Реферат на тему історія космонавтики на українській мові

Обновлено: 02.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

РЕФЕРАТ ПО ИСТОРИИ МЕХАНИКИ

НА ТЕМУ:

Выполнил студент

Ляшенко

Проверил

Диденко

КОРОЛЕВ СЕРГЕЙ ПАВЛОВИЧ …………………………………………………… 4

НАУЧНАЯ ДЕЯТЕЛЬНОСТЬ КОРОЛЕВА ………………………….. 7

Ю. В. КОНДРАТЮК (А. И. Шаргей) ……………………………………………….. 14

НАУЧНАЯ ДЕЯТЕЛЬНОСТЬ КОНДРАТЮКА …………………….. 16

КИБАЛЬЧИЧ НИКОЛАЙ ИВАНОВИЧ ……………………………………………20

НАУЧНАЯ ДЕЯТЕЛЬНОСТЬ КИБАЛЬЧИЧА ………………………22

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ ………………………………….. 24

Три великих ученых, жизненный путь и научная деятельность которых представлены в данном реферате, внесли огромный вклад в развитие космонавтики. Однако не всем им удалось воплотить свои мечты в жизнь.

Королеву удалось еще при жизни перенести свой гений с бумаги в жизнь, сотворя такие шедевры как межконтинентальная ракета, искусственный спутник Земли и, наконец, ракета для полета человека в космос.

Кибальчич всю свою гениальность направил на изобретение динамита и гранат, и лишь перед смертью сотворил шедевр того времени — летательный аппарат для полета в космос.

КОРОЛЕВ СЕРГЕЙ ПАВЛОВИЧ

Он был мал, этот самый первый искусственный

спутник нашей старой планеты, но его звонкие

позывные разнеслись по всем материкам и среди

всех народов как воплощение дерзновенной

мечты человечества.

Cергей Павлович Королев — выдающийся конструктор и ученый, работавший в области ракетной и ракетно-космической техники. Дважды Герой Социалистического Труда, лауреат Ленинской премии, академик Академии наук СССР, он является создателем отечественного стратегического ракетного оружия средней и межконтинентальной дальности и основоположником практической космонавтики. Его конструкторские разработки в области ракетной техники представляют исключительную ценность для развития отечественного ракетного вооружения, а в области космонавтики имеют мировое значение. Он по праву является отцом отечественной ракетно-космической техники, обеспечившей стратегический приоритет и сделавшей наше государство передовой ракетно-космической державой.

Поступив в 1924 г. в Киевский политехнический институт по профилю авиационной техники, Королев за два года освоил в нем общие инженерные дисциплины и стал спортсменом-планеристом. Осенью 1926 г. он переводится в Московское высшее техническое училище (МВТУ).

В 1933 г. на базе московской ГИРД и ленинградской Газодинамической лаборатории (ГДЛ) основывается Реактивный научно-исследовательский институт под руководством И. Т. Клейменова. С. П. Королев назначается его заместителем. Однако расхождения во взглядах с руководителями ГДЛ на перспективы развития ракетной техники заставляют С. П. Королева перейти на творческую инженерную работу, и ему как начальнику отдела ракетных летательных аппаратов в 1936г. удалось довести до испытаний крылатые ракеты: зенитную—217 с пороховым ракетным двигателем и дальнобойную—212 с жидкостным ракетным двигателем.

В 1938 г. по ложному обвинению С. П. Королев был арестован и осужден на 10 лет. Осенью 1940 г. он был переведен в новое место заключения—ЦКБ-29 НКВД СССР, где под руководством А. Н. Туполева принимал активное участие в создании и производстве фронтового бомбардировщика Ту-2 и одновременно инициативно разрабатывал проекты управляемой аэроторпеды и нового варианта ракетного перехватчика. Это послужило поводом для перевода Королева в 1942 г. в другую организацию такого же лагерного типа — ОКБ НКВД СССР при Казанском авиазаводе № 16, где велись работы над ракетными двигателями новых типов с целью применения их в авиации. С. П. Королев со свойственным ему энтузиазмом отдается идее практического использования ракетных двигателей для усовершенствования авиации: сокращения длины пробега самолета при взлете и повышения скоростных и динамических характеристик самолетов во время воздушного боя.

Вскоре все советские специалисты возвращаются в Советский Союз в научно-исследовательские институты и опытно-конструкторские бюро, созданные согласно упомянутому майскому постановлению правительства. В августе 1946 г. С. П. Королев был назначен главным конструктором баллистических ракет дальнего действия и начальником отдела № 3 НИИ-88 по их разработке.

НАУЧНАЯ ДЕЯТЕЛЬНОСТЬ КОРОЛЕВА

Первой задачей, поставленной правительством перед С. П. Королевым как главным конструктором и всеми организациями, занимающимися ракетным вооружением, было создание аналога ракеты Фау-2 из отечественных материалов. Но уже в 1947 г. выходит постановление о разработке новых баллистических ракет с большей, чем у Фау-2, дальностью полета: до 3000 км. В 1948 г. С. П. Королев начинает летно-конструкторские испытания баллистической ракеты Р-1 (аналога Фау-2) и в 1950 г. успешно сдает ее на вооружение. Эта ракета отличалась от немецкой значительно большей надежностью. Параллельно С. П. Королев ведет разрабогку новой баллистической ракеты Фау-2 с дальностью полета 600 км. Ракета Р-2 имела несущий бак горючего, более удобную для эксплуатации компоновку и, самое главное, отделяющуюся в полете боевую головную часть. Кроме этого, ракетная двигательная установка была существенно доработана с целью увеличения ее тяги, а система автономного управления обладала вдвое большей точностью стрельбы. Ракета Р-2 сдана на вооружение в 1951 году, т. е. всего лишь на год позднее ракеты Р-1.

Совместно с практическими работами над ракетным оружием в НИИ-88 под научным руководством С. И. Королева были начаты широкомасштабные проектно-экспериментальные исследования по темам H-I, Н-2, Н-3 с целью создания научно-технического задела для разработки качественно новых БР.

По теме Н-1 проводились экспериментально – теоретические исследования основных технических проблем, связанных с реализацией проекта ракеты Р-3, имеющей дальность полета 3000 км: необходимо было обеспечить устойчивость полета ракеты без стабилизаторной (аэродинамически неустойчивой) схемы и получить данные о поведении кипящего жидкого кислорода в термо неизолированном несущем баке окислителя в процессе движения на активном участке траектории при повышенных внешних тепло потоках в массу жидкого кислорода. На основе конструктивных решении ракеты Р-2 с использованием ее форсированного двигателя была создана одноступенчатая экспериментальная БР Р-ЗА без стабилизаторной схемы с дальностью полета 1200 км. Успешные летные испытания данной ракеты дали основание Министерству обороны принять ее на вооружение в 1956 г. с ядерной боевой частью как Р-5М. Это была первая отечественная стратегическая ракета, ставшая основой ракетного ядерного щита страны.

По теме Н-2 были выполнены исследования возможности и целесообразности создания баллистических ракет, работающих на стабильных высококипящих компонентах топлива (при использовании в качестве окислителя азотной кислоты с окислами азота). В результате была подтверждена возможность создания таких ракет и выполнен эскизный проект первой отечественной БР Р-11 с дальностью полета 250 км и стартовой массой вдвое меньшей, чем у Р-1. Однако с учетом экологической токсичности азотных окислов и меньших энергетических характеристик стабильного жидкого топлива по сравнению с топливом на основе жидкого кислорода и керосина, а также возникших тогда серьезных проблем с разработкой ракетных двигателей с необходимой тягой (большей 8 т), устойчиво работающих на этих компонентах топлива, было признано целесообразным применять азотнокислотный окислитель с окислами азота для БР со сравнительно малой дальностью полета. При создании же ракет с большей дальностью полета, и особенно межконтинентальных, было рекомендовано в качестве окислителя использовать жидкий кислород. Этому направлению развития ракетной техники Сергей Павлович оказался верен на протяжении всей своей творческой деятельности.

На основе Р-11 С. П. Королев разработал и сдал на вооружение в 1957 г. стратегическую ракету Р-11М с ядерной боевой частью, транспортируемую в заправленном виде на танковом шасси. Серьезно модифицировав эту ракету, он приспособил ее для вооружения подводных лодок (ПЛ) как Р-11ФМ. Изменения были более чем серьезные, так как делалась новая система управления и прицеливания, а также обеспечивалась возможность ведения стрельбы при довольно сильном волнении моря с надводного положения ПЛ, т. е. при сильной качке. Таким образом, Сергей Павлович создал первые баллистические ракеты на стабильных компонентах топлива мобильного наземного и морского базирования и явился первопроходцем в этих новых и важных направлениях развития ракетного вооружения.

Окончательную доводку ракеты Р-11ФМ он передал в Златоуст, в СКБ-385, откомандировав туда из своего ОКБ-1 молодого талантливого ведущего конструктора В. П. Макеева вместе с квалифицированными проектантами и конструкторами, заложив тем самым основу для создания уникального центра по разработке баллистических ракет морского базирования.

По теме Н-3 были проведены серьезные проектные исследования, в ходе которых была доказана принципиальная возможность разработки ракет с большой дальностью полета вплоть до межконтинентальной в рамках двухступенчатой схемы. На основании результатов данных исследований согласно постановлению правительства в НИИ-88 были начаты две научно-исследовательские работы под руководством С. П. Королева с целью определения облика и параметров межконтинентальных ракет баллистического и крылатого типов (темы Т-1 и Т-2) с необходимым экспериментальным подтверждением проблемных конструктивных решении.

Исследования по теме Т-1 переросли в опытно-конструкторскую работу (главный конструктор С. П. Королев), связанную с созданием первой двухступенчатой межконтинентальной ракеты Р-7 пакетной схемы, которая и в настоящее время удивляет своими оригинальными конструктивными решениями, простотой исполнения, высокой надежностью и экономичностью. Ракета Р-7 совершила первый успешный полет в августе 1957 г.

В результате исследовании по теме Т-2 была показана возможность разработки двухступенчатой межконтинентальной крылатой ракеты, первая ступень которой была чисто ракетной и выводила вторую ступень — крылатую ракету — на высоту 23—25 км. Крылатая ступень с помощью прямоточного воздушно-ракетного двигателя продолжала полет на этих высотах и наводилась на цель с помощью астронавигационной системы управления, работоспособной и в дневное время.

Учитывая важность создания такого оружия, правительство приняло решение начать опытно-конструкторские работы и силами Министерства авиационной промышленности (МАП) (главные конструкторы С. А. Лавочкин и В. М. Мясищев). Проектные материалы по теме Т-2 были переданы в МАП, туда же были переведены некоторые специалисты и подразделение, занимавшееся проектированием астронавигационной системы управления.

Первая межконтинентальная ракета Р-7, несмотря на множество новых проектных и конструкторских проблем, была создана в рекордно короткие сроки и сдана на вооружение в 1960 г.

В дальнейшем С. П. Королев разрабатывает более совершенную компактную двухступенчатую межконтинентальную ракету Р-9 (в качестве окислителя используется переохлажденный жидкий кислород) и сдает ее (шахтный вариант Р-9А) на вооружение в 1962 г. Позже параллельно с работами над важными космическими системами Сергей Павлович начал первым в стране разрабатывать твердотопливную межконтинентальную ракету РТ-2, которая была сдана на вооружение уже после его смерти. На этом ОКБ-1 С. П. Королева перестало заниматься боевой ракетной тематикой и сосредоточило свои силы на создании приоритетных космических систем и уникальных ракет-носителей.

Занимаясь боевыми баллистическими ракетами, С. П. Королев, как сейчас видно, стремился к большему—к покорению космического пространства и космическим полетам человека. С этой целью Сергей Павлович еще в 1949 г. совместно с учеными АН СССР начал исследования с использованием модификаций ракеты Р-1А путем их регулярных вертикальных запусков на высоты до 100 км, а затем с помощью более мощных ракет Р-2 и Р-5 на высоты 200 и 500 км соответственно. Целью этих полетов были изучение параметров ближнего космического пространства, солнечных и галактических излучений, магнитного поля Земли, поведения высокоразвитых животных в космических условиях (невесомости, перегрузок, больших вибраций и акустических нагрузок), а также отработка средств жизнеобеспечения и возвращение животных на Землю из космоса — было произведено около семи десятков таких пусков. Этим Сергей Павлович заблаговременно заложил серьезные основы для штурма космоса человеком.

В 1955 г. еще задолго до летных испытаний ракеты Р-7 С. П. Королев, М. В. Келдыш, М. К. Тихонравов выходят в правительство с предложением о выведении в космос при помощи ракеты Р-7 искусственного спутника Земли (ИСЗ). Правительство поддерживает эту инициативу. В августе 1956 г. ОКБ-1 выходит из состава НИИ-88 и становится самостоятельной организацией, главным конструктором и директором которой назначается С. П. Королев. И уже 4 октября 1957 г. С. П. Королев запускает на околоземную орбиту первый в истории человечества ИСЗ. Его полет имеет ошеломляющий успех и создает нашей стране высокий международный авторитет.

Отслеживая череду совершенных космических полетов, нельзя не заметить четкую методическую последовательность освоения космического пространства человеком и подготовки к созданию научной пилотируемой долговременной орбитальной станции (ДОС), о необходимости которой С. П. Королев говорил еще в начале штурма космоса.

Для реализации пилотируемых полетов и запусков автоматических космических станций С. П. Королев разрабатывает на базе боевой ракеты семейство совершенных трехступенчатых и четырехступенчатых носителей. Таким образом, вклад С. П. Королева в развитие отечественной и мировой пилотируемой космонавтики является решающим.

4 октября 1957 г. СССР произвел запуск первого в мире искуственного спутника Земли. Первый советский спутник позволил впервые измерить плотность верхней атмосферы, получить данные о распространении радиосигналов в ионосфере,отработать вопросы выведения на орбиту,тепловой режим и др.Спутник представлял собой алюминиевую сферу диаметром 58 см и массой 83,6 кг с четыремя штыревыми антенами длинной 2,4-2,9 м.В герметичном корпусе спутника размещались аппаратура и источники электропитания.

Начальные параметры орбиты составляли: высота перигея 228 км, высота апогея 947 км,наклонение 65,1 гр. 3 ноября Советский Союз сообщил о выведении на орбиту второго советского спутника.В отдельной герметической кабине находились собака Лайка и телеметрическая система для регистрации ее поведении в невесомости.Спутник был также снабжен научными приборами для исследования излучения Солнца и космических лучей.

Важный научный результат полета спутника состоял в открытии окружающих Земля радиоционных поясов. Счетчик Гейгера-Мюллера прекратил счет, когда аппарат находился в апогее на высоте 2530 км, высота перигея составляла 360 км.

Человек в космосе.

Голоса из космоса.

В первой телепередаче был показан американский флаг в Новой Англии на фоне станции в Андовере. Это изображение было передано в Великобританию, Францию и на американскую станцию в шт. Нью-Джерси через 15 часов после запуска спутника. Двумя неделями позже миллионы европейцев и американцев наблюдали за переговорами людей, находящихся на противоположных берегах Атлантического океана. Они не только разговаривали но и видели друг друга, общаясь через спутник. Историки могут считать этот день датой рождения космического ТВ.

Большое будущее связывают с размещением на геостационарной орбите антенных комплексов.

После запусков советских и американских спутников встал вопрос о практическом использовании разработанной техники. Возможности аппаратуры и самих спутников привлекли внимание метеорологов с точки зрения получения обычной регулярной информации о постоянно меняющейся погоде в мировом масштабе.

Начиная с 1966 г. Землю регулярно фотографируют по крайней мере один раз в сутки. Фотоснимки используют в повседневной работе, а также помещают в архивы. Метеорологическая информация, получаемая со спутников, неуклонно приобретает все более важное значение. В настоящее время она широко используется метеорологами и специалистами по окружающей среде всего мира в повседневной практике и считаются почти обязательной для проведения анализов и краткосрочных прогнозов. Метеорологическая информация со всех света поступает в Национальную службу контроля окружающей среды с помошью спутников, расположенную в Вашингтоне, перерабатывается в материалы широкой номенклатуры и распределяется по всему свету. Спутниковая информация оказалась особенно полезной в двух сферах исследования. Во первых, существуют обширные районы Земли, из которых метеорологическая информация, обычными средствами, недоступна. Это территории океанов северного и южного полушарий, пустынь и полярных областей. Спутниковая информация заполняет эти пробелы, выявляя крупномасштабные особенности из образований облаков. К таким особенностям относятся штормовые системы, фронты, наиболее значительные междуволновые впадины и гребни, струйные течения, густой туман, слоистые облака, ледовая обстановка, снежный покров и отчасти направление и скорость наиболее сильных ветров. Вовторых, спутниковая информация успешно используется для слежения за ураганами, тайфунами и тропическими штормами. Спутниковая информация включает данные о наличии и расположении атмосферных фронтов, бурь и общего облачного покрова. В итоге в настоящее время спутник стал практически признаным инструментом метеорологов в большинстве стран мира. Карты погоды, которые вечером появляются на наших телевизионных экранах, со всей очевидностью свидетельствуют о ценности наблюдения со спутников в обеспечении метеорологических систем.

Изучение Земли из космоса.

Наука о космосе.

В течении небольшого периода времени с начала космической эры человек не только послал автоматические космические станции к другим планетам и ступил на поверхность Луны, но также произвел революцию в науке о космосе, равной которой не было за всю историю человечества. Наряду с большими техническими достяжениями, вызванными развитием космонавтики, были получены новые знания о планете Земля и соседних мирах.

Одним из первых важных открытий, сделанных не традиционным визуальным, а иным методом наблюдения, было установление факта резкого увеличения с высотой, начиная с некоторой пороговой высоты, интенсивности считавшихся ранее изотропными космических лучей.

Это открытие пренадлежит австрийцу В. Ф. Хессу, запустившему в 1946 г. газовый шар-зонд с аппаратурой на большие высоты. В 1952 и 1953 гг. д-р Джеймс Ван Аллен проводил исследования низко энергетических космических лучей при запусках в районе северного магнитного полюса Земли небольших ракет на высоту 19-24 км и высотных шаров-балонов. Проанализировав резульаты проведенных эксперементов, Ван Аллен предложил разместить на борту первых американских искусственных спутников Земли достаточно простые по конструкции детекторы космических лучей.

Полеты АМС к Луне и планетам.

Было установлено, что атмосфера Венеры почти полностью состоит из углекислого газа. В последствии были проведены несколько запусков с целью погружения в атмосферу Венеры.

14 июля 1965 г. он пролетел на расстоянии 9600 км от Марса, не обнаружив ни радиационных поясов, ни магнитного поля вокруг планеты. Было установленно что давление у поверхности планеты составляет менее 1% земного давления над уровнем моря и сответствует давлению в атмосфере Земли на высоте 30-35 км. На поверхности Марса были обнаружены кратеры, аналогичные лунным.

Также АМС посылались к Юпитеру и Сатурну.

Человек на Луне.

Космонавтика як каталізатор сучасної науки і техніки. Історія її розвитку в Україні. Діяльність її видатних творців та теоретиків, їх внесок в освоєння космічного простору. Міжнародна співпраця з іншими країнами. Біографія перших українських космонавтів.

Подобные документы

Опис космічних польотів українських космонавтів Леоніда Каденюка і Ярослава Пустового. Дослідження їх внеску у вивчення і покорення космічного простору. Аналіз винаходів та експериментів українських вчених Ю.В. Кондратюка, С.П. Корольова, М.І. Кибальчича.

реферат, добавлен 05.07.2013

Успіхи підкорення космосу Радянським Союзом, діяльність конструкторського бюро "Південне". Досягнення України в ракетно-космічній галузі у роки незалежності. Внесок українських вчених в розвиток космонавтики світового рівня: С. Корольов та Л. Каденюк.

реферат, добавлен 19.09.2015

Космонавтика как грандиозный и могучий инструмент изучения Вселенной, Земли и самого человека. Космическое пространство – арена международного сотрудничества. Первая космическая пятилетка, выход на орбиту. Изображение не видимой обратной стороны Луны.

реферат, добавлен 07.08.2009

Космонавтика - катализатор современной науки и техники, один из рычагов современного мирового процесса. История создания летательных аппаратов, начало космической эры. Современный уровень космической техники, прогноз её развития, научные исследования.

реферат, добавлен 22.09.2010

Становлення космічної галузі України, головні етапи та напрямки даного процесу, його характер та сучасний стан. Видатні особистості даного наукового напрямку, вивчення їх діяльності та оцінка внеску в розвиток вітчизняної та світової космонавтики.

реферат, добавлен 29.06.2013

Происхождение Вселенной, теории на этот счет, их отличительные особенности и существующие доказательства. Модель расширяющейся Вселенной, ее структура и назначение. Эволюция и строение галактик. Астрономия и космонавтика, история развития данных наук.

реферат, добавлен 19.10.2011

Розвиток авіакосмічної промисловості в Україні. Удосконалення управління в космічній сфері. Підтримка виробничого об'єднання "Південний машинобудівний завод". Підвищення надійності носія Зеніт-2. Біографія та творчий шлях генерал-майора Каденюка Л.К.

реферат, добавлен 16.02.2021

Життя та наукова праця Ціолковського К.Е. Створення ракетного літального апарата Кибальчичем М.І. Кондратюк Ю.В. як один з піонерів розробки основ космонавтики. Видатний вчений і конструктор Корольов С.П. Перший космонавт незалежної України - Каденюк Л.К.

реферат, добавлен 03.07.2013

История развития космонавтики ХХ в. Утрата и попытки восстановления передовых позиций российской космонавтики после развала СССР. Успехи в исследовании планет Вселенной конструкторов США. Введение в эксплуатацию мощных ракет-носителей нового поколения.

реферат, добавлен 13.11.2011

Первые модели возникновения мира. Ученые о рождении и гибели Вселенной, прогноз ее развития. Модель расширяющейся Вселенной: эволюция и строение галактик, их многообразие, описание и классификация нашей галактики. Космология и астрономия, космонавтика.

Зарождение ракетной техники
Идея реактивного движения, первой ракеты и ее воплощение родились в Китае примерно во 2 веке н.э. Движущей силой ракеты был порох. Китайцы сначала использовали это изобретение для развлечений - китайцы до сих пор являются лидерами в производстве фейерверков. А затем поставили эту идею на вооружение, в прямом смысле слова: такой "фейерверк" привязанный к стреле увеличивал дальность ее полета примерно на 100 метров (что было одной третью от всей длины полета), а при попадании цель зажигалась. Было и более грозное оружие на том же принципе - "копья яростного огня".

В примитивном виде реактивные ракеты существовали до 19 века. Только в конце 19-го века стали предприниматься попытки объяснить реактивное движение. В России одним из первых этим вопросом занялся Н. И. Тихомиров. Тихомиров предлагал использовать в качестве движущей силы реакцию газов. Тихомиров стал заниматься этими вопросами позже Циолковского, но в смысле реализации продвинулся дальше.
В 1912 году он представил морскому министерству проект реактивного снаряда. Изобретение Тихомирова получило положительную оценку экспертной комиссии. В 1921 по предложению Тихомирова в Москве была создана лаборатория для разработки его изобретений, получившая впоследствии наименование ГДЛ.
Тихомиров Николай Иванович

Параллельно с Тихомировым над ракетами на твердом топливе трудился бывший полковник царской армии Иван Граве. В 1926 году он получил патент на ракету, которая в качестве топлива использовала особый состав дымного пороха. Он стал пробивать свою идею, писал даже в ЦК ВКП, но эти хлопоты завершились вполне типично для того времени: полковник царской армии Граве был арестован и осужден. Но И. Граве еще сыграет свою роль в развитии ракетной техники в СССР, и примет участие в разработке ракет для знаменитой "Катюши".
В 1928 году была запущена ракета, топливом для нее служил порох Тихомирова. В 1930 году на имя Тихомирова выдан патент на рецептуру такого пороха и технологию изготовления шашек из него.
Иван Граве

Под руководством Королёва созданы первые космические комплексы, многие баллистические и геофизические ракеты, запущены первые в мире межконтинентальная баллистическая ракета (Р-7) , ракета-носитель "Восток" и ее модификации, первый искусственный спутник Земли (ИСЗ);осуществлены полеты космических кораблей (КК) "Восток" и "Восход", на которых впервые в истории совершены космический полет человека (Ю.А. Гагарин) и выход человека в космическое пространство (А.А. Леонов); созданы первые космические аппараты (КА) серий "Луна", "Венера", "Марс", "Зонд", ИСЗ серий "Электрон", "Молния-1" (спутники связи) и некоторые ИСЗ серии "Космос". Под руководством Королёва получила начало разработка КА для пилотируемого полета на Марс.

Первый советский искусственный спутник Земли
4 октября 1957 года – впервые в мире был запущен советский искусственный спутник земли, открывший эру освоения человеком космоса.

Второй советский спутник
3 ноября 1957 года – запущен второй советский спутник, который имел на борту научную аппаратуру для исследования солнечного излучения и космических лучей, а также подопытное животное – собаку Лайку.

Третий советский спутник
15 мая 1958 года – был запущен третий советский спутник, который весил 1326 кг. Его научная аппаратура продолжала исследование космоса.

Советская автоматическая межпланетная станция
В октябре 1959 года – была запущена советская автоматическая межпланетная станция, которая сфотографировала обратную сторону Луны, что позволило составить карту обратной стороны Луны.

Первое десятилетие
За первое десятилетие Космической эры, начавшейся 4 октября 1957 года в нашей стране было запущено 254 космических аппарата. Только в 1971 году в Советском Союзе стартовало около 100 космических аппаратов различного назначения: спутники Земли, межпланетные автоматические станции к Луне, Марсу и Венере, космические корабли “Союз-10” и “Союз-11“, орбитальная научная станция “Салют”.

Россия построила восемь орбитальных станций, аналогичных которым нет ни в одной стране мира. Семь станций "Салют" проработали в космосе 20 лет.

Читайте также: