и в случае каких-либо нарушений он сразу же вам об этом сообщит и предложит курс лечения на ранних стадиях заболевания или же в качестве профилактики [5].

Специалисты уверены: в обозримом будущем медицина станет персонализированной, она будет основываться на подборе лечения с учетом индивидуальных генетических особенностей человека. По некоторым оценкам, в 2030 году персонализированная медицина будет занимать около 25 % объема фармацевтического рынка (250 млрд долл.). При этом значительно расширится диапазон лекарств [10].

Процесс старения представляет собой генетически запрограммированный процесс, который сопровождается определенными возрастными изменениями в организме [2]. С возрастом снижается интенсивность обменных процессов. Также возрастает риск развития атеросклероза, гипертонической болезни, инфаркта миокарда, инсульта, сахарного диабета, опухолевых и других заболеваний. В старости происходит естественное и обязательное снижение силы и ограничение физических возможностей человека. Эти процессы касаются и психической деятельности, что проявляется в снижении силы и подвижности психических процессов. Пожилые люди не настолько сильны и не способны, как в молодости, выдерживать длительную физическую или нервную нагрузку; общий запас энергии становится у них все меньше и меньше; нарастает обезвоживание организма, что приводит ко многим нарушениям, в первую очередь, со стороны костно-мышечной системы. Из-за ослабления чувствительности нервной системы пожилые и старые люди замедленно реагируют на изменения внешней температуры и поэтому больше подвержены неблагоприятному воздействию жары и холода. Внешние проявления выражаются в ослаблении чувства равновесия, в потере аппетита, в потребности более яркой освещенности пространства и т.д. [9].

В пожилом возрасте легко развивается витаминная недостаточность, что вызывает необходимость повысить в пище пожилых и старых людей содержание ряда витаминов (А, Е, С), ограничить введение витамина D, способствующего отложению в стенках сосудов кальция и холестерина. В настоящее время учеными было доказано, что увеличению продолжительности жизни способствует умеренность в питании за счет существенного уменьшения потребления сладкой и жирной пищи. Увеличения в рационе хлеба с отрубями или из нескольких злаков, маложирных молочных и кисломолочных продуктов, доступной по цене рыбы, источников дефицитных в питании пищевых волокон – овсяной, гречневой, перловой, пшенной круп. Необходимо увеличить потребление сырых или приготовленных овощей и фруктов, желательно местного производства. Шире следует использовать: грибы, ягоды и орехи. Все эти продукты стимулируют пищеварение, способствуют восстановлению работы кишечника, желчного пузыря, поджелудочной железы, снижают риск развития выше перечисленных заболеваний [9].

Одна из важнейших причин развития преждевременного старения – недостаточность мышечной деятельности. Вот почему эффективным средством борьбы за долгую и активную жизнь являются систематические, правильно организованные занятия физическими упражнениями, использование естественных сил природы с целью закаливания, организация рационального режима деятельности и отдыха [4].

Остановить процесс старения как таковой полностью невозможно. Однако успешно бороться с его интенсивным течением – в силах каждого желающего. Необратимые изменения в организме происходят по многим причинам. Не в последнюю очередь этому способствуют эмоциональные перегрузки, стресс, злоупотребление алкоголем, курение, нерациональное питание и, конечно же, негативное отношение к жизни и окружающим.

В последнее время мировая медицина достигла значительных результатов в борьбе с преждевременным старением. Это стало возможным благодаря изобретению уникальных препаратов, использованию новейшей техники, а также профилактическим мероприятиям, активно внедряемым в жизни общества. Широкое применение получили сравнительно новые методики, позволяющие повысить общий жизненный тонус организма и его иммунитет. Примером тому краниосакральная терапия (КСТ). При ее проведении практически не применяются химические препараты и сложное оборудование. Тем не менее, КСТ благотворно влияет на сосуды головного мозга, улучшает работу опорно-двигательного аппарата и других систем организма.

Несомненным достоинством сегодняшней медицины стала ее кардинальная переориентация – от борьбы с симптомами к поиску причин тех или иных патологий. В этом направлении достигнуты немалые успехи, прежде всего, в области изучения психофизических факторов заболеваний. Пропагандируя здоровый образ жизни, современная медицина, в частности, указывает на необходимость сбалансированного питания и соблюдения режима, что особенно важно для поддержания нервной системы [3].

В coвременных экономических условиях пожилые люди занимают в обществе маргинальное социокультурное положение. Ограничение в физической способности, набора социальных ролей и культурных форм активности сужает рамки их образа жизни. Поэтому особое значение необходимо придать досугу после ухода на пенсию или в связи с болезнью, когда пожилой человек должен адаптироваться к новым условиям к жизни вне сферы трудовой деятельности. Досуг и отдых направлены на реабилитацию пожилых людей путем достижения жизненно важных для них целей. Cсущественное значение имeет психологическая мотивация пожилого человека для участия в проведении досуга [9].

Таким образом, активному долголетию пожилого человека способствует много факторов, ведущими психологическими среди которых можно считать такие: развитие его как социально активной личности, как субъекта творческой деятельности и яркой индивидуальности. И здесь огромную роль играет высокий уровень самoорганизации, сознательной самoрегуляции своего образа жизни и жизнедеятельности [7].

Время без болезней. Как люди будут жить в таком мире? Как развитие технологий изменит наше мировоззрение? Футурологи отмечают, что это важнейшие вопросы, на которые уже очень скоро необходимо будет находить решения. Скорость развития показывает экспоненциальный рост. Невероятными темпами ученые совершают открытия и проводят успешные испытания новейших технологий. Ожидаемая революция в области медицины относительно рядом. Нам остается лишь дожить до этого времени, когда мы сможем наслаждаться жизнью столько, сколько захотим.

Стремительное развитие биологической науки, обусловленное появлением высокопроизводительных приборов и созданием методов манипулирования информационными биополимерами и клетками, подготовило фундамент для развития медицины будущего.

3. Использование микробиома. 16

Список использованных источников. 22

Стремительное развитие биологической науки, обусловленное появлением высокопроизводительных приборов и созданием методов манипулирования информационными биополимерами и клетками, подготовило фундамент для развития медицины будущего. В результате исследований последних лет были разработаны эффективные диагностические методы, появились возможности для рационального конструирования противовирусных, противобактериальных и противоопухолевых препаратов, средств генотерапии и геномного редактирования. Современные биомедицинские технологии все в большей степени начинают влиять на экономику и определять качество жизни людей.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Для управления здоровьем необходимо иметь эффективные и простые малоинвазивные методы ранней диагностики заболеваний и определения индивидуальной чувствительности к терапевтическим препаратам, а также факторам внешней среды. Например, должны быть решены (и уже решаются) такие задачи, как создание систем для генной диагностики и выявления возбудителей инфекционных заболеваний человека, разработка методов количественного определения белков и нуклеиновых кислот – ​маркеров заболеваний.

Во время развития онкологических заболеваний клетки подвергаются эпигенетическим модификациям, таким как метилирование ДНК. Это приводит к инактивации генов-супрессоров опухолевого роста, а характер метилирования некоторых генов может служить одним из диагностических опухолевых маркеров (Павлов и др., 2011). На графике – степень метилирования нуклеотида цитозина в промоторной области гена глутатион-S-трансферазы P1 (GSTP1). Этот показатель заметно различается у здоровых мужчин и больных раком предстательной железы

Отдельно стоит выделить создание методов ранней неинвазивной диагностики (жидкостная биопсия) опухолевых заболеваний, основанных на анализе внеклеточной ДНК и РНК. Источником таких нуклеиновых кислот служат как погибшие, так и живые клетки. В норме их концентрация относительно низка, но обычно возрастает при стрессе и развитии патологических процессов. При возникновении злокачественной опухоли в кровоток попадают нуклеиновые кислоты, выделяемые раковыми клетками, и такие характерные циркулирующие РНК и ДНК могут служить маркерами заболевания.

Сейчас на основе подобных маркеров разрабатываются подходы к ранней диагностике рака, методы прогнозирования риска его развития, а также оценки степени тяжести течения болезни и эффективности терапии. Например, в Институте химической биологии и фундаментальной медицины СО РАН было показано, что при раке предстательной железы повышается степень метилированияопределенных участков ДНК. Был разработан метод, позволяющий выделить из образцов крови циркулирующую ДНК и проанализировать характер ее метилирования. Этот способ может стать основой точной неинвазивной диагностики рака простаты, которой на сегодня не существует.

В ИХБФМ СО РАН методом высокопроизводительного параллельного секвенирования на платформе SOLiD проанализировано разнообразие малых некодирующих РНК в плазме крови у здоровых людей и больных немелкоклеточным раком легкого. Удалось охарактеризовать изменения внеклеточного транскриптома (совокупности всех молекул РНК, синтезирующихся в организме человека при образовании злокачественных опухолей). На диаграмме отражены уровни экспрессии микроРНК в образцах, полученных от здоровых доноров и пациентов с плоскоклеточной карциномой. Анализ этой информации позволил установить значимые различия в уровнях экспрессии 18 микроРНК у здоровых и больных людей, что может иметь потенциальную диагностическую ценность (Ponomaryova, Morozkinetal., 2016)

Современные технологии с применением биологических микрочипов позволяют быстро и эффективно идентифицировать возбудителей ряда болезней (туберкулеза, СПИДа, гепатитов В и С, сибирской язвы, инфекций новорожденных), фиксировать наличие определенных биотоксинов, определять хромосомные транслокации при лейкозах, регистрировать белковые маркеры онкозаболеваний, определять генетическую предрасположенность к болезням и индивидуальную чувствительность к некоторым типам терапии. Технологии также можно использовать для генетической идентификации личности при проведении судебно-генетических экспертиз и формирования баз данных ДНК.
ИХБФМ СО РАН участвовал в реализации двух крупных международных проектов по разработке олигонуклеотидных микрочипов, финансировавшихся американской Программой сотрудничества в области биотехнологий Департамента здравоохранения США (BiotechnologyEngagementProgram, US DepartmentofHealthandHumanServices, BTEP/DHHS). В рамках первого проекта с участием специалистов ИМБ им. В. А. Энгельгардта созданы микрочипы, позволяющие точно идентифицировать различные штаммы вирусов оспы и герпеса. Были разработаны два варианта конструкции микрочипов (на стеклянной подложке и с гелевыми спотами), а также портативный флуоресцентный детектор для их анализа. В рамках второго проекта был создан универсальный микрочип для типирования вируса гриппа А, позволяющий достоверно различать 30 подтипов этого вируса на основе определения двух поверхностных белков вируса – ​гемагглютинина и нейраминидазы

С помощью современных технологий секвенирования РНК и ДНК может быть создана платформа для диагностики и прогноза онкологических заболеваний человека на основе анализа содержания микроРНК и генотипирования, т. е. установления конкретных генетических вариантов того или иного гена, а также для определения профилей экспрессии (активности) генов. Такой подход предполагает возможность быстрого и одновременного проведения множества анализов с помощью современных устройств – ​биологических микрочипов.

Гелевыйбиочип для определения генотипа и подтипа вируса гепатита С, созданный в ИМБ РАН (Москва). Фото из архива лаборатории биологических микрочипов ИМБ РАН

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Биочипы представляют собой миниатюрные приборы для параллельного анализа специфических биологических макромолекул. Идея создания подобных устройств родилась в Институте молекулярной биологии им. В. А. Энгельгардта Российской академии наук (Москва) еще в конце 1980-х гг. За короткое время биочиповые технологии выделились в самостоятельную область анализа с огромным спектром практических приложений, от исследования фундаментальных проблем молекулярной биологии и молекулярной эволюции до выявления лекарственно устойчивых штаммов бактерий.

Сегодня в ИМБ РАН производятся и используются в медицинской практике оригинальные тест-системы для идентификации возбудителей ряда социально значимых инфекций, в том числе таких как туберкулез, с одновременным выявлением их резистентности к антимикробным препаратам; тест-системы для оценки индивидуальной переносимости препаратов группы цитостатиков и многое другое.

Развитие биоаналитических диагностических методов требует постоянного повышения чувствительности – ​способности давать достоверный сигнал при регистрации малых количеств детектируемого вещества. Биосенсоры – ​это новое поколение устройств, позволяющих специфично анализировать содержание различных маркеров заболеваний в образцах сложного состава, что особенно важно при диагностике заболеваний.

ИХБФМ СО РАН в сотрудничестве с новосибирским Институтом физики полупроводников СО РАН разрабатывает микробиосенсоры на основе полевых транзисторов, являющихся одними из самых чувствительных аналитических устройств. Такой биосенсор позволяет в реальном времени отслеживать взаимодействие биомолекул. Его составной частью является одна из таких взаимодействующих молекул, которая играет роль молекулярного зонда. Зонд захватывает из анализируемого раствора молекулярную мишень, по наличию которой можно судить о конкретных характеристиках здоровья пациента.

Расшифровка геномов человека и возбудителей различных инфекций открыла дорогу для разработки радикальных подходов к терапии болезней путем направленного воздействия на их первопричину – ​генетические программы, ответственные за развитие патологических процессов. Глубокое понимание механизма возникновения заболевания, в который вовлечены нуклеиновые кислоты, дает возможность сконструировать терапевтические нуклеиновые кислоты, восполняющие утраченную функцию либо блокирующие возникшую патологию.

В качестве терапевтических олигонуклеотидов наиболее широко применяются их аналоги с различными модификациями рибозофосфатного скелета, которые регулируют специфичность формирования комплементарных комплексов с целевой ДНК и повышают устойчивость олигонуклеотидов, не увеличивая токсичность. По: (Власов и др., 2014)

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Такое воздействие может быть осуществлено с помощью фрагментов нуклеиновых кислот – ​синтетических олигонуклеотидов, способных избирательно взаимодействовать с определенными нуклеотидными последовательностями в составе генов-мишеней по принципу комплементарности. Сама идея использовать олигонуклеотиды для направленного воздействия на гены была впервые выдвинута в лаборатории природных полимеров (впоследствии – ​отдел биохимии) Новосибирского института биоорганической химии СО РАН (ныне – ​Институт химической биологии и фундаментальной медицины СО РАН). В Новосибирске были созданы и первые препараты ген-направленного действия для избирательной инактивации вирусных и некоторых клеточных РНК.

Сегодня антисмысловыеолигонуклеотиды и РНК, подавляющие функции мРНК и вирусных РНК, применяются не только в биологических исследованиях. Ведутся испытания ряда противовирусных и противовоспалительных препаратов, созданных на основе искусственных аналогов олигонуклеотидов, а некоторые из них уже начинают внедряться в клиническую практику.

Комплементарный комплекс фрагмента ДНК-мишени с олигонуклеотидом, содержащим фосфорилгуанидиновые группы, оказался почти таким же устойчивым, как и природная спираль ДНК. По: (Пышный, Стеценко, 2014)

В рамках проекта, руководимого С. Альтманом, было выполнено масштабное систематическое исследование воздействия различных искусственных аналогов олигонуклеотидов на патогенные микроорганизмы: синегнойную палочку, сальмонеллу, золотистый стафилококк, а также вирус гриппа. Были определены гены-мишени, воздействием на которые можно наиболее эффективно подавить эти патогены; проводится оценка технологических и терапевтических характеристик самых действующих аналогов олигонуклеотидов, в том числе проявляющих антибактериальную и противовирусную активность.

В ИХБФМ СО РАН впервые в мире были синтезированы фосфорилгуанидиновыепроизводныеолигонуклеотидов. Эти новые соединения электронейтральны, устойчивы в биологических средах и прочно связываются с РНК- и ДНК-мишенями в широком диапазоне условий. Благодаря спектру уникальных свойств они перспективны для применения в качестве терапевтических агентов, а также могут быть использованы для повышения эффективности средств диагностики, основанных на биочиповых технологиях.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Чрезвычайно мощным средством подавления активности генов оказались не только антисмысловые нуклеотиды, но и двуцепочечные РНК, действующие по механизму РНК-интерференции. Суть этого явления в том, что, попадая в клетку, длинные дцРНК разрезаются на короткие фрагменты (так называемые малые интерферирующие РНК, siPНК), комплементарные определенному участку матричной РНК. Связываясь с такой мРНК, siPНК запускают действие ферментативного механизма, разрушающего молекулу-мишень.

Использование этого механизма открывает новые возможности для создания широкого спектра высокоэффективных нетоксичных препаратов для подавления экспрессии практически любых, в том числе вирусных, генов. В ИХБФМ СО РАН на основе малых интерферирующих РНК сконструированы перспективные противоопухолевые препараты, показавшие хорошие результаты в экспериментах на животных. Одна из интересных находок – ​двуцепочечные РНК оригинального строения, стимулирующие в организме производство интерферона, эффективно подавляющие процесс метастазирования опухолей. Хорошее проникновение препарата в клетки обеспечивают носители – ​новые катионные липосомы (липидные пузырьки), разработанные совместно со специалистами Московского государственного университета тонких химических технологий имени М. В. Ломоносова.

К настоящему времени хорошо изучены и расшифрованы геномы многих микроорганизмов, поражающих человека. Ведутся исследования и сложных микробиологических сообществ, постоянно связанных с человеком, – ​микробиомов.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

В последнее время работы по созданию средств терапии на основе бактериофагов активизировались во всем мире в связи с проблемой распространения лекарственно-устойчивых бактерий. Россия – ​одна из немногих стран, где применение бактериофагов в медицине разрешено. В РФ существует промышленное производство препаратов, разработанных еще в советское время, и чтобы получать более эффективные бактериофаги, необходимо их совершенствовать, и эта задача может быть решена методами синтетической биологии.

Бактериофаги могут быть использованы не только напрямую в качестве бактерицидных агентов: их можно применять в качестве носителей лекарственных препаратов, антител либо терапевтических химических соединений. На фото – фаги, несущие на своей поверхности антитела к вирусу осповакцины, атакуют этот вирус. Атомно-силовая микроскопия. Фото Г. Шевелева и Д. Пышного

Решением ее занимаются в ряде научно-исследовательских организаций РФ, в том числе в ИХБФМ СО РАН. В институте охарактеризованы промышленно производимые в РФ фаговые препараты, расшифрованы геномы ряда бактериофагов, а также создана их коллекция, в которую вошли и уникальные вирусы, перспективные для применения в медицине. В клинике института отрабатываются механизмы оказания персонализированной помощи больным, страдающим от бактериальных инфекций, вызванных лекарственно-устойчивыми микроорганизмами. Последние возникают при лечении диабетической стопы, а также в результате пролежней или послеоперационных осложнений.Разрабатываются и методы коррекции нарушений состава микробиома человека.

С помощью современных медицинских технологий и фармпрепаратов сегодня удается излечивать многие болезни, представлявшие в прошлом огромную медицинскую проблему. Но с развитием практической медицины и ростом продолжительности жизни все более актуальной становится задача здравоохранения в самом прямом смысле этого слова: не просто бороться с болезнями, но поддерживать имеющееся здоровье, чтобы человек мог вести активный образ жизни и оставаться полноценным членом общества до глубокой старости. Современные методы геномного секвенирования широко внедряютсяв медицину, и в ближайшем будущем все пациенты будут иметь генетические паспорта. Сведения о наследственных особенностях пациента – ​основа прогностической персонализированной медицины. Предупрежденный, как известно, вооружен. Человек, осведомленный о возможных рисках, может организовать свою жизнь таким образом, чтобы не допустить развития заболевания. Это касается и образа жизни, и выбора продуктов питания и терапевтических препаратов.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Такую задачу можно решить, обеспечив постоянный эффективный контроль за состоянием организма, который позволил бы избегать действия неблагоприятных факторов и предупреждать развитие заболевания, выявляя патологический процесс на самом раннем этапе, и ликвидировать саму причину возникновения болезни.

1. Брызгунова О. Е., Лактионов П. П. Внеклеточные нуклеиновые кислоты мочи: источники, состав, использование в диагностике // ActaNaturae. 2015. Т. 7. № 3(26). С. 54—60.

2. Власов В. В., еще две фамилии и др. Комплементарные здоровью. Прошлое, настоящее и будущее антисмысловых технологий // НАУКА из первых рук. 2014. T. 55. № 1. С. 38—49.

3. Власов В. В., Воробьев П. Е., Пышный Д. В. и др. Правда о фаготерапии, или памятка врачу и пациенту // НАУКА из первых рук. 2016. Т. 70. № 4. С. 58—65.

5. Лифшиц Г. И., Слепухина А. А., Субботовская А. И. и др. Измерение параметров гемостаза: приборная база и перспективы развития // Медицинская техника. 2016. Т. 298. № 4. С. 48—52.

6. Рихтер В. А. Женское молоко – источник потенциального лекарства от рака // НАУКА из первых рук. 2013. Т. 52. № 4. С. 26—31.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

7. Kupryushkin M. S., Pyshnyi D. V., Stetsenko D. A. Phosphorylguanidines: a new type of nucleic Acid analogues // ActaNaturae. 2014. V. 6. № 4(23). P. 116—118.

8. Nasedkina T. V., Guseva N. A., Gra O. A. et al. Diagnostic microarrays in hematologic oncology: applications of high- and low-density arrays // MolDiagnTher. 2009. V. 13. N. 2. P. 91—102.

9. Ponomaryova A. A., Morozkin E. S., Rykova E. Y. et al. Dynamic changes in circulating miRNA levels in response to antitumor therapy of lung cancer // Experimental Lung Research. 2016. V. 42 N. 2. P. 95—102.

10. Vorobyeva M., Vorobjev P. and Venyaminova A. Multivalent Aptamers: Versatile Tools for Diagnostic and Therapeutic Applications // Molecules. 2016. V. 21 N. 12. P. 1612—1633.

Горбунова Валентина Владимировна

Презентация содержит материал об истории развития медицицы, использование достижений нанотехнологий и генной инженерии , использование стволовых клеток, содержит сведения о достижениях в области изучения рака,о методах ранней диагностики заболеваний

ВложениеРазмер
meditsina_budushchego.pptx 2.6 МБ
Предварительный просмотр:

Подписи к слайдам:

Краткая история развития медицины Медицина – это одна из важнейших сторон социальной жизни общества. Медицина как наука существует ровно столько, сколько существует человечество. Уровень развития медицинских знаний всегда напрямую зависел от уровня социально-экономического развития. Лексическое значение: Медици́на — система научных знаний и практических мер, объединяемых целью диагностики, лечения и профилактики заболеваний, сохранения и укрепления здоровья и трудоспособности людей, продления жизни, а также облегчения страданий от физических и психических недугов.

Сведения о начальных этапах становления медицины мы можем почерпнуть из древних рисунков и древних лечебных принадлежностей, которые были найдены археологами. Также информацию о медицине прошлых времён мы узнаём из письменных источников: произведений мыслителей Древней Греции и Древнего Рима, в летописях, былинах и думах. На первых этапах становления медицины использовались в основном методы наблюдения. Первые диагнозы ставились после осмотра внешних проявлений болезни.

В разных точках мира медицина развивалась обособленно. В Китае уже в 770 году до н.э. существовала книга по медицине. Не смотря на то, что все методы и советы по лечению в этой книге в основном основывались на легендах и мифах, там всё же имелась подлинная информация о человеческом здоровье. Доподлинно известно, что в 5 веке до н.э. в Китае проводились даже хирургические операции с использованием первых форм современных методов хирургии.

Что же дальше…? Эра нулевых годов ознаменовалась большим рывком в информационных технологиях. Человечество шагнуло далеко вперед в вопросах, касающихся информатизации и роботизации практически всех сфер человеческой жизнедеятельности. В частности большие перемены ожидаются в медицине, а некоторые фундаментальные новшества уже внедрены и успешно себя зарекомендовали. Например, за последние годы все активнее стали внедряться лазерные технологии и телемедицина , когда врач может консультировать своих пациентов, находясь за несколько тысяч километров от них. Все это доступно уже сегодня.

Производство органов, которые не будут отвергнуты иммунной системой Исследователи работают над созданием таких новых искусственных органов, которые организм пациента не отверг бы без использования иммунодепрессантов. Конечно, одним из решений этой проблемы были бы органы, сделанные из небиологической ткани. Многие уже давно живут с искусственными имплантатами суставов и датчиками, которые не отторгаются организмом, потому что не являются биологическими. Тем не менее, более сложные небиологические ткани пока невозможно изготовить на станке.

Стволовые клетки для воссоздания искусственных органов Само собой, важно иметь правильный вид клеток. Хрящи, кожа, сердце и другие органы сделаны из различных типов клеток. Кроме того, большинство клеток в ткани полностью дифференцированы, что дает им способность выполнять множество функций, не имея при этом хороших способностей к размножению, так как они уже достигли зрелого возраста. Тем не менее, у большинства тканей есть резерв клеток, которые сохраняют свою способность к воспроизводству и регенерации новых клеток, которые могут развиться в свою зрелую форму. Эти предшественники, представляющие собой взрослые стволовые клетки, часто используются для тканевой инженерии. На самом деле, для создания сложных органов не обязательно пользоваться каркасом. Стволовые клетки могут развиться в любой тип клеток в зависимости от того, в какую среду их поместят для роста.

Установлено происхождение рака Больные, страдающие от синдрома миелодисплазии , были обследованы специалистами из Королевского Каролинского института в Швеции. Результаты своих исследований, подтверждающие существование стволовых клеток рака ( РСК). Долгое время теория РСК оставалась достаточно спорной темой. Согласно этой теории, происхождение рака зависит от нескольких раковых клеток, отвечающих за весь процесс прогрессирования болезни. Как стволовые клетки способствуют зарождению тканей в организме, так и РСК с каждым днем увеличиваются и размножаются. О существовании стволовых клеток рака сообщалось и ранее, но не было убедительной доказательной базы. делиться Поделитьс я Больные, страдающие от синдрома миелодисплазии, были обследованы специалистами из Королевского Каролинского института в Швеции. Результаты своих исследований, подтверждающие существование стволовых клеток рака (РСК), они опубликовали в журнале Cancer Cell. Долгое время теория РСК оставалась достаточно спорной темой. Согласно этой теории, происхождение рака зависит от нескольких раковых клеток, отвечающих за весь процесс прогрессирования болезни. Как стволовые клетки способствуют зарождению тканей в организме, так и РСК с каждым днем увеличиваются и размножаются. О существовании стволовых клеток рака сообщалось и ранее, но не было убедительной доказательной базы. Специалистам удалось обнаружить источник изменения клеток, преобразующий их в раковые: это стало возможным благодаря последним современным исследованиям в области генетики. Источником оказались так называемые РСК. Ученые планируют в будущем научиться истреблять РСК из тела человека, чтобы предотвратить страшную болезнь .

Вечная жизнь Это символ медицины будущего. Рекс не робот и не киборг. Он - искусственный человек. Благодаря протезам Рекс видит, слышит, ходит, дышит. Он даже может поддерживать разговор, ведь создатели наделили бионического человека искусственным интеллектом. У Рекса все органы не просто искусственные. Сердце, легкие, печень, почки, суставы, кровь, глаза - все эти механизмы функционируют и вполне способны уже через несколько лет заменить живые - утраченные или пришедшие в негодность. Еще немного, и мы сможем жить столько, сколько захотим. Возможно, человек, который проживет 1000 лет, уже родился на Земле! Сегодня на развитие медицинских технологий расходуются огромные деньги. Как правило, это частный капитал очень богатых людей. Но не пытаются ли одни, желающие жить вечно, реализовать собственные мечты за счет создания проблем для других?

Если медицине и не удастся пока качественно выращивать органы, то есть и второй вариант – киборгизация человека . К примеру, остановившееся сердце человека можно будет заменить на более стойкий к износу аналог. Стоит отметить, что в 2011 году одному из американских пациентов полностью удалили сердце и поставили вместо него два ротора, качающих кровь. Относительно давно уже на сердце ставят искусственные стимуляторы, и основной проблемой таких устройств было то, что их нужно было менять через каждые несколько лет. Сегодня же израильскими учеными разработаны стимуляторы (и не только стимуляторы, но и другие искусственные приспособления), которые питаются биотоками человеческого тела, возникающими от мышечного сокращения. Киборгизация

Особое место в медицине занимает диагностика, а точнее – ранняя диагностика. На сегодняшний день неизлечимые формы множества заболеваний, в частности онкологических, развиваются из-за позднего обращения пациента к врачу, либо из-за несовершенства современной диагностической аппаратуры . Планируется создание специальных миниатюрных датчиков, которые будут вшиваться в одежду человека, либо вживляться под кожу. Такие биосенсорные механизмы будут постоянно отражать уровень сахара в крови, давление, частоту сердечных сокращений, биохимию крови, уровень гормонов и много других параметров, по которым врач может заподозрить начало того или иного нарушения. Данные будут передаваться в медицинское учреждение, и если вашему лечащему врачу не понравятся ваши анализы, то он вас вызовет на прием. Таким образом, отпадет необходимость в обязательных медицинских плановых осмотрах. За человеческим телом будут постоянно следить специальные устройства, не давая возможности заболеванию усугубиться Диагностика

Ученые обнаружили механизм включения-выключения сознания человека О бследовав пациентку, у которой бывают эпилептические припадки. Специалистам американского Университета имени Джорджа Вашингтона, которые наблюдали пациентку-эпилептика, удалось обнаружить, что во время воздействия электрических импульсов на определенную мозговую зону пациентка внезапно заснула. После того как импульсы перестали поступать, она проснулась. Интересно то, что женщина так и не смогла вспомнить, как это произошло.. А произошло это, когда ученые исследовали мозг с помощью глубинных электродов: они разместили один из электродов в зоне клауструма , представляющем собой тонкий слой нейронов, который находится между большими структурами в мозге. После того как ученые воздействовали на эту зону высокочастотными импульсами, у женщины наблюдалась потеря сознания. Однако это не был эпилептический припадок. Ее движения и речь стали замедляться до состояния, когда она перестала реагировать на происходящее вокруг нее и отвечать на вопросы врачей. Исследование показало, что во время воздействия на тонкую прослойку серого вещества (ограду мозга) сознание пациента отключается, тогда как прекращение воздействия вновь включает сознание, что сравнимо с эффектом поворота ключа зажигания в автомобиле, когда водитель активирует все системы машины, готовые к согласованной работе.

Читайте также: