Реферат на тему конический редуктор

Обновлено: 04.07.2024

Конический редуктор — это самостоятельный механизм, который при помощи муфт или открытых передач соединяется с электродвигателем и рабочей машиной. Выполняется в виде агрегата, предназначенного для передачи мощности от двигателя к остальным рабочим механизмам. Схема привода может также включать как открытые зубчатые передачи, так и ременную или цепную передачи, закрепленные на валы, которые опираются на подшипники в гнездах корпуса. Основным предназначением прибора является повышение вращающего момента ведомого вала при одновременном снижении угловой скорости.

Передачи и параметры конического редуктора

Вид редуктора зависит от состава передач и положения осей вращения валов. Различают такие типы передач: цилиндрическая, планетарная, коническая, червячная, глобоидная и волновая. Одной из разновидностей углового редуктора является конический, который служит для уменьшения частоты вращения при одновременном повышении вращающего момента. В корпусе механизма находятся передачи с постоянным передаточным отношением.

Конический редуктор

Конический редуктор имеет следующие параметры: невысокая окружная скорость, средний уровень надежности, точности и металлоемкости, сравнительно низкая себестоимость и трудоемкость. Кроме того, в зависимости от вида передач, расположения осей валового механизма и числа ступеней конические редукторы подразделяются на соосные механизмы, параллельные приспособления, скрещивающиеся и пересекающиеся устройства, могут иметь горизонтальное или вертикальное расположение осей валового механизма и крепиться либо на плиточной основе, либо на приставных опорных лапах. Также ось выходного валового механизма может находиться сбоку, сверху или снизу, относительно плоскости основания.


Современный конический редуктор имеет колесное соединение с круговыми зубьями. Чтобы избежать отрицательной осевой силы на шестерне необходимо, соблюдать совпадение направления вращения зубчатого колесного соединения и наклона линии зуба. Диапазон передаточных чисел составляет от 1 до 5, наиболее распространенный угол наклона равен 350. Существуют также коническо-цилиндрические редукторы, которые выполняют с быстроходной конической ступенью.

Расчет конического редуктора

Главным параметром конического редуктора является реальный диапазон передаточных отношений, который составляет 6,3 (в других вариантах может находиться в диапазоне от 1 до 1000). Основная сфера применения — это передача вращающего момента между валовыми механизмами. В качестве недостатка конического редуктора, можно назвать сравнительную сложность при их производстве и выполнении монтажных операций.

При изготовлении конического редуктора рассчитывается передача по контактным напряжениям, в ходе данного процесса проверяется напряжение изгиба, и определяются объемный размер и масса зубчатых колесных приспособлений, размеры корпусного основания оборудования и цельный вес конического редуктора. На все перечисленные параметры оказывает существенное влияние выбор разновидности термической обработки.

Конический редуктор 1

По сравнению с аналогичными механизмами, можно выделить следующие преимущества конического редуктора:


- повышенная безопасность при эксплуатации;
- высокая аксиальная и радиальная несущая способность;
- некоторое увеличение вращающего момента на выходе;
- бесшумность в рабочем состоянии;
- длительный срок службы и сравнительная простота в ремонте и техобслуживании.


К недостаткам относится сложная технология производства и монтажа конического редуктора, а также большие осевые и изгибные нагрузки на валовый механизм.

Существуют разные способы передать вращательное движение с одного вала на другой. В тех случаях, когда ведущий и ведомый вал по конструктивным особенностям должны находится перпендикулярно друг другу, используют конический редуктор. Данный механизм передает вращательное движение с вала на вал при помощи муфт или зубчатой передачи. При этом можно регулировать величину крутящего момента и угловую скорость посредством изменения величины муфт или зубчатых колес.

Конический редуктор

Конструктивные особенности

Существует два типа конических редукторов:

Под узким типом редуктора подразумевается то, что ширина зубчатого колеса будет равна четверти внешнего конусного расстояния. Передаточные числа в диапазоне 3-5, а число зубьев у шестерни 20-23. У редукторов широкого типа ширина колеса варьируется в пределах от 0,3 до 0,4 внешнего конусного расстояния. Значения передаточных чисел будут 1-2,5, а количество зубьев шестерни от 25 до 28.

На рисунке ниже изображен чертеж конического редуктора, на котором видно, что зубчатые колеса соприкасаются под определенным углом. Валы установлены на однорядные роликовые подшипники и находятся в закрытом корпусе с крышкой. В большинстве случаев, материалом для корпуса служат сталь или чугун, но встречаются модели из легких сплавов. В конструкции используются шестерни конического типа, имеющие прямые или косые зубья. Использование радиальных подшипников позволяет выдерживать большие осевые нагрузки.

Чертеж конического редуктора

По типу исполнения, конические редукторы могут содержать одну или несколько ступеней, с увеличением которых будет задействовано большее количество валов и конических пар. Самыми распространенными на сегодняшний день являются редукторы конические одноступенчатые. Благодаря двухступенчатым и трехступенчатым агрегатам получается достичь требуемого вращающего момента и реверсивного движения.

В независимости от количества ступеней, вращение к редуктору от электродвигателя передается при помощи муфты, клиноременной или цепной передачи. На рисунке ниже изображена кинематическая схема одноступенчатого редуктора.

Кинематическая схема

Смазка конической пары осуществляется при помощи масляной ванны. Одна из шестеренок частично погружена в масло и при вращении перемещает часть масла на другую шестерню, с которого масла вновь капает в ванну. Во время работы агрегата часть масла попадает на внутренние стенки корпуса, в которых находятся технологические отверстия. Через них масло попадает к подшипникам и смазывает их.

Кинематические схемы редукторов, содержащих коническую передачу

Достоинства и недостатки

Конструкция конических редукторов схожа с цилиндрическими, поэтому достоинства и недостатки у них схожи. Основное достоинство конического редуктора заключается в расположении шестерней или муфт под углом. Это дает возможность передать вращение от ведущего вала к ведомому, находящемуся к первому под углом в 90 градусов.

Еще одним немаловажным достоинством такого устройства является невосприимчивость к переменным и кратковременным нагрузкам. За это они часто применяются в производственных процессах с частыми запусками.

Как было сказано выше, конические редукторы имеют схожее с цилиндрическими устройство, но есть свои недостатки. К ним относятся:

  • более низкий КПД;
  • заедание колес происходит чаще.

Несмотря на то, что КПД такого агрегата на 10% ниже и возможны случая заедания шестерней, конические редукторы пользуются большим спросом и нашли себе применение во многих сферах.

Расчет конического редуктора

При проектировании конического редуктора необходимо определить его тип, размеры и технические характеристики исходя из требований и возможностей его эксплуатации на предприятии, а также экономичность его изготовления.

Далее будет описана последовательность расчета конического редуктора, для которого необходимо предварительно определить:

  • крутящий момент;
  • частоту вращения валов;
  • планируемый срок работы.

Чтобы выполнить расчет потребуется специализированная литература, содержащая таблицы коэффициентов и значений, а также знание определенных формул.

Редуктор служит для уменьшения частоты вращения и соответствующего увеличения вращающего момента. В корпусе редуктора размещены одна или несколько передач зацеплением с постоянным передаточным отношением.

Редуктор общемашиностроительного применения – редуктор, выполненный в виде самостоятельного агрегата, предназначенный для привода различных машин и механизмов и удовлетворяющий комплексу технических требований, общему для большинства случаев применения без учета каких-либо специфических требований, характерных для отдельных областей применения.

Редукторы общемашиностроительного применения, несмотря на конструктивные различия, близки по основным технико-экономическим характеристикам: невысокие окружные скорости, средние требования к надежности, точности и металлоемкости при повышенных требованиях по трудоемкости изготовления и себестоимости. Это их отличает от специальных редукторов (авиационных, автомобильных и др.) – редукторов, выполненных с учетом специфических требований, характерных для отдельных отраслей промышленности.

В соответствии и ГОСТ 29076-91 редукторы классифицируют в зависимости от:

– вида применяемых передач, числа ступеней и взаимного расположения осей входного и выходного валов (параллельное, соосное, пересекающееся, скрещивающееся);

– взаимного расположения геометрических осей входного и выходного валов в пространстве (горизонтальное и вертикальное);

– способа крепления редуктора (на приставных лапах или на плите);

– расположения оси выходного вала относительно плоскости основания и оси входного вала (боковое, нижнее, верхнее) и числа входных и выходных концов валов.

Возможности получения больших передаточных чисел при малых габаритах передачи обеспечивают планептарные и волновые редукторы.

Конические редукторы

Важнейший характеристический размер, в основном определяющий нагрузочную способность, габариты и массу редуктора называют главным параметром редуктора. Так для конического редуктора, расчет которого и будет приведен в пояснительной записке, – номинальный внешний делительный диаметр .

Реальный диапазон передаточных отношений (чисел) редукторов от 1 до 1000. Значения передаточных чисел должны соответствовать ряду R20 предпочтительных чисел (ГОСТ 8032-84). Для конических редукторов значение передаточного числа составляет в среднем до 6,3.

Конические редукторы применяются для передачи вращающего момента между валами, оси которых пересекаются под некоторым углом, который может составлять: и, как правило, он равен 900. Недостатком конических передач является то, что они более сложны в изготовлении и монтаже.

Выбор передаточного числа редуктора и подбор асинхронного

1. Определяем предварительное значение КПД привода по формуле:

где – общий КПД привода;

— КПД конической передачи. По табл. примем =0,95;

— КПД одной пары подшипников, который принимается равным: =0,99.

2. Определяем требуемую мощность на ведущем валу привода Р1 по формуле:

где Р1 – мощность на ведущем валу; Вт;

Р2 – мощность на ведомом валу, Вт. В соответствии с заданием Р2=38кВт;

— общий КПД привода, значение которого.

Для полученного значения мощности выберем электродвигатель 4А250S2УЗ в соответствии с ГОСТ 19523-74 с мощностью кВт, частотой вращения об/мин. U= 3.15

3. Определяем передаточное число привода. Передаточное число вычислим формуле:

где n1– частота вращения вала электродвигателя, об/мин;

n2 – частота вращения выходного вала, об/мин;

Зная, что n1=2960 об/мин и n2=760 об/мин (см. текст задания), получаем: . Из единого ряда стандартных значений передаточных чисел выберем u = 4 (ГОСТ 2185-81).

4. Определяем частоты вращения (угловые скорости) валов редуктора.

Угловые скорости входного и выходного валов (и ) вычислим по формуле:

где – вычисляемая угловая скорость, 1/с;

n – частоты вращения входного и выходного валов редуктора, об/мин.

5. Определяем моменты вращения на валах привода.

где Т1 – определяемый вращающий момент, ;

Р1 – мощность на ведущем валу; Р1 =40420 Вт;

— угловая скорость ведущего вала редуктора, =309.81 1/с.

Прочностной и геометрический расчёты передачи с определением

усилий в зацеплении

Для изготовления шестерни и колеса принимаем согласно таблице (ГОСТ 1050 – 88 и ГОСТ 4543 – 71)

Для шестерни: сталь 40Х твёрдость рабочих поверхностей зубьев H1=270 HB, улучшение.

Для колеса: сталь 40Х твёрдость рабочих поверхностей зубьев H2=230 HB, улучшение, так как колесо должно быть мягче шестерни на 10%.

По таблице пределы выносливости на изгиб зубьев .

1. Для шестерниМПа

2. Для колеса МПа

где — коэффициент реверсивности =0.8 (Чернавский стр. 37),

-допускаемые напряжения изгиба,

Допускаемые контактные напряжения находим по формуле

принимаем =1.1 для зубчатых колёс при улучшении и для ресурса редуктора 7000 часов,

где — коэффициент долголетия, который принимаем равным 1, так как

где — базовое число циклов, равное 20000000 циклам,

— фактическое число циклов шестерни или колеса.

где -ресурс работы передачи.

Для прямозубой передачи

Определение основного геометрического параметра передачи (внешнего делительного диаметра колеса)

допускаемое контактное напряжение = 517 МПа

— коэффициент неравномерности нагрузки по ширине венца зубчатого колеса,

следовательно, по ГОСТ – 12289 – 76 =350 мм

Вычисляем количество зубьев на колесах

Принимаем z1 = 25

Определяем внешний окружной модуль для колёс с прямыми зубьями.

Вычислим основные геометрические параметры

Углы делительных конусов колеса

Внешнее конусное расстояние

Ширина зубчатого венцапринимаем 59.

Среднее конусное расстояние

Внешний делительный диаметр шестерни:

Внешние диаметры вершин зубьев шестерни и колеса:

– шестерни принимаем 95

Средние делительные диаметры шестерни и колеса.

где: средний делительный диаметр шестерни.

где – коэффициент ширины зубчатого венца

Определяем силы действующие в зацеплении зубчатых колес:

Окружная сила на среднем диаметре (пренебрегая потерями энергии в зацеплении по формуле)

где окружная сила на среднем диаметре.

Осевая сила на шестерне равная радиальной силе на колесе

осевая сила на шестерне.

Радиальная сила на шестерне равна осевой силе на колесе .

определяем среднюю окружную скорость колес

Произведем проверочный расчет передачи на контактную выносливость:

Предварительный расчет валов редуктора

Диаметр выходного конца ведущего вала при допускаемом напряжении МПа определяем по формуле:

где – вращающий момент на входном валу, Н·м.

Таким образом, мм.

После определения минимального диаметра вала, конструктивно выбирается истинный диаметр. Таким образом

Диаметр выходного конца ведомого вала определяем аналогично вычислению диаметра выходного конца ведущего вала.

Построение эскизной компоновки

Установку валов проектируем на радиально-упорных подшипниках. Для предотвращения вытекания масла из подшипниковой полоски, предусматриваем установку резиновых манжет, в крышках с отверстиями, для выступающих концов валов.

Построение эскизной компоновки приведено в приложении.

Силы действующие в зацеплении Н; Н; Н.

Первый этап компоновки дал мм; мм.

Осевые составляющие радиальных реакцый конических подшипников:

здесь для подшипников 7208 параметр осевого нагружения е=0.383.

Осевые нагрузки подшипников. В нашем случае ; тогда Н; Н.

Рассмотрим левый подшипник: отношение е поэтому пи подсчете эквивалентной нагрузки пользуются формулой

Расчетная долговечность млн. об.

Найденная долговечность не приемлема, поэтому после каждых 1900 часов работы следует менять подшипники.

Для ведомого вала были выбраны подшипники 7211.

Уточненный расчет валов

Считаем что нормальные напряжения от изгиба меняются по симметричному циклу, а касательные от кручения – по отнулевому.

Материалы валов – сталь 45 нормализованная .

У ведущего вала определять коэффициент запаса прочности в нескольких сечениях нецелесообразно, достаточно выбрать одно сечение с наименьшим коэффициентом запаса прочности, а именно место посадки подшипника, ближайшего к шестерне, в том опасном сечении действуют максимальные изгибающие моменты .

Концентрация напряжений вызвана напрессовкой внутреннего кольца подшипника на вал.

Изгибающие моменты в двух взаимно перпендикулярных плоскостях:

Суммарный изгибающий момент

Момент сопротивления сечения

Амплитуда нормальных напряжений

Коэффициент запаса прочности по нормальным напряжениям

Полярный момент сопротивления

Амплитуда и среднее напряжение цккла косательных напряжений

Коэффициент запаса прочности по касательным напряжениям

где: =2,28, коэффициент =0,1

Коэффициент запаса прочности

Для обеспечения прочности коэффициент запаса прочности должен быть не меньше чем 1,5-1,7. Учитывая требования жесткости рекомендуют 2,5-3,0. Полученное значение 2,82 является достаточным.

По табл. 7.7 [1]выберем параметры шпонки (ГОСТ 23360-70):

— высота h = 18 мм;

— глубина шпоночного паза в валу =11 мм;

— глубина шпоночного паза в ступице =7,4 мм.

Выбранную шпонку проверим на сопротивление смятий боковых поверхностей по формуле 7.2 [1]:

где Т – передаваемый момент, Н*м;

d – диаметр вала, d = 55 мм;

– расчетная длина шпонки: мм;

– допустимое напряжение смятия, принимаемое при стальной ступице 100…120 МПа.

конический редуктор двигатель подшипник передача

Смазывание конической передачи примем погружением зубьев колеса в масло. Достаточно чтобы в смазку погружалось большее из двух зубчатых колес. Глубина погружения не менее 66 мм

Требуемая вязкость масла при окружной скорости v=5-12.5 м/с, . Подходит по вязкости автотракторное АК 10.

Выбираем смазку для подшипников. Принимаем консистентную смазку – консталин УТ-1. (ГОСТ 1957-52)

В данной работе был спроектирован конический редуктор с прямыми зубьями. В пояснительной записке отражены все необходимые этапы, которые необходимо проделывать при проектировании конических редукторов. В ходе работы был выполнен сборочный чертеж редуктора и спецификация в соответствии с требованиями, установленными ГОСТ.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Расчет одноступенчатого редуктора с прямозубой конической передачей

Назначение и сравнительная характеристика привода

Кинематический и силовой расчёт привода. Выбор электродвигателя

Геометрический прочностной расчёт закрытой передачи

Разработка эскизной компоновки редуктора

Проверка долговечности подшипников

Уточнённый расчёт валов

Выбор типа крепления вала на колесе

Выбор и анализ посадок

Выбор муфт. Выбор уплотнений

Выбор смазки редуктора и подшипников

Список использованной литературы

Редуктор с прямозубой конической передачей

Открытая коническая передача

Задание: Рассчитать одноступенчатый редуктор с прямозубой конической передачей. Начертить сборочный чертёж редуктора, рабочие чертежи зубчатого колеса и ведомого вала.

Назначение и сравнительная характеристика привода

Данный привод используется в картофелеочистительной машине. Привод включает в себя электрический двигатель, открытую цилиндрическую косозубую передачу, одноступенчатый конический редуктор, который требуется рассчитать и спроектировать в данном курсовом проекте.

Редуктором называется механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата и служащий для передачи мощности от двигателя к рабочей машине. Кинематическая схема привода может включать, помимо редуктора, открытые зубчатые передачи, цепную или ремённую. Назначение редуктора понижение угловой скорости и повышение вращательного момента ведомого вала по сравнению с валом ведущим. Редуктор состоит из корпуса, в котором помещают элементы передачи - зубчатые колёса, валы подшипники и т.д.

Наиболее часто используют цилиндрические и конические передачи с прямыми и косыми зубьями. Кроме этих передач используют винтовые, и передачи с шевронными и криволинейными зубьями.

Преимущества зубчатых передач

Постоянство передаточного числа (для прямозубой цилиндрической U=24, косозубой цилиндрической U=46, для конической U=23)

Высокая нагрузочная способность

Высокий КПД (0.960.99)

Большая долговечность, прочность, надёжность, простота в обслуживании

Сравнительно малые нагрузки на валы и опоры

Недостатки зубчатых передач

Невозможность без ступенчатого изменения скорости.

Высокие требования к точности изготовления и монтажа.

Шум при больших скоростях.

Плохие амортизационные свойства, что отрицательно сказывается на компенсацию динамических нагрузок.

Громоздкость при больших межосевых расстояниях.

Потребность в специальном оборудовании и инструменте для нарезания зубьев.

Зубчатые передачи не предохраняют от опасных нагрузок

Конические передачи по сравнению с цилиндрическими наиболее сложны в изготовлении и монтаже т.к. для них требуется большая точность.

1. Выбор электродвигателя и кинематический расчёт.

1.1 Определяем требуемую мощность двигателя

1.2 Определяем КПД

=0,97*0,96*0,9=0,679 оп-открытой передачи

1.3 Определяем мощность двигателя

1.4 Выбираем эл. Двигатель из условия

Nн  Nдв Nн=1.5 кВт 4А80А2У3 Nн=1.5 кВт nс=3000

Номинальной мощности 1.5 кВт соответствует четыре вида двигателей (таблица 1)

Читайте также: