Реферат на тему капилляры

Обновлено: 28.06.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Капиллярные явления в природе и технике

Капиллярные явления в растительном мире

Основной потребляющий влагу орган растения, где постоянно нужна вода, в том числе для фотосинтеза,-это лист, расположенный далеко от корня. Кроме того, лист окружён воздухом, который часто отнимает у него воду, чтобы насытиться водяными парами. Возникает противоречие: листу вода нужна постоянно, но он её всё время теряет, а корень всегда имеет воду в избытке, хотя не прочь от неё избавиться. Решение этой проблемы очевидно-надо перекачать избыток воды из корня в листья. Роль такого водопровода берёт на себя стебель. Он доставляет воду к листьям по специальным трубам-капиллярам. У покрытосемянных они самые совершенные и представляют собой длинные (в рост самого растения) полые сосуды, стенки которых выстланы целлюлозой и лигнином. Система таких проводящих сосудов называется ксилемой (от греч. csilon -срубленное дерево). Если в просвете сосудов корня сконцентрировать минеральные вещества, которые всосал корень из почвы, в ксилему из окружающих клеток корня по механизму осмоса устремляется вода.

Все тело животного пронизывают кровеносные сосуды. По строению они неодинаковы. Артерии –это сосуды, по которым движется кровь от сердца. Они имеют плотные упругие эластичные стенки, в состав которых входят гладкие мышцы. Сокращаясь, сердце выбрасывает в артерии кровь под большим давлением. Благодаря плотности и упругости стенки артерии выдерживают это давление и растягиваются.

Продукты жизнедеятельности клеток проникают сквозь стенки капилляров из тканевой жидкости в кровь. В организме человека примерно 50 млрд капилляров. Если все капилляры вытянуть в одну линию, то ею можно опоясать земной шар по экватору два с половиной раза.

Стволы деревьев и ветви растений пронизаны огромным числом капиллярных трубочек, по которым питательные вещества поднимаются до самых верхних листочков. Корневая система оканчивается тончайшими нитями-капиллярами.

Высота подъема жидкости в капиллярах тем больше, чем меньше его диаметр; отсюда ясно, что для сохранения влаги надо почву перекапывать, а для осушения утрамбовывать.

С древних времен люди наиболее тщательно изучали самый верхний слой почвы- пахотный, где находятся корни растений.

Хорошо известно , как быстро впитывается вода в пляжный песок. Впитывается и тут же, как сквозь сито, просачивается вглубь. А вот глина почти не пропускает воду. Недаром из неё делают посуду, причем в глубокой древности вылепленные из глины сосуды и котлы даже не обжигали на огне.

Практически ни одна почва не состоит целиком из песка или целиком из глины. В каждой из почв они присутствуют вместе, но в разных соотношениях, например 35 % песка и 65 % глины. По этим соотношениям судят о механическом составе почвы. Механический состав и капиллярность почвы сильно влияют на ее плодородие. Чем больше в почве глины, тем сильнее удерживается драгоценная влага, но хуже поступает воздух.

Смачивание — это поверхностное явление, заключающееся во взаимодействии жидкости с поверхностью твёрдого тела или другой.

Смачивание бывает двух видов:

1) Иммерсионное(вся поверхность твёрдого тела контактирует с жидкостью)

2) Контактное(состоит из 3х фаз - твердая, жидкая, газообразная)

Смачивание зависит от соотношения между силами сцепления молекул жидкости с молекулами (или атомами) смачиваемого тела (адгезия) и силами взаимного сцепления молекул жидкости (когезия).

Степень смачивания характеризуется углом смачивания. Угол смачивания (или краевой угол смачивания) это угол, образованный касательными плоскостями к межфазным поверхностям, ограничивающим смачивающую жидкость, а вершина угла лежит на линии раздела трёх фаз. Измеряется методом лежащей капли. В случае порошков надёжных методов, дающих высокую степень воспроизводимости, пока(2008) не разработано. Предложен весовой метод определения степени смачивания, но он пока не стандартизован.

Измерение степени смачивания весьма важно во многих отраслях промышленности

(лакокрасочная, фармацевтическая, косметическая и т.д.). К примеру, на лобовые стёкла автомобилей наносят особые покрытия, которые должны быть устойчивы против разных видов загрязнений. Состав и физические свойства покрытия стёкол и контактных линз можно сделать оптимальным по результатам измерения контактного угла.

К примеру, популярный метод увеличения добычи нефти при помощи закачки воды в пласт исходит из того, что вода заполняет поры и выдавливает нефть. В случае мелких пор и чистой воды это далеко не так, поэтому приходится добавлять специальные ПАВ. Оценку смачиваемости горных пород при добавлении различных по составу растворов можно измерить различными приборами.

При соприкосновении жидкости с поверхностью твердого тела возможны два случая: жидкость смачивает твердое тело и не смачивает его. Если, например, капли ртути поместить на поверхность чистого железа и на чистое стекло, то на поверхности железа они будут растекаться, а на поверхности стекла иметь форму, близкую к шарообразной (рис.1.1).

Для выяснения причин этих явлений рассмотрим отдельную молекулу, находящуюся на поверхности жидкости и соприкасающуюся с погруженным в жидкость твердым телом. Например, если описать вокруг молекулы М (рис.1.2) сферу действия молекулярных сил радиусом r0 . Сила Fж воздействия всех молекул жидкости, входящих в сферу молекулярного действия, направлена по биссектрисе прямого угла, образованного стенкой и поверхностью жидкости, внутри жидкости. Кроме того, со стороны твердого тела на молекулу М действуют молекулярные силы Fт , которые направлены перпендикулярно поверхности твердого тела. Равнодействующую F этих двух сил находят по правилу параллелограмма. В зависимости от соотношения Fж и Fт равнодействующая направлена в сторону твердого тела (рис.1.2,а) или жидкости (рис.1.2,б).

Если силы взаимодействия молекул твердого тела и молекул жидкости больше сил взаимодействия между молекулами жидкости, то жидкость смачивает твердое тело (ртуть-железо). В другом случае жидкость не смачивает твердое тело (ртуть-железо).

Искривлённая поверхность жидкости в узких цилиндрических трубках или около стенок сосуда называется мениском. Поверхность смачивающей жидкости вблизи твердого тела поднимается, а мениск – вогнутый (рис.1.3,а). У несмачивающей жидкости ее поверхность вблизи твердого тела несколько опускается, и мениск – выпуклый (рис.1.3,б).


Определить, смачивающей или несмачивающей по отношению к твердому телу является жидкость, можно пол краевому углу Ɵ (угол между поверхностью твердого тела и касательной к поверхности жидкости в точке М; рис.1.1 и 1.3).

Капиллярность (от лат. capillaris — волосяной), капиллярный эффект — физическое явление, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. Поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т. п. Понижение жидкости происходит в трубках и каналах, не смачиваемых жидкостью, например ртуть в стеклянной трубке.

Содержание

Введение_________________________________________________________2
1. Капиллярные явления______________________________________________3
2. Роль капиллярных процессов при вытеснении нефти водой из пористых
сред _____________________________________________________________7
3. Использование теории капиллярных явлений для установления
зависимости нефтеотдачи от различных факторов______________________10
4. Зависимость нефтеотдачи от скорости вытеснения нефти водой__________12
5. Структурные модели пористых материалов
5.1 Структура пористых сред__________________________________14
5.2 Макро- и микронеоднородности пористых сред_______________17
5.3 Капиллярные модели пористых сред ________________________20
5.4 Решеточные капилляры пористых сред_______________________22

Работа содержит 1 файл

капиллярные явления.doc

Введение______________________ ______________________________ _____2

  1. Капиллярные явления_______________________ _______________________3
  2. Роль капиллярных процессов при вытеснении нефти водой из пористых

сред ______________________________ ______________________________ _7

  1. Использование теории капиллярных явлений для установления

зависимости нефтеотдачи от различных факторов______________________ 10

  1. Зависимость нефтеотдачи от скорости вытеснения нефти водой__________12
  2. Структурные модели пористых материалов
    1. Структура пористых сред__________________________ ________14
    2. Макро- и микронеоднородности пористых сред_______________17
    3. Капиллярные модели пористых сред ________________________20
    4. Решеточные капилляры пористых сред_______________________22

    Список литературы_____________ ______________________________ ______28

    Капиллярность (от лат. capilla ris — волосяной), капиллярный эффект — физическое явление, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. Поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т. п. Понижение жидкости происходит в трубках и каналах, не смачиваемых жидкостью, например ртуть в стеклянной трубке.

    Благодаря капиллярности возможны жизнедеятельность животных и растений, различные химические процессы, бытовые явления (например, подъём керосина по фитилю в керосиновой лампе, вытирание рук полотенцем). Капиллярность почвы определяется скоростью, с которой вода поднимается в почве и зависит от размера промежутков между почвенными частицами.

    Капиллярами называются тонкие трубки, а также самые тонкие сосуды в организме человека и других животных

    Капиллярный эффект используется в неразрушающем контроле (капиллярный контроль или контроль проникающими веществами) для выявления дефектов, имеющих выход на поверхность контролируемого изделия. Позволяет выявлять трещины с раскрытием от 1 мкм, которые не видны невооруженным глазом.

    Капиллярные явления - поверхностные явления на границе жидкости с др. средой, связанные с искривлением ее поверхности. Искривление поверхности жидкости на границе с газовой фазой происходит в результате действия поверхностного натяжения жидкости, которое стремится сократить поверхность раздела и придать ограниченному объему жидкости форму шара. Поскольку шар обладает минимальной поверхностью при данном объеме, такая форма отвечает минимуму поверхностной энергии жидкости, т.е. ее устойчивому равновесному состоянию. В случае достаточно больших масс жидкости действие поверхн остного натяжения компенсируется силой тяжести, поэтому маловязкая жидкость быстро принимает форму сосуда, в который она налита, а ее своб. поверхность представляется практически плоской.
    В отсутствие силы тяжести или в случае очень малых масс жидкость всегда принимает сферическую форму (капля), кривизна поверхности которой определяет мн. свойства вещества. Поэтому капиллярные явления ярко выражены и играют существенную роль в условиях невесомости, при дроблении жидкости в газовой среде (или распылении газа в жидкости) и образовании систем, состоящих из многих капель или пузырьков (эмульсий, аэрозолей, пен), при зарождении новой фазы капель жидкости при конде нсации паров. пузырьков пара при вскипании, зародышей кристаллизации. При контакте жидкости с конденсированными телами (другой жидкостью или твердым телом) искривление поверхности раздела происходит в результате действия межфазного натяжения.

    В случае смачивания, например, при соприкосновении жидкости с твердой стенкой сосуда, силы притяжения, действующие между молекулами твердого тела и жидкости, заставляют ее подниматься по стенке сосуда, вследствие чего примыкающий к стенке участок поверхности жидкости принимает вогнутую форму. В узких каналах, например, цилиндрических капиллярах, образуется вогнутый мениск - полностью искривленная поверхность жидкости (рис. 1).

    Рис. 1. Капиллярное поднятие на высоту h жидкости, смачивающей стенки капилляра радиуса r; q - краевой угол смачивания.

    Капиллярное давление. Так как силы поверхностного (межфазного) натяжения направлены по касательной к поверхности жидкости, искривление последней ведет к появлению составляющей, направленной внутрь объема жидкости. В результате возникает капиллярное давление, величина которого Dp связана со средним радиусом кривизны поверхности r0 уравнением Лапласа:

    где p1 и p2 - давления в жидкости 1 и соседней фазе 2 (газе или жидкости), s12 - поверхностное (межфазное) натяжение.

    Если поверхность жидкости вогнута (r0 0) знак Dp изменяется на обратный. Отрицательное капиллярное давление, возникающее в случае смачивания жидкостью стенок капилляра, приводит к тому, что жидкость будет всасываться в капилляр до тех пор, пока вес столба жидкости высотой h не уравновесит перепад давления Dp. В состоянии равновесия высота капиллярного поднятия определяется формулой Жюрена:

    где r1 и r2 - плотности жидкости 1 и среды 2, g - ускорение силы тяжести, r - радиус капилляра, q - краевой угол смачивания. Для несмачивающих стенки капилляра жидкостей cos q 1/2 . Она имеет размерность длины и характеризует линейный размер Z [ а, при котором становятся существенными капиллярные явления Так, для воды при 20 °С а = 0,38 см. При слабой гравитации (g : 0) значение а возрастает. На участке контакта частиц капиллярная конденсация приводит к стягиванию частиц под действием пониженного давления Dp (3)

    где - молярный объем жидкости, R - газовая постоянная. Понижение или повышение давления пара зависит от знака кривизны поверхности: над выпуклыми поверхностями (r0 > 0) p > ps; над вогнутыми (r0 (4)

    где l - длина участка впитавшейся жидкости, h - ее вязкость, Dp - перепад давления на участке l, равный капиллярному давлению мениска: Dp = — 2s12cos q/r. Если краевой угол q не зависит от скорости v, можно рассчитать количество впитавшейся жидкости за время t из соотношения:

    Если q есть функция v, то l и v связаны более сложными зависимостями.

    Уравнения (4) и (5) используют для расчетов скорости пропитки при обработке древесины антисептиками, крашении тканей, нанесении катализаторов на пористые носители, выщелачивании и диффузионном извлечении ценных компонентов горных пород и др. Для ускорения пропитки часто используют ПАВ, улучшающие смачивание за счет уменьшения краевого угла q. Один из вариантов капиллярной пропитки - вытеснение из пористой среды однойжидкости другой, не смешивающейся с первой и лучше смачивающей поверхность пор. На этом основаны, например, методы извлечения остаточной нефти из пластов водными растворами ПАВ, методы ртутной порометрии. Капиллярное впитывание в поры растворов и вытеснение из пор несмешивающихся жидкостей, сопровождающиеся адсорбцией и диффузией компонентов, рассматриваются физико-химической гидродинамикой.

    Помимо описанных равновесных состояний жидкости и ее движения в порах и капиллярах, к капиллярные явления относят также равновесные состояния очень малых объемов жидкости, в частности тонких слоев и пленок. Эти капиллярные явления часто называют капиллярные явления II рода. Для них характерны, например, зависимостьповерхностного натяжения жидкости от радиуса капель и линейное натяжение. Капиллярные явления впервые исследованы Леонардо да Винчи (1561), Б. Паскалем (17 в.) и Дж. Жюреном (18 в.) в опытах с капиллярными трубками. Теория капиллярных явлений развита в работах П. Лапласа (1806), Т. Юнга (1804), А. Ю. Давыдова (1851), Дж. У. Гиббса (1876), И. С. Громеки (1879, 1886). Начало развития теории капиллярных явлений II рода положено трудами Б. В. Дерягина и Л. М. Щербакова.

    2.Роль капиллярных процессов при вытеснении нефти водой из пористых сред

    Поровое пространство нефтесодержащих пород представляет собой огромное скопление капиллярных каналов, в которых движутся несмешивающиеся жидкости, образующие мениски на разделах фаз. Поэтому капиллярные силы влияют на процессы вытеснения нефти.

    Как мы уже видели, позади водо-нефтяного контакта мениски создают многочисленные эффекты Жамена и препятствуют вытеснению нефти. Если среда гидрофильна, в области водонефтяного контакта давление, развиваемое менисками, способствует возникновению процессов капиллярного пропитывания и перераспределения жидкостей. Это связано с неоднородностью пор по размерам.

    Капиллярное давление, развиваемое в каналах небольшого сечения, больше, чем в крупных порах. В результате этого на водонефтяном контакте возникают процессы противоточной капиллярной пропитки — вода по мелким порам проникает в нефтяную часть пласта,

    по крупным порам нефть вытесняется в водоносную часть. Интенсивность этого процесса зависит от свойств пластовой системы, а также от соотношения внешних и капиллярных сил. Когда внешние силы велики (т. е. когда перепад давления в пласте, под действием которого нефть вытесняется водой, достаточно высокий), фронт может передвигаться настолько быстро, что вследствие гистерезисных явлений в гидрофильном в статических условиях пласте, наступающие углы смачивания становятся близкими или больше 90°. При этом процессы капиллярного впитывания на фронте вытеснения затухают или исчезают совсем. Однако в большинстве случаев (при закачке поверхностных пресных вод в пласт) эти процессы на фронте вытеснения нефти водой проявляются в той или иной степени, так как

    реальные скорости продвижения водо-нефтяного контакта редко превышают 1—2 м в сутки.

    Кроме упомянутых форм проявления, капиллярные силы влияют на процессы диспергирования и коалесценции нефти и воды в пористой среде, на строение тонких слоев воды (подкладок) между твердым телом и углеводородной жидкостью и т. д. Следует отметить, что интенсивность проявления упомянутых капиллярных процессов

    зависит в той или иной степени от величины капиллярного давления, развиваемого менисками на границах раздела. И поэтому необходимо прежде всего установить, какие воды лучше вытесняют нефть из пласта: развивающие высокое капиллярное давление на границе с нефтью в пористой среде или слабое. Иначе говоря, необходимо

    решить, какие воды следует выбирать для заводнения залежей: интенсивно впитывающиеся в нефтяную часть залежи под действием капиллярных сил или слабо проникающие в пласт. Целесообразность такой постановки вопроса вытекает также из уже упоминавшегося предположения, что различную нефтеотдачу одной и той же пористой среды при вытеснении нефти водами различного состава получают вследствие неодинакового характера течения и интенсивности капиллярных процессов в зонах водо-нефтяного контакта и вымывания

    нефти водой. Действительно, изменяя качества нагнетаемых в залежь вод, мы воздействуем на величину их поверхностного натяжения на границе с нефтью, смачивающие характеристики, а также вязкостные свойства. Это означает, что как бы ни менялись упомянутые свойства воды, мы воздействуем при этом прежде всего на комплексный параметр — капиллярные свойства пластовой системы (на величину и знак капиллярных давлений рк = 2а cos 0/r, развиваемых менисками в пористой среде, на направление течения процессов капиллярной пропитки и интенсивность капиллярного перераспределения жидкостей в пористой среде под действием капиллярных сил).

    Рассмотрим далее представления различных исследователей о механизме проявления и роли капиллярных процессов при вытеснении нефти водой из пористых сред. В гидрофобных пластах, где мениски в каналах противодействуют вытеснению нефти водой, капиллярные силы вредны, так как нефтеотдача пластов под их влиянием уменьшается. Поэтому лучший

    результат можно получить, если нефть вытесняется водой с низкими значениями межфазного натяжения при повышенных градиентах давлений. Значительно труднее определить роль капиллярных сил и механизм их проявления в гидрофильных породах (опыты по капиллярному пропитыванию водой естественных кернов, заполненных нефтью,

    показывают, что большинство природных коллекторов нефти в той или иной степени избирательно лучше смачивается водой). Различные исследователи пришли к выводу, что роль капиллярных процессов на водо-нефтяном контакте в зависимости от геометрии потока и строения пород проявляется по-разному. Из результатов опытов многих исследователей, проводивших эксперименты с гидрофильными средами, следует, что капиллярныесилы в определенных условиях могут благоприятствовать вытеснению нефти водой из пластов. В лабораторных условиях, например, определили, что если ≪пласт≫ сложен однородными пропластками различной проницаемости, то капиллярные процессы пропитывания способствуют увеличению нефтеотдачи пластов в безводный период. Фронт воды быстрее продвигается по более проницаемому пласту 2. При этом вода под действием капиллярных сил и вертикального градиента давлений проникает в малопроницаемый пласт, вытесняя часть нефти из него, что способствует увеличению нефтеотдачи пласта по крайней мере в безводный период. Многочисленные лабораторные и промысловые наблюдения подтверждают возможность использования эффекта впитывания воды в нефтенасыщенные блоки для существенного увеличения извлекаемых запасов нефти из трещиновато-пористых коллекторов. Внешниегидродинамические силы в трещиновато-пористой среде с небольшой проницаемостью нефтенасыщенных блоков способствуют быстрому прорыву вод по трещинам в эксплуатационные скважины. Применение в этом случае вод с высокой способностью впитывания в нефтенасыщенную породу блоков в сочетании с медленной скоростью продвижения вод способствует увеличению нефтеотдачи трещиноватого коллектора под действием капиллярных сил. По результатам лабораторных исследований впитывающаяся в породу вода способна вытеснять до 50% нефти из блоков естественного известняка диаметром 6—7 см за 25—30 дней. С увеличением объема образцов темп и эффективность извлечения нефти значительно уменьшаются.

    Мы живём в мире удивительных природных явлений. Их множество, мы встречаемся с ними каждый день, не задумываясь о сущности. Но человек как разумный феномен должен понимать суть этих явлений. Такие явления как капиллярность, смачивание и несмачивание, капиллярное явление широко распространены в природе и технике. Они важны как в повседневной жизни, так и для решения важнейших научно-технических задач. Знания по этим вопросам позволяют ответить на многие вопросы. Например, почему капля в свободном полете, планеты и звезды имеют шарообразную форму, что такое флотация и где она нашла применение, почему одни твердые тела хорошо смачиваются жидкостью, другие плохо, что капиллярные явления позволяют всасывать питательные элементы, влагу из почвы корневой системой растительности, что кровообращение в живых организмах основано на капиллярном явлении и т.д.

    Содержание работы
    Файлы: 1 файл

    Капиллярные явления.docx

    ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

    ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

    Выполнила студентка 1 курса

    1 группы 2 подгруппы

    Волкова Кристина Валерьевна

    Проверила: Голубева М.А.

    Мы живём в мире удивительных природных явлений. Их множество, мы встречаемся с ними каждый день, не задумываясь о сущности. Но человек как разумный феномен должен понимать суть этих явлений. Такие явления как капиллярность, смачивание и несмачивание, капиллярное явление широко распространены в природе и технике. Они важны как в повседневной жизни, так и для решения важнейших научно-технических задач. Знания по этим вопросам позволяют ответить на многие вопросы. Например, почему капля в свободном полете, планеты и звезды имеют шарообразную форму, что такое флотация и где она нашла применение, почему одни твердые тела хорошо смачиваются жидкостью, другие плохо, что капиллярные явления позволяют всасывать питательные элементы, влагу из почвы корневой системой растительности, что кровообращение в живых организмах основано на капиллярном явлении и т.д.

    2. Свойства жидкостей. Поверхностное натяжение

    Рисунок 1. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 – вода; 2 – лед

    Вследствие плотной упаковки молекул сжимаемость жидкостей, т.е. изменение объема при изменении давления, очень мала; она в десятки и сотни тысяч раз меньше, чем в газах.

    Жидкости, как и твердые тела, изменяют свой объем при изменении температуры. Для не очень больших интервалов температур относительное изменение объема ΔV / V0 пропорционально изменению температуры ΔT:

    Коэффициент β называют температурным коэффициентом объемного расширения Тепловое расширение воды имеет интересную и важную для жизни на Земле аномалию. При температуре ниже 4°С вода расширяется. Максимум плотности ρв = 10 3 кг/м 3 вода имеет при температуре 4°С.

    При замерзании вода расширяется, поэтому лед остается плавать на поверхности замерзающего водоема. Температура замерзающей воды подо льдом равна 0°С. В более плотных слоях воды у дна водоема температура оказывается порядка 4°С. Благодаря этому может существовать жизнь в воде замерзающих водоемов.

    Наиболее интересной особенностью жидкостей является наличие свободной поверхности. Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости (силами, действующими на данную молекулу жидкости со стороны молекул газа (или пара) можно пренебречь). В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости (рис. 1).

    Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (т.е. увеличить площадь поверхности жидкости), надо затратить положительную работу внешних сил ΔAвнеш, пропорциональную изменению ΔS площади поверхности:

    Коэффициент σ называется коэффициентом поверхностного натяжения (σ > 0). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу.

    В СИ коэффициент поверхностного натяжения измеряется в джоулях на метр квадратный (Дж/м 2 ) или в ньютонах на метр (1 Н/м = 1 Дж/м 2 ).

    Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальной энергией. Потенциальная энергия Ep поверхности жидкости пропорциональна ее площади:

    Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму.

    Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения.

    Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т.е. от того, как пленка деформирована), а силы поверхностного натяжения не зависят от площади поверхности жидкости.

    Так как всякая система самопроизвольно переходит в состояние, при котором ее потенциальная энергия минимальна, то жидкость должна самопроизвольно переходить в такое состояние, при котором площадь ее свободной поверхности имеет наименьшую величину. Это можно показать с помощью следующего опыта.

    На проволоке, изогнутой в виде буквы П, укрепляют подвижную поперечину / (рис. 3). Полученную таким образом рамку затягивают мыльной пленкой, опуская рамку в мыльный раствор. После вынимания рамки из раствора поперечина / перемещается вверх, т.е. молекулярные силы действительно уменьшают площадь свободной поверхности жидкости.

    Поскольку при одном и том же объеме наименьшая площадь поверхности имеется у шара, жидкость в состоянии невесомости принимает форму шара. По этой же причине маленькие капли жидкости имеют шарообразную форму. Форма мыльных пленок на различных каркасах всегда соответствует наименьшей площади свободной поверхности жидкости.

    Мы привыкли думать, что жидкости не имеют никакой собственной формы. Это неверно. Естественная форма всякой жидкости – шар. Обычно сила тяжести мешает жидкости принимать эту форму, и жидкость либо растекается тонким слоем, если сосуда нет, либо же принимает форму сосуда. Находясь внутри другой жидкости такой же плотности, жидкость принимает естественную, шарообразную форму.

    Оливковое масло всплывает в воде, но тонет в спирте. Можно приготовить такую смесь воды и спирта, в которой масло будет находиться в равновесии. Введём с помощью стеклянной трубки или шприца в эту смесь немного оливкового масла: масло соберётся в одну шарообразную каплю, которая будет висеть неподвижно в жидкости. Если пропустить через центр масляного шара проволоку и вращать её, то масляный шар начинает сплющиваться, а затем, через несколько секунд, от него отделяется кольцо из маленьких шарообразных капелек масла. Этот опыт впервые произвел бельгийский физик Плато.

    В гигантских масштабах такое явление можно наблюдать у нашей звезды Солнца и планет-гигантов. Вращаются эти небесные тела вокруг своей оси очень быстро. В результате такого вращения тела очень сильно сжаты у полюсов.

    4. Явления смачивания и не смачивания. Краевой угол

    Если опустить стеклянную палочку в ртуть и затем вынуть ее, то ртути на ней не окажется. Если же эту палочку опустить в воду, то после вытаскивания на ее конце останется капля воды. Этот опыт показывает, что молекулы ртути притягиваются друг к другу сильнее, чем к молекулам стекла, а молекулы воды притягиваются друг к другу слабее, чем к молекулам стекла.

    Если молекулы жидкости притягиваются друг к другу слабее, чем к молекулам твердого вещества, то жидкость называют смачивающей это вещество. Например, вода смачивает чистое стекло и не смачивает парафин. Если молекулы жидкости притягиваются друг к другу сильнее, чем к молекулам твердого вещества, то жидкость называют не смачивающей это вещество. Ртуть не смачивает стекло, однако она смачивает чистые медь и цинк.

    Расположим горизонтально плоскую пластинку из какого-либо твердого вещества и капнем на нее исследуемую жидкость. Тогда капля расположится либо так, как показано на рис. 5 (а), либо так, как показано на рис. 5 (б).

    Рис. 5 (а) Рис. 5 (б)

    В первом случае жидкость смачивает твердое вещество, а во втором – нет. Отмеченный на рис. 5 угол θ называют краевым углом. Краевой угол образуется плоской поверхностью твердого тела и плоскостью, касательной к свободной поверхности жидкости, где граничат твердое тело, жидкость и газ; внутри краевого угла всегда находится жидкость. Для смачивающих жидкостей краевой угол острый, а для не смачивающих – тупой. Чтобы действие силы тяжести не искажало краевой угол, каплю надо брать как можно меньше.

    Поскольку краевой угол θ сохраняется при вертикальном положении твердой поверхности, то смачивающая жидкость у краев сосуда, в который она налита, приподнимается, а несмачивающая жидкость опускается

    При полном смачивании θ = 0, cos θ = 1.

    Капиллярность (от лат. capillaris – волосяной), движение жидкости по узкому отверстию, вызванное поверхностным натяжением между жидкостью и окружающим ее материалом. Чаще всего это явление наблюдается в вертикально поставленных узких стеклянных трубках, так называемых капиллярных трубках, но может происходить и по другим направлениям, как, например, при впитывании воды губкой или промокательной бумагой.

    Капиллярность. Сцепление между жидкостью и твердым телом приводит к тому, что поверхность жидкости в месте контакта изгибается под определенным углом. Вода изгибается вверх при контакте со стеклом, сила сцепления действует на поверхность воды и вызывает ее подъем. Подъемная сила пропорциональна окружности поверхности воды; в узкой трубке эта сила достигает достаточной величины, чтобы столбик воды начал подниматься.

    Капиллярный эффект – физическое явление, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. Поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т.п. Понижение жидкости происходит в трубках и каналах, не смачиваемых жидкостью, например ртуть в стеклянной трубке.

    Благодаря капиллярности возможны жизнедеятельность животных и растений, различные химические процессы, бытовые явления (например, подъём керосина по фитилю в керосиновой лампе, вытирание рук полотенцем). Капиллярность почвы определяется скоростью, с которой вода поднимается в почве и зависит от размера промежутков между почвенными частицами.

    Капиллярами называются тонкие трубки, а также самые тонкие сосуды в организме человека и других животных.

    Капиллярный эффект используется в неразрушающем контроле (капиллярный контроль или контроль проникающими веществами) для выявления дефектов, имеющих выход на поверхность контролируемого изделия. Позволяет выявлять трещины с раскрытием от 1 мкм, которые не видны невооруженным глазом.

    5. Мени́ск (от греч. μενικος – полумесяц) – искривлённая свободная поверхность жидкости в месте её соприкосновения с поверхностью твёрдого тела. Образуется у стенок сосудов, в каналах-порах губчатых тел, пропитанных жидкостью, и т.д.

    • Участник:Николаев Владимир Сергеевич
    • Руководитель:Сулейманова Альфия Сайфулловна

    Введение

    В наш век высоких технологий все большее значение в жизни людей имеют естественные науки. Люди 21 века производят супер производительные компьютеры,смартфоны,все глубже и глубже изучают окружающий нас мир. Я думаю, что люди готовятся к новой научно технической революции, которая изменит наше будущее коренным образом. Но когда произойдут эти изменения никто не знает. Каждый человек своим трудом может приблизить этот день.

    Эта научно-исследовательская работа – мой маленький вклад в развитие физики.

    Цель исследовательской работы: обосновать с точки зрения физики причину движения жидкости по капиллярам, выявить особенности капиллярных явлений.

    Объект исследования: свойство жидкостей, всасываясь, подниматься или опускаться по капиллярам.

    Предмет исследования: капиллярные явления в живой и неживой природе.

    1. Изучить теоретический материал о свойствах жидкости.
    2. Ознакомиться с материалом о капиллярных явлениях.
    3. Провести серию экспериментов с целью выяснения причины поднятия жидкости в капиллярах.
    4. Обобщить изученный в ходе работы материал и сформулировать вывод.

    Прежде чем перейти к изучению капиллярных явлений, надо ознакомиться со свойствами жидкости, которые играют немалую роль в капиллярных явлениях.

    Поверхностное натяжение

    Внутреннее давление обуславливает втягивание молекул, расположенных на поверхности жидкости, внутрь и тем самым стремится уменьшить поверхность до минимальной при данных условиях. Сила, действующая на единицу длины границы раздела, обуславливающая сокращение поверхности жидкости, называется силой поверхностного натяжения или просто поверхностным натяжением σ .

    Поверхностное натяжение различных жидкостей неодинаково, оно зависит от их мольного объёма, полярности молекул, способности молекул к образованию водородной связи между собой и др.

    При увеличении температуры поверхностное натяжение уменьшается по линейному закону. На поверхностное натяжение жидкости оказывают влияние и находящиеся в ней примеси. Вещества, ослабляющие поверхностное натяжение, называют поверхностно-активными (ПАВ). По отношению к воде ПАВ являются нефтепродукты, спирты, эфир, мыло и др. жидкие и твёрдые вещества. Некоторые вещества увеличивают поверхностное натяжение. Примеси солей и сахара, например.

    Объяснение этому даёт МКТ. Если силы притяжения между молекулами самой жидкости больше сил притяжения между молекулами ПАВ и жидкости, то молекулы жидкости уходят внутрь из поверхностного слоя, а молекулы ПАВ вытесняются на поверхность. Очевидно, что молекулы соли и сахара будут втянуты в жидкость, а молекулы воды вытеснены на поверхность. Таким образом, поверхностное натяжение – основное понятие физики и химии поверхностных явлений – представляет собой одну из наиболее важных характеристик и в практическом отношении. Следует отметить, что всякое серьёзное научное исследование в области физики гетерогенных систем требует измерения поверхностного натяжения. История экспериментальных методов определения поверхностного натяжения, насчитывающая более двух столетий, прошла путь от простых и грубых способов до прецизионных методик, позволяющих находить поверхностное натяжение с точностью до сотых долей процента. Интерес к этой проблеме особенно возрос в последние десятилетия в связи с выходом человека в космос, развитием промышленного строения, где капиллярные силы в различных устройствах часто играют определяющую роль.

    Один из таких методов определения поверхностного натяжения основан на поднятии смачивающей жидкости между двумя стеклянными пластинками. Их следует опустить в сосуд с водой и постепенно сближать параллельно друг другу. Вода начнёт подниматься между пластинками – её будет втягивать сила поверхностного натяжения, о которой сказано выше. Легко рассчитать коэффициент поверхностного натяжения σ можно по высоте подъёма воды у и зазору между пластинками d.

    Рисунок 1

    Сила поверхностного натяжения F = 2 σ L, где L – длина пластинки (двойка появилась из-за того, что вода соприкасается с обеими пластинками). Эта сила удерживает слой воды массы m = ρ Ldу, где ρ – плотность воды. Таким образом, 2 σ L = ρ Ldуg. Отсюда можно найти коэффициент поверхностного натяжения σ = 1/2( ρ gdу). (1)Но интереснее сделать так: с одного конца сжать пластинки вместе, а с другого оставить небольшой зазор.

    Рисунок 2

    Вода поднимется и образует между пластинками удивительно правильную поверхность. Сечение этой поверхности вертикальной плоскостью – гипербола. Для доказательства достаточно в формулу (1) вместо d подставить новое выражение для зазора в данном месте. Из подобия соответствующих треугольников (см. рис. 2) d = D (x/L). Здесь D – зазор на конце, L – по-прежнему длина пластинки, а x – расстояние от места соприкосновения пластинок до места, где определяется зазор и высота уровня. Таким образом, σ = 1/2( ρ )D(x/L), или у = 2 σ L/ ρ gD(1/х). (2)Уравнение (2) действительно является уравнением гиперболы.

    Смачивание и несмачивание

    Для детального изучения капиллярных явлений следует рассмотреть и некоторые молекулярные явления, обнаруживающиеся на трёхфазной границе сосуществования твёрдой, жидкой, газообразной фаз, в частности рассматривается соприкосновение жидкости с твёрдым телом. Если силы сцепления между молекулами жидкости больше, чем между молекулами твёрдого тела, то жидкость стремится уменьшить границу (площадь) своего соприкосновения с твёрдым телом, по возможности отступая от него. Капля такой жидкости на горизонтальной поверхности твёрдого тела примет форму сплюснутого шара. В этом случае жидкость называется несмачивающей твёрдое тело. Угол θ , образованный поверхностью твёрдого тела и касательной к поверхности жидкости, называется краевым. Для несмачивающей θ > 90°. В этом случае твёрдая поверхность, несмачиваемая жидкостью называется гидрофобной, или олоефильной. Если же силы сцепления между молекулами жидкости меньше, чем между молекулами жидкости и твёрдого тела, то жидкость стремится увеличить границу соприкосновения с твёрдым телом. В этом случае жидкость называется смачивающей твёрдое тело; краевой угол θ 90°. Поверхность же будет носить название гидрофильная. Случай, когда θ = 180°, называется полным несмачиванием. Однако это практически никогда не наблюдается, так как между молекулами жидкости и твёрдого тела всегда действуют силы притяжения. При θ = 0° наблюдается полное смачивание: жидкость растекается по всей поверхности твёрдого тела. Полное смачивание или полное несмачиваение являются крайними случаями. Между ними в зависимости от соотношения молекулярных сил промежуточное положение занимают переходные случаи неполного смачивания.

    Смачиваемость и несмачиваемость – понятия относительные: жидкость,смачивающая одно твёрдое тело, может не смачивать другое тело. Например,вода смачивает стекло, но не смачивает парафин; ртуть не смачивает стекло, но смачивает медь.

    Смачивание обычно трактуется как результат действия сил поверхностного натяжения. Пусть поверхностное натяжение на границе воздух – жидкость σ 1,2,на границе жидкость – твёрдое тело σ 1,3, на границе воздух – твёрдое тело σ 2,3.

    На единицу длины периметра смачивания действуют три силы, численно равные σ 1,2, σ 2,3, σ 1,3, направленные по касательной к соответствующим границам раздела. В случае равновесия все силы должны уравновешивать друг друга. Силы σ 2,3 и σ 1,3 действуют в плоскости поверхности твёрдого тела, сила σ 1,2 направлена к поверхности под углом θ .

    Условие равновесия межфазных поверхностей имеет следующий вид: σ 2,3 = σ 1,3 + σ 1,2cos θ или cos θ =( σ 2,3 − σ1 ,3)/ σ 1,2

    Величину cos θ принято называть смачиванием и обозначать буквой В.

    Определённое влияние на смачивание оказывает состояние поверхности. Смачиваемость резко меняется уже при наличии мономолекулярного слоя углеводородов. Последние же всегда присутствуют в атмосфере в достаточных количествах. Определённое влияние на смачивание оказывает и микрорельеф поверхности. Однако до настоящего времени пока не выявлена единая закономерность влияния шероховатости любой поверхности на смачивание её любой жидкостью. Например уравнение Венцеля-Дерягина cosθ = xcosθ0 связывает краевые углы жидкости на шероховатой ( θ ) и гладкой ( θ 0) поверхностях с отношением х площади истинной поверхности шероховатого тела к её проекции на плоскость. Однако на практике это уравнение не всегда соблюдается. Так, согласно этому уравнению в случае смачивания (θ 90 – к его увеличению (т.е. к большей гидрофобности). Исходя из этого и даются, как правило, сведения о влиянии шероховатости на смачивание.

    По мнению многих авторов, скорость растекания жидкости на шероховатой поверхности ниже вследствие того, что жидкость при растекании испытывает задерживающее влияние встречающихся бугорков (гребней) шероховатостей. Необходимо отметить, что именно скорость изменения диаметра пятна, образованного строго дозированной каплей жидкости, нанесённой на чистую поверхность материала, используется в качестве основной характеристики смачивания в капиллярах. Её величина зависит как от поверхностных явлений, так и от вязкости жидкости, её плотности, летучести.

    Очевидно, что более вязкая жидкость с прочими одинаковыми свойствами дольше растекается по поверхности и следовательно медленнее протекает по капиллярному каналу.

    Капиллярные явления

    Капиллярные явления, совокупность явлений, обусловленных поверхностным натяжением на границе раздела несмешивающихся сред (в системах жидкость - жидкость, жидкость - газ или пар) при наличии искривления поверхности. Частный случай поверхностных явлений.

    Изучив подробно силы, лежащих в основе капиллярных явлений, стоит перейти непосредственно к капиллярам. Так, опытным путём можно пронаблюдать, что смачивающая жидкость (например, вода в стеклянной трубке) поднимается по капилляру. При этом, чем меньше радиус капилляра, тем на большую высоту поднимается в ней жидкость. Жидкость, не смачивающая стенки капилляра (например, ртуть с стеклянной трубке), опускается ниже уровня жидкости в широком сосуде. Так почему же смачивающая жидкость поднимается по капилляру, а несмачивающая опускается?

    Не трудно заметить, что непосредственно у стенок сосуда поверхность жидкости несколько искривлена. Если молекулы жидкости, соприкасающиеся со стенкой сосуда, взаимодействуют с молекулами твёрдого тела сильнее, чем между собой, в этом случае жидкость стремится увеличить площадь соприкосновения с твёрдым телом (смачивающая жидкость). При этом поверхность жидкости изгибается вниз и говорят, что она смачивает стенки сосуда, в котором находится. Если же молекулы жидкости взаимодействуют между собой сильнее, чем с молекулами стенок сосуда, то жидкость стремится сократить площадь соприкосновения с твёрдым телом, её поверхность искривляется вверх. В этом случае говорят о несмачивании жидкостью стенок сосуда.

    В узких трубочках, диаметр которых составляет доли миллиметра, искривлённые края жидкости охватывают весь поверхностный слой, и вся поверхность жидкости в таких трубочках имеет вид, напоминающий полусферу. Это так называемый мениск. Он может быть вогнутым, что наблюдается в случае смачивания, и выпуклым при несмачивании. Радиус кривизны поверхности жидкости при этом того же порядка, что и радиус трубки. Явления смачивания и несмачивания в данном случае также характеризуется краевым углом θ между смоченной поверхностью капиллярной трубки и мениском в точках их соприкосновения.

    Под вогнутым мениском смачивающей жидкости давление меньше, чем под плоской поверхностью. Поэтому жидкость в узкой трубке (капилляре) поднимается до тех пор, пока гидростатическое давление поднятой в капилляре жидкости на уровне плоской поверхности не скомпенсирует разность давлений. Под выпуклым мениском несмачивающей жидкости давление больше, чем под плоской поверхностью, и это ведёт к опусканию несмачивающей жидкости.

    Наличие сил поверхностного натяжения и кривизны поверхности жидкости в капиллярной трубочке ответственно за дополнительное давление под искривленной поверхностью, называемое давлением Лапласа: ∆p = ± 2 σ /R.

    Так, условие равновесия жидкости в капиллярной трубочке определяется равенством

    Рисунок 3

    где ρ – плотность жидкости, h – высота её поднятия в трубочке, p0 – атмосферное давление.

    Из данного выражения следует, что h = 2 σ / ρ gR. (2)

    Преобразуем полученную формулу, выразив радиус кривизны R мениска через радиус капиллярной трубочки r.

    Из рис. 6.18 следует, что r = Rcos θ . Подставляя (1) в (2), получаем: h = 2 σ cos θ / ρ gr.

    Полученная формула, определяющая высоту поднятия жидкости в капиллярной трубочке, носит название формулы Жюрена. Очевидно, что чем меньше радиус трубки, тем на большую высоту поднимается в ней жидкость. Кроме того, высота поднятия растёт с увеличением коэффициента поверхностного натяжения жидкости.

    Подъём смачивающей жидкости по капилляру можно объяснить и по-другому. Как было сказано ранее, под действием сил поверхностного натяжения поверхность жидкости стремится сократиться. Вследствие этого поверхность вогнутого мениска стремится выпрямиться и сделаться плоской. При этом она тянет за собой частицы жидкости, лежащие под ней, и жидкость поднимается по капилляру вверх. Но поверхность жидкости в узкой трубке плоской оставаться не может, она должна иметь форму вогнутого мениска. Как только в новом положении данная поверхность примет форму мениска, она снова будет стремиться сократиться и т.д. В результате действия этих причин смачивающая жидкость и поднимается по капилляру. Поднятие прекратится, когда сила тяжести Fтяж поднятого столба жидкости, которая тянет поверхность вниз, уравновесит равнодействующую силу F сил поверхностного натяжения, направленных касательно к каждой точке поверхности.

    По окружности соприкосновения поверхности жидкости со стенкой капилляра действует сила поверхностного натяжения, равная произведению коэффициента поверхностного натяжения на длину окружности: 2 σπ r, где r – радиус капилляра.

    Сила тяжести, действующая на поднятую жидкость,

    где ρ – плотность жидкости; h – высота столба жидкости в капилляре; g – устроение силы тяжести.

    Подъём жидкости прекращается, когда Fтяж = F или ρπ r^2hg = 2 σπ r. Отсюда высота поднятия жидкости в капилляре h = 2 σ / ρ gR.

    В случае несмачивающей жидкости последняя, стремясь сократить свою поверхность, будет опускаться вниз, выталкивая жидкость из капилляра.

    Выведенная формула применима и для несмачивающей жидкости. В этом случае h – высота опускания жидкости в капилляре.

    Капиллярные явления в природе

    Капиллярные явления также весьма распространены в природе и часто используются в практической деятельности человека. Дерево, бумага, кожа, кирпич и очень многие другие предметы, окружающие нас, имеют капилляры. За счет капилляров вода поднимается по стеблям растений и впитывается в полотенце, когда мы им вытираемся. Поднятие воды по мельчайшим отверстиям в куске сахара, забор крови из пальца – это тоже примеры капиллярных явлений.

    Кровеносная система человека, начинаясь с весьма толстых сосудов, заканчивается очень разветвленной сетью тончайших капилляров. Могут вызвать интерес, например, такие данные. Площадь поперечного сечения аорты равна 8 см 2 . Диаметр же кровеносного капилляра может быть в 50 раз меньше диаметра человеческого волоса при длине 0,5 мм. В теле взрослого человека имеется порядка 160 млрд капилляров. Их общая длина доходит до 80 тыс. км.

    По многочисленным капиллярам, имеющимся в почве, вода из глубинных слоев поднимается к поверхности и интенсивно испаряется. Чтобы замедлить процесс потери влаги, капилляры разрушают путем разрыхления почвы с помощью борон, культиваторов, рыхлителей.

    Практическая часть

    Возьмем стеклянную трубочку с очень маленьким внутренним диаметром (d

    Читайте также: