Реферат на тему математические игры

Обновлено: 04.07.2024

Презентация на тему: " Математические игры и головоломки. Введение Введение Игры Игры Головоломки Головоломки Заключение Заключение Список литературы Список литературы." — Транскрипт:

1 Математические игры и головоломки

2 Введение Введение Игры Игры Головоломки Головоломки Заключение Заключение Список литературы Список литературы

3 Математические игры и головоломки очень популярны, как, впрочем, и все игры. И далеко не всегда более сложная игра – более интересная. Часто миллионы людей с неугасаемым интересом играют в самые простые игры, именно они входят в историю математики и прославляют своих создателей. Математические игры и головоломки очень популярны, как, впрочем, и все игры. И далеко не всегда более сложная игра – более интересная. Часто миллионы людей с неугасаемым интересом играют в самые простые игры, именно они входят в историю математики и прославляют своих создателей.

4 Наиболее приближенными к математике являются головоломки, но много головоломок образовалось из когда-то существовавших игр. Большинство таких основополагающих игр было придумано древнегреческими математиками. Наиболее приближенными к математике являются головоломки, но много головоломок образовалось из когда-то существовавших игр. Большинство таких основополагающих игр было придумано древнегреческими математиками.

5 ИГРЫ Простейшие математические игры часто используют как задачи, в которых нужно найти выигрышную стратегию. Иногда задачи бывают весьма простыми, когда они решаются известными методами. Простейшие математические игры часто используют как задачи, в которых нужно найти выигрышную стратегию. Иногда задачи бывают весьма простыми, когда они решаются известными методами.

7 В настоящее время придумано множество алгоритмов этой игры, основанных, прежде всего, на переборе различных вариантов. Существуют простейшие приёмы этой игры, которыми пользуются игроки, но решающей чаще всего бывает внимательность. В настоящее время придумано множество алгоритмов этой игры, основанных, прежде всего, на переборе различных вариантов. Существуют простейшие приёмы этой игры, которыми пользуются игроки, но решающей чаще всего бывает внимательность.

10 Игра НИМ и другие игры Существует несколько игр, в которых двое играющих, руководствуясь определёнными правилами, по очереди вынимают то или иное число фишек из одной или нескольких кучек – побеждает тот, кто берёт последнюю фишку. Существует несколько игр, в которых двое играющих, руководствуясь определёнными правилами, по очереди вынимают то или иное число фишек из одной или нескольких кучек – побеждает тот, кто берёт последнюю фишку.

11 К подобным играм относится Ним. Имеется произвольное число кучек фишек, и игроки по очереди выбирают одну какую-то кучку и вынимают из неё любое число фишек (но хотя бы одну обязательно). К подобным играм относится Ним. Имеется произвольное число кучек фишек, и игроки по очереди выбирают одну какую-то кучку и вынимают из неё любое число фишек (но хотя бы одну обязательно).

12 Баше математическая игра, в которой два игрока по очереди вынимают из кучки N предметов ограниченное количество. Проигравшим считается тот, кому нечего брать. Баше математическая игра, в которой два игрока по очереди вынимают из кучки N предметов ограниченное количество. Проигравшим считается тот, кому нечего брать.математическая игра игрока математическая игра игрока Классическая игра подразумевает N=15 и взятие не менее 1 и не более 3 предметов за раз. Стратегия в этом случае заключается в дополнении ходов противника до 4. Также игрой Баше может называться обобщённая игра, в которой можно брать от 1 до M предметов. Классическая игра подразумевает N=15 и взятие не менее 1 и не более 3 предметов за раз. Стратегия в этом случае заключается в дополнении ходов противника до 4. Также игрой Баше может называться обобщённая игра, в которой можно брать от 1 до M предметов. Названа в честь французского поэта и математика Баше де Мезирьяка. Названа в честь французского поэта и математика Баше де Мезирьяка.Баше де Мезирьяка Баше де Мезирьяка

13 Звездный ним. Она довольно проста, но стратегия в ней видна не сразу. Играют в эту игру на звездообразной фигуре. Поставьте по одной фишке на каждую из девяти вершин звезды. Игроки A и B делают ходы по очереди, снимая при каждом ходе либо одну, либо две фишки, соединённые отрезком прямой. Тот, кто снимает последнюю фишку тот и выигрывает. Она довольно проста, но стратегия в ней видна не сразу. Играют в эту игру на звездообразной фигуре. Поставьте по одной фишке на каждую из девяти вершин звезды. Игроки A и B делают ходы по очереди, снимая при каждом ходе либо одну, либо две фишки, соединённые отрезком прямой. Тот, кто снимает последнюю фишку тот и выигрывает.

15 ГОЛОВОЛОМКИ Математические головоломки бывают самые разные: вращательные (кубик Рубика), Волшебные кольца, Игры с дыркой (пятнашки), решётчатые и многие другие. Математические головоломки бывают самые разные: вращательные (кубик Рубика), Волшебные кольца, Игры с дыркой (пятнашки), решётчатые и многие другие.

19 Кубик Рубика относится к вращательным головоломкам, отличительной чертой которых является то, что запутать их проще простого, а вот также быстро собирать их умеет далеко не каждый. Кубик Рубика относится к вращательным головоломкам, отличительной чертой которых является то, что запутать их проще простого, а вот также быстро собирать их умеет далеко не каждый.

21 При сборке же охватить сразу всю картину слишком сложно, нам удобнее продвигаться методично, шаг за шагом, устанавливая сначала один кусочек, подгоняя к нему второй и т. д. При сборке же охватить сразу всю картину слишком сложно, нам удобнее продвигаться методично, шаг за шагом, устанавливая сначала один кусочек, подгоняя к нему второй и т. д.

22 Игры с дыркой До изобретения кубика Рубика для многих людей знакомство с головоломками начиналось с пятнашек – так часто называют известную игру 15. До изобретения кубика Рубика для многих людей знакомство с головоломками начиналось с пятнашек – так часто называют известную игру 15.

23 Пятнашки С пятнашек начинается история игр с дыркой – головоломок, в которых фишки перемещаются по игровому полю за счёт того, что одно из мест на поле свободно. У пятнашек есть множество родственников, которые как раз и образовывают целый раздел этих головоломок. С пятнашек начинается история игр с дыркой – головоломок, в которых фишки перемещаются по игровому полю за счёт того, что одно из мест на поле свободно. У пятнашек есть множество родственников, которые как раз и образовывают целый раздел этих головоломок.

26 Сэмюэль Лойд Сэмюэль (Сэм) Лойд (англ. Samuel Loyd, 31 января 1841), Филадельфия 10 апреля 1911, Нью- Йорк) американский шахматист, шахматный композитор и автор головоломок.англ. 31 января 1841 Филадельфия 10 апреля 1911Нью- Йоркамериканский шахматист шахматный композитор головоломок

27 Пятнашки в сборе

32 Адреса сайтов htm игра Летуэйт htm игра Летуэйт htm крестики - нолики крестики - нолики htm звёздный ним htm звёздный ним

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

ГОРОДСКОЙ КЛАССИЧЕСКИЙ ЛИЦЕЙ

РЕФЕРАТ

Математические игры и головоломки

10Б класс (физ-мат)

г. Кемерово - 1999

Математические игры и головоломки очень популярны, как, впрочем, и все игры. И далеко не всегда более сложная игра – более интересная. Часто миллионы людей с неугасаемым интересом играют в самые простые игры, и именно эти игры больше всего ценят, именно они входят в историю математики и прославляют своих создателей.

Наиболее приближенными к математике являются головоломки, но много головоломок образовалось из когда-то существовавших (а некоторые из ещё существующих) игр. Большинство таких основополагающих игр было придумано древнегреческими математиками.

В последнее время математическим играм внимание уделяется, в основном, для нахождения выигрышных стратегий, на что сильно повлияло распространение программирования: составить алгоритм, по которому в игру смог бы играть компьютер, часто бывает сложнее и интереснее, нежели самому научиться играть в неё, при этом глубже вникаешь в суть игры, после чего выиграть в неё можешь уже практически любого.

Простейшие математические игры часто используют как задачи, в которых нужно найти выигрышную стратегию, либо одно положение перевести в другое. Иногда задачи бывают весьма простыми, когда они решаются известными методами, такими как инвариант и раскраска, но есть и весьма простые, но до сих пор неразрешённые задачи, связанные с математическими играми.

Примером может являться популярная игра крестики-нолики на бесконечном поле (рендзю). Она, как известно, при правильной стратегии обоих игроков бесконечна, но выигрышную стратегию при этом никто не знает. В настоящее время придумано множество алгоритмов этой игры, основанных, прежде всего, на переборе различных вариантов и анализе игры на следующие несколько ходов, которые очень близки к выигрышной стратегии, но лишь при их реализации на компьютере – человек же им следовать практически не может. Существуют простейшие приёмы этой игры, которыми пользуются игроки, но решающей чаще всего бывает внимательность.

Игра ним и другие аналогичные игры

Существует несколько игр, в которых двое играющих A и B, руководствуясь определёнными правилами, по очереди вынимают то или иное число фишек из одной или нескольких кучек – побеждает тот, кто берёт последнюю фишку. Простейшая такая игра – это игра с одной кучкой фишек, и сделать ход в ней – значит взять из кучки любое число фишек от 1 до m включительно. Многие подобные игры поддаются исследованию с помощью числа Шпрага-Гранди G(C). Пустой позиции O, не содержащей фишек, отвечает G(O)=0. Комбинацию кучек, состоящих соответственно из x, y, … фишек, обозначим C=(x, y, …) и предположим, что допустимые ходы переводят C в другие комбинации: D, E, … Тогда G(C) есть наименьшее неотрицательное число, отличное от G(D), G(E), … Это позволяет по индукции определить G(C) для любой комбинации C, разрешённой правилами игры. Так, в упомянутой задаче G(x)=x mod (m+1).

Если G(C)>0, то игрок, делающий следующий ход, допустим, это игрок A, может обеспечить себе выигрыш, если ему удастся перейти к “безопасной” комбинации S с G(S)=0. Действительно, по определению G(S) в этом случае либо S – пустая позиция, и тогда A уже выиграл, либо B следующим ходом должен перейти к “опасной” позиции U с G(U)>0 – и тогда всё повторяется снова. Такая игра после конечного числа ходов заканчивается победой A.

К подобным играм относится ним. Имеется произвольное число кучек фишек, и игроки по очереди выбирают одну какую-то кучку и вынимают из неё любое число фишек (но хотя бы одну обязательно).

Более общий случай представляет игра Мура, которую также можно назвать k-ним. Правила её те же, что и в обычном ниме (1-ним), но здесь разрешается бать фишки из любого количества кучек, не превосходящего k.

Ещё одна подобная игра – Кегли. В ней фишки разложены в ряд, и при каждом ходе убирается одна какая-либо фишка или две соседние. При этом ряд может разбиться на два меньших ряда. Выигрывает тот, кто возьмёт последнюю фишку. Обобщённая вариация этой игры известна под именем игры Витхоффа.

Есть интересная вариация игры ним под названием “звёздный ним”. Она довольно проста, но стратегия в ней видна не сразу. Играют в эту игру на звездообразной фигуре, изображённой на рис. 1, слева. Поставьте по одной фишке на каждую из девяти вершин звезды. Игроки A и B делают ходы по очереди, снимая при каждом ходе либо одну, либо две фишки, соединённые отрезком прямой. Тот, кто снимает последнюю фишку выигрывает.

Звёздный ним (слева) и выигрышная стратегия для него (справа)

У игрока B при игре в звёздный ним есть выигрышная стратегия, использующая симметрию игровой доски (вообще, выигрышные стратегии многих математических игр строятся на этом). Представим, что отрезки прямых, соединяющие вершины звезды, - это нити. Тогда всю конфигурацию можно развернуть в окружность, топологически эквивалентную нитяной звезде. Если A снимает с окружности одну фишку, то B снимает две фишки с противоположного участка окружности. Если A берёт две фишки, то B снимает с противоположного участка окружности одну фишку. В обоих случаях на окружности остаются две группы из трёх фишек. Какую бы фишку (или какие бы фишки) ни взял A из одной группы, B берёт соответствующую фишку (или фишки) из другой группы. Ясно, что последняя фишка достанется игроку B.

Другие математические игры

В конце 60-х годов Дж. Леутуэйт из шотландского города Терсо изобрёл замечательную игру с искусно скрытой стратегией “парных ходов”, обеспечивающей второму игроку заведомый выигрыш. На доске размером 5*5 квадратных клеток в шахматном порядке расставлены 13 чёрных и 12 белых фишек, после чего любая из чёрных фишек, например, стоящая на центральном поле, снимается (рис. 2, слева).

Игрок A ходит белыми фишками, игрок B – чёрными. Ходы делаются по вертикали и горизонтали. Проигравшим считается тот из игроков, кто первым не сможет сделать очередной ход. Если доску раскрасить подобно шахматной доске, то станет ясно, что каждая фишка со своего поля переходит на поле другого цвета и что ни одну фишку нельзя заставить ходить дважды. Следовательно, игра для каждого игрока не может продолжаться более 12 ходов. Но она может окончиться и раньше выигрышем для любого игрока, если только B не будет придерживаться рациональной стратегии.

Игра Дж. Луитуэйта (слева) и стратегия парных ходов для неё (справа)

Рациональная стратегия для игрока В состоит в том, чтобы мысленно представить себе всю матрицу (за исключением пустой клетки), покрытую двенадцатью неперекрывающимися костями домино. Как именно они разложены на доске, не имеет значения. На рис. 2, справа показан один из способов покрытия доски костями домино. Какой бы ход ни сделал игрок А, В просто делает ход на ту кость домино, которую только что покинул А. При такой стратегии у В всегда есть ход после очередного хода А, поэтому В заведомо выигрывает за 12 или за меньшее число ходов.

В игру Леутуэйта можно играть не только фишками на доске, но и квадратными плитками или кубиками, передвигаемыми внутри плоской коробочки, на дне которой начерчена матрица. Предположим теперь, что в правила игры внесена поправка, позволяющая любому игроку в любое время ходить любым числом (от 1 до 4) фишек, стоящих на одной горизонтали или вертикали, если первая и последняя фишки в выбранной им горизонтали или вертикали “его” цвета. Перед нами великолепный пример того, как тривиальное (на первый взгляд) изменение правила приводит к резкому усложнению анализа игры. Леутуэйту не удалось найти выигрышную стратегию ни для одного из игроков в этом варианте игры.

Большинство игр, рассмотренных нами, имели выигрышную стратегию, но это не значит, что практически у всех подобных игр она существует. Есть множество игр, выигрышную стратегию в которых на сегодняшний день ещё не изобрели, а есть много и таких, у которых таковой вообще нет.

Математические головоломки бывают самые разные: вращательные (кубик Рубика), “Волшебные кольца”, “Игры с дыркой” (пятнашки), решётчатые и многие другие. Мы рассмотрим лишь некоторые из них.

Вращательные головоломки

Вращательными называются головоломки, суть которых заключается в поворотах рядов кубиков (и не только кубиков), из которых они состоят.

Знаменитейшая головоломка нашего времени – кубик Рубика – начала своё победное шествие по свету с 1978 года, когда с ней впервые ознакомились математики на Международном математическом конгрессе в Хельсинки. Лишь несколько кубиков увезли математики с конгресса, но это стало начальным толчком лавинного распространения игрушки по всему миру.

Практически каждый может собрать одну грань кубика Рубика, но чтобы составить его полностью, часто приходится серьёзно задуматься. Собирая первую грань (или первый слой), можно не заботиться об остальных, но когда остаётся поменять местами последние несколько кубиков, очень легко всё испортить и начинать сначала.

Кубик Рубика относится к вращательным головоломкам, отличительной чертой которых является то, что запутать их проще простого, а вот также быстро собирать их умеет далеко не каждый. При запутывании мы действуем как попало и стараемся испортить сразу всё, при сборке же охватить сразу всю картину слишком сложно, нам удобнее продвигаться методично, шаг за шагом, устанавливая сначала один кусочек, подгоняя к нему второй и т. д. По мере выстраивания правильной картины свобода наших действий ограничивается, ведь достигнутое надо на последующих шагах сохранять. А ближе к концу сборки очередные продвижения уже невозможны без жертв, – мы вынуждены на время отдавать завоёванное с тем, чтобы вернуть его с прибылью. Здесь уже требуются специально разработанные операции, можно назвать их “локальными” или “минимальными”, которые вносят в расположение элементов головоломки самые малые изменения, например, переставляют два-три элемента или переворачивают их. При этом “минимальные” не значит “маленькие” - обычно они состоят из довольно большого числа ходов.

Рассмотрим алгоритм собирания вращательных головоломок на примере кубика Рубика.

Формулы операций в “кубике Рубика”

При использовании “минимальных” операций возникает естественный вопрос: как их систематизировать или сформулировать, чтобы ими удобно было пользоваться при собирании кубика. Прежде всего, перед тем, как воспользоваться той или иной уже разработанной операцией, следует как-то обозначить грани кубика, относительно которых их проводить. Стандартные их названия: фасад, тыл, лево, право, верх, низ. А обозначения соответственно: Ф, Т, Л, П, В, Н. Любую формулу операций можно выполнить с помощью поворотов боковых или центральных граней кубика. Один поворот грани по часовой стрелке обозначается так же, как и сама грань (Ф, Т и т. д.). Если грань поворачивают против часовой стрелки, то к обозначению этого действия приписывают знак ’ (Ф’, Т’ и т. д.). Понятно, что два поворота по часовой стрелке идентичны двум поворотам против, а следовательно обозначаются они одинаково: знаком 2 .­­­­­­ (Ф 2 , Т 2 и т. д.). С помощью этой системы обозначений можно сформулировать лишь повороты боковых граней, для центральных же обозначения показаны на рисунке 3.

Формулы операций средних “граней” кубика

Ниже приведён список самых распространённых “минимальных” операций, которыми пользуются при собирании кубика Рубика. Следует заметить, что это лишь универсальные комбинации, а для создания более совершенного алгоритма собирания кубика, нужно разработать более “глобальные” операции, которые человеку запомнить довольно трудно, но в общем уменьшающие количество действий, необходимых для собирания кубика из каждого конкретного положения.

Первый слой

Операция “лесенка” (лифт) 1:

Операция “лесенка” (лифт) 2:

Второй слой

Третий слой

Выполняются только по две комбинации с поворотом верхней грани между ними:

Операция “Обмен” 1:

Ф 2 В’СпВ 2 СлВ’Ф 2

Операция “Обмен” 2:

Две последние операции выполняются лишь парами, либо по отдельности, но по два раза подряд с возможным поворотом верхней грани между комбинациями

Игры с дыркой”

До изобретения кубика Рубика для многих людей знакомство с головоломками начиналось с “пятнашек” – так часто называют известную игру “15”.

С пятнашек начинается история игр с дыркой – головоломок, в которых фишки перемещаются по игровому полю за счёт того, что одно из мест на поле свободно. У “пятнашек” есть множество родственников, которые как раз и образовывают целый раздел этих головоломок.

Игру “15” придумал в 70-х годах XIX-го века прославленный американский изобретатель головоломок Сэмюэль Лойд. Время появления его игрушки и известного всем кубика Рубика разделяют ровно сто лет. Любопытно, что возраст обоих изобретателей, когда они придумали свои знаменитые головоломки, был одинаков – немногим больше тридцати. До “пятнашек” никакая другая головоломка таким успехом не пользовалась.

Вскоре после своего появления на свет коробочка с цифрами 15 на крышке пересекла океан, быстро распространилась во всех европейских странах и поучила новое имя “такен”. Изобретателю посчастливилось найти ту неуловимую меру сложности, когда головоломка решалась без труда почти всеми и в то же время требовала определённой сообразительности, благодаря чему каждый мог получить удовольствие от сознания своего высокого интеллектуального уровня.

Первому успеху головоломки в немалой степени способствовало и напечатанное в газетах объявление о призе в 1000$ за решение следующей задачи: в исходной позиции фишки располагаются по порядку номеров, за исключением двух последних, которые переставлены местами друг с другом (рис. 4); передвигая по одной фишке, но не вынимая фишки из коробочки, нужно поменять местами номера 15 и 14 так, чтобы все фишки стояли по порядку номеров, а правый нижний угол был свободен.

Ловушка Лойда

Помещая это объявление, Лойд знал, что ничем не рискует, так как предлагает неразрешимую задачу. Эта задача ещё сыграла с изобретателем злую шутку, когда он пытался запатентовать свою игру, – ему сказали, что нельзя запатентовать игру, не имеющую решения.

Секрет игры “15”

Не всегда можно головоломку перевести из одного состояния в другое, — запрещены такие переходы, при которых нарушаются те или другие законы сохранения. Есть такой закон и в игре “15”. Чтобы объяснить его, мысленно заполним пустое место фишкой с номером 16. Тогда каждый ход — сдвиг фишки — будет состоять в том, что эта фишка меняется местами с фишкой 16. Операцию, при которой какие-то две фишки (не обязательно соседние!) меняются местами, так и назовем — обменом; математический термин для таких операций — транспозиция. Очевидно, что из любой расстановки 16 фишек можно не более чем за 15 обменов получить правильную позицию — обозначим ее S0 — и вообще любую другую расстановку. При этих обменах не запрещается вынимать фишки из коробки. Например, можно сначала поставить на свое место фишку 1, обменяв ее с той фишкой, которая это место занимает, затем точно так же поставить на место фишку 2 и т. д. Последними мы обменяем фишки 15 и 16 — при этом сразу обе встанут правильно. Конечно, не исключено, что по ходу дела какие-то фишки автоматически попадут на свои места, и их трогать не придется, при этом число обменов окажется меньше 15. Можно расставлять фишки по этой же системе, но в другом порядке, скажем 16, 15, 14, . или совсем иначе, и тогда число обменов может оказаться другим. Однако, каким бы способом ни выбрать последовательность обменов, превращающую одну заданную расстановку фишек в другую, четность числа обменов в этой последовательности всегда будет одной и той же.

Это очень важное и неочевидное докажем ниже. Оно позволяет дать следующее определение: расстановка называется четной, если ее можно превратить в правильную позицию с помощью четного числа обменов, и нечетной в противном случае. В математике обычно говорят не “расстановка”, а “перестановка”; к этому мы еще вернемся. Сама правильная расстановка S0 всегда четная, а ловушка Лойда L нечетная. Но почему они не переводятся друг в друга?

Как выше уже сказано, каждый ход в игре “15” можно рассматривать как обмен фишки с одной из соседних. Следовательно, при каждом ходе четность расстановки 16 фишек меняется: если до хода расстановку можно было упорядочить за N обменов, то после него — за N+1 обменов (взяв этот ход назад), а числа N и N+1 — разной четности. В обеих расстановках классической задачи Лойда дырка (или фишка 16) расположена одинаково. Если бы мы сумели одну расстановку перевести в другую, то фишка 16 должна была совершить столько же ходов вверх, сколько вниз, и столько же ходов вправо, сколько влево, иначе она не вернулась бы назад. Поэтому мы сделали бы четное число ходов, а так как при каждом ходе четность расстановки меняется, в начале и в конце она была бы одинаковой. Но позиции S0 и L, как мы видели, имеют разную четность.

Мы рассмотрели лишь малую часть замечательных головоломок, которые придумали математики разных времён, но если когда-нибудь ещё и изобретут головоломку более популярную, чем, например, игра “15”, то известней знаменитого кубика Рубика наверняка – нет!

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

В математике есть своя красота, как в

живописи и поэзии.

1. Введение.

В этом году я перешла из начальной в основную школу. Учиться в 5 классе очень интересно, но, разумеется, сложнее, чем в начальных классах. Произошло много изменений и к тем предметам, которые мы изучали, добавились новые.

Математика изучается в школах с 1 по 11 класс. Я и мои одноклассники любят этот предмет. Все изучают математику с удовольствием, и каждый урок стремятся открыть для себя что-то новое. Мы участвуем в чемпионатах и олимпиадах по этому предмету, а некоторые ученики даже посещают математический кружок. Математика – мой самый любимый урок, и поэтому когда нужно было выбрать учебный предмет, по которому я буду разрабатывать исследование, долго думать не пришлось.

Математика – серьезная и точная наука. Но мне хотелось провести не только научное, но и действительно интересное для меня исследование. Иными словами и познавательное и развлекательное. Но что же может объединить серьезную научную дисциплину и развлечения? - Математические игры.

Математические игры – это строго определённые математические объекты. Игра образуется игроками, набором стратегий для каждого игрока и указания выигрышей игроков для каждой комбинации стратегий.

Обычно мы играем в математические игры с развлекательной целью, но без определенного плана победить не просто. Для этого и нужна стратегия – порядок действий, который точно приведет к выигрышу. Так связаны игры и математика.

Сейчас сфера математических игр хорошо развивается и, наверное, все хотят успешно решать подобные задания в олимпиадах и на уроках, поэтому я считаю свое исследование актуальным и результативным

Я решила поподробнее изучить математические игры и попробовать самой составить к некоторым из них стратегию выигрыша.

Объект исследования: математические игры.

Предмет исследования: стратегии математических игр

Цель моей работы: изучение математических игр, обучение составлению стратегий к играм.

Задачи, над которыми я работала:

1. Познакомиться с историей появления математических игр и подумать, чем же они полезны.

2. Узнать, какие типы математических игр существуют

и как их различать

3. Узнать, если какая-нибудь научная теория относительно математических игр.

5. Понять, как составляются стратегии к определенным типам математических игр.

6. Составить стратегии к играм разного типа.

7. Обобщить полученную информацию и представить результат исследования в виде буклета.

8. Составить сборник авторских игровых задач.

Гипотеза: если я внимательно изучу методы нахождения стратегий и типы математических игр, научусь различать типы игр, то возможно смогу достичь своей цели.

Новизна: для меня нахождение стратегий для математических игр – это новый вид деятельности.

Методы исследования: размышления, поиск информации в Интернете, в специальной литературе, практический метод, анализ результатов.

2.Основная часть.

2.1. История появления математических игр.

Открыв интернет, я узнала, что некоторые математические игры появились еще в древности. Создавали такие игры еще древнегреческие математики.

А вот происхождение определенных игр до сих пор остается тайной. Например, о том, как появились всем известные крестики-нолики, бытует множество мнений. По одной из версий их случайно изобрел неизвестный французский математик, решая трехуровневую систему уравнений, по другой – крестики-нолики появились в Индии около 2000 лет назад.

А в 1979 году появилась одна из популярнейших математических игр – судоку. Автором головоломки был Гарвард Гарис. Он использовал принцип латинского квадрата Эйлера, применил его в матрице размерностью 9х9 и добавил дополнительные ограничения, цифры не должны повторяться и во внутренних квадратах 3х3.

Я рассказала вам о том, как появились некоторые известные математические игры и, к сожалению, еще многое о происхождении этой сферы математики остается загадкой, ведь возможно, многие верные рассуждения по созданию математических игр забывались, не патентовались или же на них просто не обращали внимание. Но, исходя из полученной мной информации, можно сделать вывод: математические игры и в качестве развлечения на досуге, и в качестве серьезных тем для научных открытий были популярны во все времена.

2.2. Полезность математических игр.

Это конечно хорошо, что ученые придумывают новые и новые математические игры. Несомненно, это помогает в решении других математических задач, может послужить темой для научных открытий и выполнять другие важные глобальные роли. Но как умение составлять стратегии к играм и само умение играть может помочь в жизни обычных школьников?

Для начала я разобралась, с какими науками тесно связано умение играть в такие игры. Оказалось, что чаще всего методы стратегий в математических играх находят применение в экономике, чуть реже в других общественных науках — социологии, политологии, психологии, этике. Доказать это можно тем, что математика сама по себе приводит ум в порядок, а интересная задача может помочь расслабиться и отвлечься от внешних проблем, а значит – расслабить нашу психику. Также психологи и социологи должны рассматривать самые выигрышные и точные пути для того чтобы правильно поставить вопрос или помочь пациенту. В экономике и политологии умение действовать по плану тоже высоко ценится, ведь нужно правильно рассчитать бюджет или уметь наладить отношения между странами.

Информацию я получила, но ведь это опять же глобальные проблемы. Тогда какое же имеет отношение умение составлять стратегии к ученикам?

Возьмем самый банальный случай. Родители дали мне

определенную сумму денег на то, чтобы питаться всю неделю в

школьной столовой выбирая блюда по своему усмотрению.

Естественно, если я в первый же день накуплю кучу вредной и

дорогой еды, то, скорее всего у меня заболит живот от

неправильного питания, да и в следующий раз мне может не хватить на действительно полезное и вкусное блюдо, или если я сильно проголодаюсь. Но если я грамотно распределю свои затраты на еду каждый день, то, возможно в конце недели у меня останутся еще деньги. Второй вариант и будет являться в данном случае верной стратегией.

Другой пример: нужно пересказать большой текст на оценку. Если я начну нервничать и зазубривать, то, скорее всего у меня ничего не выйдет. Если же для начала составить план текста, поделив его на части, выбрать из каждой части основное, и, понимая, о чем идет речь прочитать его, а потом попробовать рассказать, о чем был текст, то у меня получится передать главную мысль, а значит пересказать. Второй случай – верная стратегия.

Так же можно выделить и следующие цели применения математических игр:

Углубление теоретических знаний;

Самоопределение в мире увлечений и профессий;

Организация свободного времени;

Общение со сверстниками;

Воспитание сотрудничества и коллективизма;

Приобретение новых знаний, умений и навыков;

Формирование адекватной самооценки;

Развитие волевых качеств;

Мотивация учебной деятельности и др.

Итак, я разобралась, как знание и умение правильно составлять стратегии помогает в разных повседневных жизненных ситуациях, а начинать учиться этому лучше всего на примере математических игр.

2.2. Типы математических игр и их особенности.

Все математические игры разные. Даже на первый взгляд можно отличить игру-головоломку от игры-шутки.

На самом деле математических игр гораздо больше, чем мы думаем и для того, чтобы уметь их различать ученые решили классифицировать игры по типам стратегий, форме игры, правилам и т.д.… И сейчас я расскажу вам о том, какие типы игр различают математики.

Математические игры делятся на 4 основные группы: игры с инвариантом, игры на доведение до числа, игры-шутки, игры на симметрию.

Игры с инвариантом включают в себя какое-нибудь неизменяемо свойство предмета. Если вычислить его, то можно будет легко найти стратегию или правильно ответить на вопросы, если это задача.

Стратегия игр на доведение до числа заключается в приведении всех ходов к контрольному числу, имеющему какое-то особенное свойство. После этого действия выиграть становится легко.

В игре-шутке победить очень просто, ведь ее стратегия часто скрывается в последовательности и числе ходов, количестве частей и других подобных им факторов.

А чтобы победить в игре на симметрию нужно повторять все действия соперника в зеркальном отражении. При этом используется следующее правило: если соперник может поставить точку в тетрадной клетке, то я могу поставить точку в клетке напротив.

Знание типа выбранной игры очень хорошо помогает при поиске стратегии для нее.

Стратегия – это искусство планирования руководства, основанного на правильных, точных и далеко идущих прогнозах.

Термин инвариант означает свойство объекта, не изменяемое на протяжении всей игры.

2.6. Освоение составления стратегий

Для того чтобы начать подбирать стратегии мне нужно выдвинуть гипотезу, каким образом это можно делать.

Но откуда я смогу выбирать игры для своего исследования? Источник у меня есть – это приложение, которое все пятиклассники нашей школы установили дома на компьютер. На диске много полезной информации: тесты, тренажеры, головоломки, упражнения. И игры там тоже есть.

2.7. Составление стратегий к играм разного типа

Таким образом, я научилась составлять стратегии к математическим играм.

Заключительная часть

Планирование буклета.

Еще одной моей целью было создание буклета со всей необходимой информацией для побед в играх. Он нужен для рекламы, так как мало кто занимается математическими играми и для того, чтобы можно было находить стратегии с его помощью. Я создала структуру буклета и включила в нее все важные данные: значение термина стратегия, типы математических игр и алгоритм составления победного плана действий. Также я сделала свою эмблему и поместила ее на буклет.

Создание задачника.

Вывод

В дальнейшем, может быть, я продолжу эту работу для того, что бы искать стратегии для игр большей сложности совершенствования своих знаний о математических играх. Я думаю, что достигла своей цели, так как научилась создавать стратегии к играм и различать типы математических игр. Работа над проектом показала мне, что абсолютно в любой игре можно победить и из любой ситуации можно найти выход, если действовать в соответствии со стратегией. Мне понравилось исследовать стратегии, так как это очень интересно, развивает логику, и исход игры зависит только от моего хода мыслей.

Реферат - Математические игры и головоломки

Александров П.С. Проблемы Гильберта

  • формат djvu
  • размер 4.24 МБ
  • добавлен 17 июля 2011 г.

Дьюдени Г.Э. Кентерберийские головоломки

  • формат pdf
  • размер 20.46 МБ
  • добавлен 18 июня 2011 г.

Дьюдени Г. Э. Кентерберийские головоломки. Пер. с англ. Сударева Ю. Н. Москва, Мир, 1979. Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы "Кентерберийских рассказов" Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок. Книга доставит удовольствие всем любителям занимательной математики.

Литлвуд Дж. Математическая смесь

  • формат djvu
  • размер 1.38 МБ
  • добавлен 08 октября 2010 г.

Математические очерки-миниатюры разнообразной тематики. Включает математические анекдоты, моменты математической автобиографии, интересные задачи, оригинальные и неожиданные доказательства и просто математические шутки.

Мациевский С.В. Математическая культура. Игры

  • формат pdf
  • размер 2.08 МБ
  • добавлен 28 декабря 2009 г.

Даны подробные описания и другие начальные сведения о наиболее интересных и актуальных логических и компьютерных играх и головоломках: магических квадратах, крестиках-ноликах, игре Жизнь, полиформах (пента-мино), танграмах, игре Футбол, лабиринтах, задачах Бонгарда и оригами. Изложение сопровождается историческими, занимательными и другими сведениями и веб-ссылками, а также множеством рисунков. Имеется аннотированный список литературы. Книжку мож.

Нагибин Ф.Ф. Математическая шкатулка

  • формат djvu
  • размер 4.34 МБ
  • добавлен 22 ноября 2010 г.

Библиотека школьника. Москва: Учпедгиз, 1958. -167 с. Книга по занимательной математике. Содержание: Арифметика. Алгебра. Геометрия. Логика в математике. Математические развлечения. Познакомься, сделай, научись пользоваться! Задачи для математических олимпиад.

Перельман Я.И. Занимательная математика

  • формат djvu
  • размер 2.11 МБ
  • добавлен 24 октября 2009 г.

Математические рассказы и очерки Курда Лассвица, Уэллса, Жюля Верна, Аренса, Симона, Барри Лене, Бенедиктова и др. с 25 рисунками

Перельман Я.И. Занимательная математика. Математические рассказы и очерки

  • формат djvu
  • размер 1.8 МБ
  • добавлен 26 июня 2011 г.

Презентация - Занимательная математика

  • формат ppt
  • размер 328.46 КБ
  • добавлен 15 декабря 2010 г.

Данная презентация предлагает дидактический материал в помощь учителю математики, для того, чтобы заинтересовать детей, пробудить желание решать нестандартные задачи, преодолевать трудности. Веселые вопросы. Сказка – вопрос. Занимательные задачи. Головоломки. Дидактические игры.

Таунсенд Ч. Звёздные головоломки

  • формат djvu
  • размер 3.59 МБ
  • добавлен 15 октября 2010 г.

Читайте также: