Реферат на тему корень n ой степени и его свойства

Обновлено: 07.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Корнем n -й степени из числа а называется такое число, n -я степень которого равна а.

Согласно определению корень n -ой степени из числа а – это решение уравнения . Число корней зависит и от n и от а.

Количество корней .

· один корень х=0 при а=0;

· два корня при а >0 ;

2. n – нечётно: один корень при любом а.

Число n называется показателем корня, а само число а – подкоренным выражением. Знак называют так же радикалом.

Арифметическим корнем n -й степени из числа а называется неотрицательное число, n -я степень которого равна а.

Решение примеров:

Пример1: уравнение имеет два корня: 3 и -3.

Таким образом. Существуют два корня четвёртой степени из 81. При этом - это неотрицательное число, т.е. 3, а

Пример 3: решить уравнение:

Так как показатель корня, т.е. n =5 – нечётно, то корень существует, и притом только один. .

Пример 4 . , , так как показатель корня число чётное (8), то так же решение данного уравнения. Ответ:

Свойства корней/радикалов

Примеры. Преобразуем выражения :

Для любых а и b , таких что , выполняется неравенство

Пример . Сравним числа

Представим в виде корня с одним и тем же показателем:

Решение задач самостоятельно

  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 932 человека из 80 регионов


Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации


Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Дистанционные курсы для педагогов

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 595 632 материала в базе

Материал подходит для УМК

§ 37. Обобщение понятия о показателе степени

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

  • 25.08.2021 882
  • DOCX 121 кбайт
  • 37 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Брыксина Ксения Владимировна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Белгородской области отменяют занятия в школах и детсадах на границе с Украиной

Время чтения: 0 минут

В Ростовской и Воронежской областях организуют обучение эвакуированных из Донбасса детей

Время чтения: 1 минута

Школьник из Сочи выиграл международный турнир по шахматам в Сербии

Время чтения: 1 минута

Минпросвещения России подготовит учителей для обучения детей из Донбасса

Время чтения: 1 минута

Минобрнауки и Минпросвещения запустили горячие линии по оказанию психологической помощи

Время чтения: 1 минута

Новые курсы: функциональная грамотность, ФГОС НОО, инклюзивное обучение и другие

Время чтения: 15 минут

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

¦ 1Корень n-й степени и его свойства 0. ¦

¦ 1 Решим неравенство 0 х 56 0>20 ¦

¦ 1 Это неравенство равносильно неравенству 0 х 56 0-20>0. 1Так как функция 0 ¦

¦f(x)=х 56 0-20 1непрерывна, можно воспользоваться методом интервалов. 0 ¦

¦ 1Уравнение 0 х 56 0-20=0 1имеет два корня 0 : 7 ? 1 20 и - 0 7? 1 20 0 . 1Эти числа разби- 0 ¦

¦ 1вают числовую 0 1прямую на три промежутка. 0 1Решение данного неравенства - 0 ¦

¦ 1объединение двух из них 0 : (- 74 0; - 7? 1 20 0 7 0) 7 0( 7? 1 20 0 7 0; 74 0) ¦

¦ 1Пример 2. 7 03 7|\\ 0 5 7|\\ 0 ¦

¦ 1 Сравним числа 7 ? 0 2 7 0 и 7 ? 0 3 ¦

¦ 1Представим 0 7? 0 2 7 0и 7? 0 3 1в виде корней с одним и тем же показателем: 0 ¦

¦ 13 7|\\ 0 115 7|\\ 0 1 15 7|\\ 0 15 7|\\ 0 115 7|\\ 0 15 7|\\ 0 ¦

¦ 7? 0 12 7 0 = 7 ? 0 12 55 1= 0 7? 132 7 0 1а 0 7 ? 0 13 = 0 7? 0 13 53 0 = 7 ? 0 27 1из неравенства 0 ¦

¦ 15 7|\\ 0 15 7|\\ 0 3 7|\\ 0 5 7|\\ 0 ¦

¦ 32 > 27 1следует, что 0 7? 032 7 0 и 7 ? 0 27 1,и значит, 0 7? 0 2 7 0 > 7 ? 0 3 ¦

¦ 1 Иррациональные уравнения. 0 ¦

¦ 1 Пример 1. 7 |\\\\\\\ 0 ¦

¦ 1 Решим уравнение 7 ? 1 x 52 1 - 5 = 2 0 ¦

¦ 1Возведем в квадрат обе части уравнения и получим х 52 1 - 5 = 4, отсюда 0 ¦

¦ 1следует, что х 52 1=9 х=3 или -3. 0 ¦

¦ 1Проверим, что полученные части являются решениями уравнения. 0 ¦

¦ 1Действительно, при подстановке их в данное уравнение получаются верные 0 ¦

¦ 7? 1 3 52 1-5 = 2 и 0 7? 1 (-3) 52 1-5 = 2 0 ¦

¦ 1Решим уравнение 7 ? 1 х = х - 2 0 ¦

¦ 1Возведя в квадрат обе части уравнения, получим х = х 52 1 - 4х + 4 0 ¦

¦ 1После преобразований приходим к квадратному уравнению х 52 1 - 5х + 4 = 0 0 ¦

¦ 1корни которого х=1 и х=4. Проверим являются ли найденные числа реше- 0 ¦

¦ 1ниями данного у _ра .внения. При подстановке в него числа 4 получаем вер- 0 ¦

¦ 1ное равенство 7 ? 14 0 = 4-2 1т 0. 1е. 4 - решение данного уравнения. При подста- 0 ¦

¦ 1новке же числа 1 получаем в правой части -1, а в левой 1. Следователь- 0 ¦

¦ 1но, 1 не является решением уравнения ; говорят, что это посторонний 0 ¦

¦ 1корень, полученный в результате принятого способа решения . 0 ¦

¦ 1О Т В Е Т : Х=4 0 ¦

¦ 1Степень с рациональным показателем 0. ¦

¦ 13 7|\\\ 1 7 14 7|\\\\ 14 7|\\ 0 ¦

¦ 1Найдем значение выражения 8 51/3 1 = 7 ? 1 8 = 2 ; 81 53/4 = 7 ? 1 81 53 = 1 ( 7? 181) 53 1= 3 53 1= 0 ¦

¦ 1Сравним числа 2 5300 1 и 3 5200 1 . Запишем эти числа в виде степени с ра- 0 ¦

¦ 1циональным показателем : 0 ¦

¦ 12 5300 1 = (2 53 1) 5100 1 = 8 5100 1 ; 3 5200 1 = (3 52 1) 5100 1 = 9 5100 0 ¦

Определение корня n-й степени из действительного числа

Корнем n-й степени (\(n=2, 3, 4, 5, 6… \)) некоторого числа \(a\) называют такое неотрицательное число \(b\), которое при возведении в степень \(n\) дает \(a\):

Число \(n\) при этом называют показателем корня.

Если \(n=2\), то перед вами корень 2-й степени или обычный квадратный корень.

Если \(n=3\), то корень 3-й степени и т.д.

Операция извлечения корня n-й степени является обратной к операции возведения в n-ю степень.

Кубический корень из числа 27 равняется 3. Действительно, если число 3 возвести в 3-ю степень, то мы получим 27.

Корень 4-й степени из 16-и равен 2. Двойка в 4-й степени равна 16.

Если извлечь корень n-й степени из 0, всегда будет 0.

Мы не можем в уме подобрать такое число, которое при возведении в 3-ю степень даст 19. Если посчитать на калькуляторе, то получим \(2,668…\) – иррациональное число с бесконечным количеством знаков после запятой.

Обычно, в математике, когда у вас получается иррациональное число, корень не считают и оставляют так как есть \(\sqrt[3]\).

Что же делать, если под рукой нет калькулятора, а нужно оценить, чему равен такой корень. В этом случае нужно подобрать справа и слева такие ближайшие числа, корень из которых посчитать можно:

$$ \sqrt[3] \le \sqrt[3] \le \sqrt[3] $$ $$ 2 \le \sqrt[3] \le 3 $$

Получается, что наш корень лежит между числами 2 и 3.

Корень четной и нечетной степени

Надо четко различать правила работы четными и нечетными степенями. Дело в том, что корень четной степени можно взять только из положительного числа. Из отрицательных чисел корень четной степени не существует.

Корень нечетной степени можно посчитать из любых действительных чисел. Иногда в школьной программе встречаются задания, в которых требуется определить имеет ли смысл выражение:

Данное выражение имеет смысл, так как корень нечетной степени можно посчитать из любого числа, даже отрицательного.

Так как корень четной степени, а под корнем стоит отрицательное число, то выражение не имеет смысла.

Свойства корня n-й степени

Пусть есть два неотрицательных числа a и b, для них будут выполняться следующие свойства:

Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств , изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства n -ой степени.

Свойства корней

Мы поговорим о свойствах .

  1. Свойство умноженных чисел a и b , которое представляется как равенство a · b = a · b . Его можно представить в виде множителей, положительных или равных нулю a 1 , a 2 , … , a k как a 1 · a 2 · … · a k = a 1 · a 2 · … · a k ;
  2. из частного a : b = a : b , a ≥ 0 , b > 0 , он также может записываться в таком виде a b = a b ;
  3. Свойство из степени числа a с четным показателем a 2 · m = a m при любом числе a , например, свойство из квадрата числа a 2 = a .

В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a · b = a · b трансформируется как a · b = a · b . Свойства для равенства часто используются для упрощения сложных уравнений.

Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.

Первым делом, необходимо доказать свойства квадратного корня a · b = a · b . Согласно определению , необходимо рассмотреть, что a · b - число, положительное или равное нулю, которое будет равно a · b при возведении в квадрат. Значение выражения a · b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде ( a · b ) 2 = a 2 · b 2 . По определению квадратного корня a 2 = a и b 2 = b , то a · b 2 = a 2 · b 2 = a · b .

Аналогичным способом можно доказать, что из произведения k множителей a 1 , a 2 , … , a k будет равняться произведению квадратных корней из этих множителей. Действительно, a 1 · a 2 · … · a k 2 = a 1 2 · a 2 2 · … · a k 2 = a 1 · a 2 · … · a k .

Из этого равенства следует, что a 1 · a 2 · … · a k = a 1 · a 2 · … · a k .

Рассмотрим несколько примеров для закрепления темы.

3 · 5 2 5 = 3 · 5 2 5 , 4 , 2 · 13 1 2 = 4 , 2 · 13 1 2 и 2 , 7 · 4 · 12 17 · 0 , 2 ( 1 ) = 2 , 7 · 4 · 12 17 · 0 , 2 ( 1 ) .

Необходимо доказать свойство арифметического квадратного корня из частного: a : b = a : b , a ≥ 0 , b > 0 . Свойство позволяет записать равенство a : b 2 = a 2 : b 2 , а a 2 : b 2 = a : b , при этом a : b является положительным числом или равно нулю. Данное выражение и станет доказательством.

Например, 0 : 16 = 0 : 16 , 80 : 5 = 80 : 5 и 3 0 , 121 = 3 0 , 121 .

Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенства как a 2 = a Чтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a ≥ 0 и при a 0 .

Очевидно, что при a ≥ 0 справедливо равенство a 2 = a . При a 0 будет верно равенство a 2 = - a . На самом деле, в этом случае − a > 0 и ( − a ) 2 = a 2 . Можно сделать вывод, a 2 = a , a ≥ 0 - a , a 0 = a . Именно это и требовалось доказать.

Рассмотрим несколько примеров.

5 2 = 5 = 5 и - 0 , 36 2 = - 0 , 36 = 0 , 36 .

Доказанное свойство поможет дать обоснование a 2 · m = a m , где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a 2 · m выражением ( a m ) 2 , тогда a 2 · m = ( a m ) 2 = a m .

Читайте также: