Реферат на тему источники излучения

Обновлено: 02.07.2024

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/с). Свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.). Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток, или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока. Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии.

Файлы: 1 файл

физика.doc

Виды излучений и их применение!

В настоящее время мы знаем 6 видов излучения - гамма-излучение, рентгеновское излучение, ультрафиолетовое излучение, оптическое излучение, инфракрасное излучение и радиоволны

Радиоволны были открыты ещё в 19 веке, их наблюдал Герц в своих экспериментах, первые испытания прошли уже в 20 веке в Ленинграде.

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/с). Свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.).

Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток, или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.

Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии.

Свойства радиоволн позволяют им свободно проходить сквозь воздух или вакуум. Но если на пути волны встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от поверхности. На этом свойстве основано применение электромагнитных волн в радиолокации.

Главное свойство радиоволн заключаются в том, что они способны переносить через пространство энергию, излучаемую генератором электромагнитных колебаний. Колебания же возникают при изменении электрического поля.

Радиоволны, как средство для беспроводной передачи звуковой, видео и иной информации на достаточно значительные расстояния, приобрело популярность и широкую сферу использования. Именно радиоволны лежат в основе организации многих современных процессов, среди которых:
радиовещание, телевидение, радиотелефонная связь, радиометеорология, радиолокация.

Инфракрасное излучение — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (λ = 0,74 мкм) и микроволновым излучением (λ ~ 1-2 мм).

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50% излучения Солнца.

Свойства инфракрасного излучения.

Оптические свойства веществ (прозрачность, коэффициент отражения, преломления) в инфракрасной области спектра, как правило, значительно отличаются от тех же свойств в привычной для нас видимой области.

У большинства металлов отражательная способность для инфракрасного излучения значительно больше, чем для видимого света, и возрастает с увеличением длины волны.

Материалы, прозрачные для ИК-лучей и обладающие высокой способностью к их отражению, используются при создании ИК-приборов

Инфракрасное излучение применяют в: медицине; дистанционном управлении; при покраске (для сушки лакокрасочных поверхностей); для стерилизации пищевых продуктов; как антикоррозийное средство (с целью предотвращения коррозии поверхностей, покрываемых лаком); проверка денежных знаков на подлинность; для обогрева помещения.

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ — не видимое глазом электромагнитное излучение с длиной волн 10−7—10−12 м. Открыто в 1895 г. нем. физиком В. К. Рентгеном (1845—1923). Испускается при торможении быстрых электронов в веществе (непрерывный спектр) и при переходах электронов с внешних электронных оболочек атома на внутренние (линейчатый спектр). Источниками являются: некоторые радиоактивные изотопы, рентгеновская трубка, ускорители и накопители электронов (синхротронное излучение).

Свойства рентгеновского излучения.

Основные свойства рентгеновского излучения: интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность, у некоторых веществ вызывает флюоресценцию.

Применение рентгеновского излучения.

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.

При помощи рентгеновских лучей может быть определён химический состав вещества.

В аэропортах активно применяются рентгено- телевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа.

Оптическое излучение – это свет в широком смысле слова, электромагнитные волны, длины которых заключены в диапазоне с условными границами от 1 нм до 1 мм. Помимо воспринимаемого человеческим глазом видимого излучения, к этому виду излучений относятся инфракрасное излучение и ультрафиолетовое излучение. Параллельный термину "О. и." термин "свет" исторически имеет менее определенные спектральные границы - часто им обозначают не все оптические излучения, а лишь его видимый поддиапазон. Для оптических методов исследования характерно формирование направленных потоков излучения с помощью оптических систем, включающих линзы, зеркала, призмы оптические, дифракционные решётки и т.д.

Свойства оптического излучения

Волновые свойства оптического излучения обусловливают явления дифракции света, интерференции света, поляризации света и др. В то же время ряд оптических явлений невозможно понять, не привлекая представления об оптическом излучении как о потоке быстрых частиц - фотонов. Эта двойственность природы. Оптическое излучение сближает его с иными объектами микромира и находит общее объяснение в квантовой механике. Скорость распространения оптического излучения в вакууме (скорость света) - около 3·108 м/с. В любой другой среде скорость оптического излучения меньше. Значение преломления показателя среды, определяемое отношением этих скоростей (в вакууме и среде), в общем случае неодинаково для разных длин волн оптического излучения, что приводит к дисперсии оптического излучения.

Применение: В сельскохозяйственном производстве инфракрасное излучение используют в основном для обогрева молодняка животных и птицы, сушки и дезинсекции сельскохозяйственных продуктов (зерна, фруктов и т. д.), пастеризации молока, сушки лакокрасочных и пропиточных покрытий

Ультрафиолетовое излучение (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (380 — 10 нм, 7,9·1014 — 3·1016 Гц). Диапазон условно делят на ближний (380—200 нм) и дальний, или вакуумный (200-10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.

Свойства ультрафиолетового излучения

Высокая химическая активность, невидимое, большая проникающая способность, убивает микроорганизмы, в небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменения в развитии клеток и обмене веществ, действие на глаза.

Коэффициент отражения всех материалов (в том числе металлов) уменьшается с уменьшением длины волны излучения.

Длина волны от 10 – 400 нм. Частота волн от 800*1012 - 3000*1013 Гц.

Применение ультрафиолетового излучения.

Лампа чёрного света — лампа, которая излучает преимущественно в длинноволновой ультрафиолетовой области спектра (диапазон UVA) и даёт крайне мало видимого света.

Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения.

Обеззараживание ультрафиолетовым (УФ) излучением. Стерилизация воздуха и твёрдых поверхностей. Дезинфекция воды осуществляется способом хлорирования в сочетании, как правило, с озонированием или обеззараживанием ультрафиолетовым (УФ) излучением. Химический анализ, УФ-спектрометрия. УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс — длина волны, образует спектр. Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение. Ловля насекомых. В медицине (обеззараживание помещения).

Гамма-излучение (гамма-лучи) — вид электромагнитного излучения с чрезвычайно малой длиной волны

Источники излучения в интегрально-оптических схемах.Характеристики Светодиоды,их свойства и технология изготовления.

Конструкции полупроводниковых лазерных диодов и светодиодов (СД) , применяемых в ВОСП,

весьма разнообразны.Конструкции СД выбирают с таким расчетом,чтобы уменьшить собственное

самопоглощение излучения,обеспечить режим работы при высокой плотности тока инжекции и увеличить эффективность ввода излучения в волокно.Для повышения эффективности ввода используют микролинзы как формируемые непосредственно на поверхности прибора,так и внешние.

В настоящее время получили распространение две основные модификации СД:поверхностные и торцевые.В поверхностных СД излучение выводится в направлении,перпендикулярном плоскости активного слоя,а в торцевых из активного слоя- в параллельной ему плоскости.Схематическое изображение конструкции СД обоих типов приведено на рисунке.Для улучшения отвода тепла от активного слоя при высокой плотности токанакачки применяют теплоотводы.

Вывод излучения в СД поверхностного типа на арсениде галлия осуществляют через круглое от-

верстие,вытравленное в обложке.В это отверстие вставляют оптическое волокно и закрепляют его с помощью эпоксидной смолы.Такую конструкцию светодиода называют диодом Барраса.Известны также конструкции поверхностных СД с выводом излучения непосредственно через подложку.Такие конструкции применяются в СД на четырехкомпонентном соединении GaInAsP.В этом случае подложка из InP является прозрачным окном.

В торцевых СД с двойной гетероструктурой вывод излучения активного слоя осуществляют с торца,как и в лазерных диодах.Благодаря полному внутреннему отражению оптическое излучение распространяется вдоль перехода.С помощью полосковой конструкции нижнего омического контакта,а также щели на задней части активного слоя активная область ограничена,что позволяет избежать лазерной генерации.Так как генерируемое излучение при выводе наружу проходит через активный слой,то имеет место самопоглощение излучения в этом слое.Для уменьшения самопоглощения активный слой выполняют очень тонким (0,03…0,1 мкм).В результате излучение распространяется главным образом в ограничивающем слое,который благодаря большой ширине

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

запрещенной зоны имеет небольшие потери на поглощение.

Излучение СД возникает в результате спонтанной излучательной рекомбинации носителей заряда и поэтому является некогерентным,а следовательно относительно широкополосным и слабонаправленным.

Особо следует выделить суперлюминесцентные СД.В этих диодах помимо спонтанной рекомбинации с излучением используется процесс индуцированной рекомбинации с излучением;

выходное излучение является усиленным в активной среде.Суперлюминесцентные СД представляют собой торцевые СД,работающие при таких высоких плотностях тока инжекции,что в материале активного слоя начинает наблюдаться инверсная населенность энергетических уровней.

Принципиальным отличием лазерного диода от СД является наличие в первом встроенного оптического резонатора,что позволяет при условии превышения током инжекции некоторого порогового значения получить режим индуцированного излучения,которое характеризуется высокой степенью когерентности.Наиболее часто в качестве оптического резонатора используют:плоский резонатор Фабри-Перо и его модификации,включая составные и внешние резонаторы,резонаторы с распределенной обратной связью (РОС-резонатор) и с распределенным брэгговским отражателем (РБО-резонатор).Плоский резонатор образуется обычно параллельно сколотым торцам полупроводника ,а РОС- и РБО-резонаторы —путем периодической пространственной модуляции параметров структуры,влияющих на условия распространения излучения.При совмещении периодической структуры с активной областью получают РОС-диод,а при размещении периодической структуры за пределами активной области ­­— РБО-лазерный диод.

Преимуществами РОС- и РБО-лазерных диодов по сравнению с обычным лазерным диодом с резонатором Фабри-Перо являются:Уменьшение зависимости длины волны излучения от тока инжекции и температуры,высокая стабильность одномодовости и одночастотности излучения,практически 100-процентная глубина модуляции.Так,если в лазерном диоде с резонатором Фабри-Перо температурный коэффициент порядка 0,5…1 нм/°С.Кроме того РОС- и на отказ.Кроме того,для РБО-структуры позволяют реализовать интегрально-оптические схемы.Основным их недостатком является сложная технология изготовления.

Наиболее важными для применения в ВОСП параметрами являются:средняя мощность излучения,ширина излучаемого спектра,время нарастания и спада импульса излучения при импульсном возбуждении тока накачки,падение напряжения на диоде и наработка лазерных диодов и торцевых светодиодов ,обладающих узкой диаграммой направленности,существенное значение имеют углы расходимости по уровню половинной мощности.Эти углы обычно определяют по направлению излучения в параллельной и перпендикулярной переходу плоскостях и обозначают соответственно и .Оба угла характеризуют поле излучения в дальней зоне и обычно =10…30°

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Средняя мощность излучения при работе при работе излучателя в непрерывном режиме определяет полную мощность,излучаемую поверхностью активной области прибора в направлении вывода излучения.

Длину волны излучения определяют как значение,соответствующее максимуму спектральн ого распределения мощности,а ширину излучаемого спектра — как интервал длин волн, в котором спектральная плотность мощности составляет половину максимальной. Огибающая спектрального распределения излучения светодиода имеет примерно форму гауссовской кривой с

= 20…..50 нм. Для лазерных диодов с резонатором Фабри — Перо ширина спектра значительно уже ( порядка 1…..4 нм ) и еще меньше для РОС — и РБО — лазерных диодов, у которых в зависимости от конструкции она может составлять 0,1…. 0,3 нм. Минимальная ширина спектра достигается в лазерных диодах с внешними резонаторами, у которых она в зависимости от типа резонатора лежит в пределах 1…1500 кГц.

Для высокоскоростных ВОСП важное значение имеют динамические свойства лазерных диодов, которые проявляются в зависимости спектральной характеристики от скорости передачи при непосредственной модуляции мощности излучения путем изменения тока накачки. У одномодового лазерного диода с резонатором Фарби — Перо увеличение скорости передачи сопровождается изменением модового состава, что характеризуется динамическим расширением спектра до 10 нм при модуляции с частотой порядка 1….2 Ггц .Для РОС- и РБО-лазерных диодов при модуляции в диапазоне 0,25…2 Ггц имеет место лишь незначительный сдвиг (порядка 0,2 нм) при сохранениии высокой степени подавления побочных мод.Поэтому эти лазерные диоды часто называют динамически одномодовыми.

Быстродействие источников излучения оценивается временем нарастания и временем спада мощности излучения при модуляции импульсами тока накачки прямоугольной формы достаточной длительности ().Для оценки и обычно используют уровни 0,1 и 0,9 от установившегося значения мощности.Часто быстродействие определяется максимальной частотой модуляции.Для светодиодов эта частота может достигать 200 Мгц , а у лазерных диодов — значительно больше (несколько Ггц).Ограничение частоты модуляции светодиодов связано со времененм жизни неосновных носителей, а лазерных диодов — с корреляцией между концентрацией инжектируемых носителей и потоком фотонов ,возникающих вследствие их рекомбинации.

К параметрам ,определяющим статический режим работы полупроводникового излучательного диода ,относят падение напряжения на диоде и ток накачки при прямом смещении.Кроме этих параметров статический режим работы характеризуется ватт-амперной характеристикой . На ватт-амперной характеристике лазерного диода можно выделить точку излома,которая определяется пороговым током накачки Iпор.При токах накачки выше порогового лазерный диод работает в режиме индуцированного излучения и мощность его очень быстро растет с увеличением тока накачки.Если ток накачки меньше порогового,то прибор работает в режиме спонтанного излучения и излучаемая мощность мала.Одновременно резко уменьшается быстродействие и существенно расширяется ширина излучаемого спектра.Поэтому лазерные диоды в динамическом режиме работы требуют начального смещения постоянным током,примерно равным пороговому току.Наклон ветви ватт-амперной характеристики лазерного диода,расположенной правее Iпор ,характеризует дифференциальную квантовую эффективность д=dP/dIн,которая зависит от конструкции прибора и его температуры.Типичные значения дифференциальной квантовой эффективности лазерных диодов составляют 0,1…0,2 мВт/мА,а пороговый ток лежит в пределах 10…100 мА.

Для лазерных диодов характерна температурная зависимость порогового тока и дифференциальной квантовой эффективности.С ростом температуры пороговый ток увеличивается,

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

а дифференциальная квантовая эффективность уменьшается.Изменение температуры приводит также к изменению длины волны излучения.Наибольшей температурной нестабильностью обладают лазерные диоды с резонатором Фабри-Перо.Лазерные диоды с РОС- и РБО-резонаторами более термостабильны.Для уменьшения температурных влияний применяют специальные меры, например используют теплоотводы с элементом Пелтье.Параметры и характеристики светодиодов имеют достаточно высокую температурную стабильность,что делает их более простыми в эксплуатации.

Надежность полупроводниковых излучателей определяется наработкой на отказ или интенсивностью отказов.Лазерные диоды, созданные в начале 80-х годов,обладали существенно меньшей надежностью по сравнению со светодиодами.Однако в последнее время благодаря совершенствованию конструкций и технологии изготовления ее удалось значительно повысить и довести до приемлемой величины.

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/с). Свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.). Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток, или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока. Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии.

Файлы: 1 файл

физика.doc

Виды излучений и их применение!

В настоящее время мы знаем 6 видов излучения - гамма-излучение, рентгеновское излучение, ультрафиолетовое излучение, оптическое излучение, инфракрасное излучение и радиоволны

Радиоволны были открыты ещё в 19 веке, их наблюдал Герц в своих экспериментах, первые испытания прошли уже в 20 веке в Ленинграде.

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/с). Свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.).

Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток, или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.

Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии.

Свойства радиоволн позволяют им свободно проходить сквозь воздух или вакуум. Но если на пути волны встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от поверхности. На этом свойстве основано применение электромагнитных волн в радиолокации.

Главное свойство радиоволн заключаются в том, что они способны переносить через пространство энергию, излучаемую генератором электромагнитных колебаний. Колебания же возникают при изменении электрического поля.

Радиоволны, как средство для беспроводной передачи звуковой, видео и иной информации на достаточно значительные расстояния, приобрело популярность и широкую сферу использования. Именно радиоволны лежат в основе организации многих современных процессов, среди которых:
радиовещание, телевидение, радиотелефонная связь, радиометеорология, радиолокация.

Инфракрасное излучение — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (λ = 0,74 мкм) и микроволновым излучением (λ ~ 1-2 мм).

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50% излучения Солнца.

Свойства инфракрасного излучения.

Оптические свойства веществ (прозрачность, коэффициент отражения, преломления) в инфракрасной области спектра, как правило, значительно отличаются от тех же свойств в привычной для нас видимой области.

У большинства металлов отражательная способность для инфракрасного излучения значительно больше, чем для видимого света, и возрастает с увеличением длины волны.

Материалы, прозрачные для ИК-лучей и обладающие высокой способностью к их отражению, используются при создании ИК-приборов

Инфракрасное излучение применяют в: медицине; дистанционном управлении; при покраске (для сушки лакокрасочных поверхностей); для стерилизации пищевых продуктов; как антикоррозийное средство (с целью предотвращения коррозии поверхностей, покрываемых лаком); проверка денежных знаков на подлинность; для обогрева помещения.

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ — не видимое глазом электромагнитное излучение с длиной волн 10−7—10−12 м. Открыто в 1895 г. нем. физиком В. К. Рентгеном (1845—1923). Испускается при торможении быстрых электронов в веществе (непрерывный спектр) и при переходах электронов с внешних электронных оболочек атома на внутренние (линейчатый спектр). Источниками являются: некоторые радиоактивные изотопы, рентгеновская трубка, ускорители и накопители электронов (синхротронное излучение).

Свойства рентгеновского излучения.

Основные свойства рентгеновского излучения: интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность, у некоторых веществ вызывает флюоресценцию.

Применение рентгеновского излучения.

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.

При помощи рентгеновских лучей может быть определён химический состав вещества.

В аэропортах активно применяются рентгено- телевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа.

Оптическое излучение – это свет в широком смысле слова, электромагнитные волны, длины которых заключены в диапазоне с условными границами от 1 нм до 1 мм. Помимо воспринимаемого человеческим глазом видимого излучения, к этому виду излучений относятся инфракрасное излучение и ультрафиолетовое излучение. Параллельный термину "О. и." термин "свет" исторически имеет менее определенные спектральные границы - часто им обозначают не все оптические излучения, а лишь его видимый поддиапазон. Для оптических методов исследования характерно формирование направленных потоков излучения с помощью оптических систем, включающих линзы, зеркала, призмы оптические, дифракционные решётки и т.д.

Свойства оптического излучения

Волновые свойства оптического излучения обусловливают явления дифракции света, интерференции света, поляризации света и др. В то же время ряд оптических явлений невозможно понять, не привлекая представления об оптическом излучении как о потоке быстрых частиц - фотонов. Эта двойственность природы. Оптическое излучение сближает его с иными объектами микромира и находит общее объяснение в квантовой механике. Скорость распространения оптического излучения в вакууме (скорость света) - около 3·108 м/с. В любой другой среде скорость оптического излучения меньше. Значение преломления показателя среды, определяемое отношением этих скоростей (в вакууме и среде), в общем случае неодинаково для разных длин волн оптического излучения, что приводит к дисперсии оптического излучения.

Применение: В сельскохозяйственном производстве инфракрасное излучение используют в основном для обогрева молодняка животных и птицы, сушки и дезинсекции сельскохозяйственных продуктов (зерна, фруктов и т. д.), пастеризации молока, сушки лакокрасочных и пропиточных покрытий

Ультрафиолетовое излучение (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (380 — 10 нм, 7,9·1014 — 3·1016 Гц). Диапазон условно делят на ближний (380—200 нм) и дальний, или вакуумный (200-10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.

Свойства ультрафиолетового излучения

Высокая химическая активность, невидимое, большая проникающая способность, убивает микроорганизмы, в небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменения в развитии клеток и обмене веществ, действие на глаза.

Коэффициент отражения всех материалов (в том числе металлов) уменьшается с уменьшением длины волны излучения.

Длина волны от 10 – 400 нм. Частота волн от 800*1012 - 3000*1013 Гц.

Применение ультрафиолетового излучения.

Лампа чёрного света — лампа, которая излучает преимущественно в длинноволновой ультрафиолетовой области спектра (диапазон UVA) и даёт крайне мало видимого света.

Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения.

Обеззараживание ультрафиолетовым (УФ) излучением. Стерилизация воздуха и твёрдых поверхностей. Дезинфекция воды осуществляется способом хлорирования в сочетании, как правило, с озонированием или обеззараживанием ультрафиолетовым (УФ) излучением. Химический анализ, УФ-спектрометрия. УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс — длина волны, образует спектр. Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение. Ловля насекомых. В медицине (обеззараживание помещения).

Гамма-излучение (гамма-лучи) — вид электромагнитного излучения с чрезвычайно малой длиной волны

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

ООО Учебный центр

Реферат по дисциплине:

Горелова Ирина Владимировна

Москва 2017 год

1. Ионизирующие излучения и его разновидности 4

2. Источники ионизирующего излучения 6

3. Способы радиационного воздействия на живые организмы 7

4. Меры измерения биологического действия ионизирующего

5. Действия ионизирующего излучения на живые организмы 10

Список литературы 13

Радиоактивное излучение определенных условиях может представлять опасность для человека. Важно понимать какое излучение и в какой степени опасно для человека и животных.

В больших дозах радиация вызывает сильное поражения тканей, а в малых дозах вызывает рак и провоцируют генетические дефекты, которые могут проявляться и последующих поколениях облученного человека.

Все живые организмы подвергаются воздействию ионизирующего излучения, обусловленного естественным радиоактивным фоном, от естественных и искусственных источников. В гораздо меньшей степени человек подвергается облучению связанному с атомной энергетикой. Так же большие дозы облучения мы получаем, например от использования рентгеновских лучей в медицине. Естественный фон радиации увеличивается при сжигание угля и использование воздушного транспорта. Длительное пребывание в закрытых помещениях, приводят к увеличению облучения за счет естественной радиации.

Цель этой работы: рассказать о различных видах излучений, как о естественных, так и о техногенных источников, показать воздействие на человека и окружающую среду, осветить основные свойства ионизирующего излучения.

1. Ионизирующие излучения и его разновидности

Ионизи́рующее излуче́ние — это потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество, т.е. проходить через ткани и клетки живых организмов, сообщать им энергию, разрушать связи внутри молекул и вызывать изменения в их структуре ткани.

Естественные источники ионизирующего излучения: космическое излучение, естественные радиоактивные вещества в почве, воздухе и материалах. Одним из наиболее распространенных естественных источников радиации является радон - газ, не имеющий вкуса и запаха. Его концентрация в закрытых помещениях в 8 раз больше, чем в проветриваемых.

Искусственные источники: производства связанные с добычей, переработкой, хранением, транспортировкой, утилизацией и использованием радиоактивных изотопов: атомные станции, научно-исследовательские установки, военные объекты, медицинская аппаратура лучевой терапии,

Ионизирующие излучения делятся на фотонные и корпускулярные.

К фотонному относятся:

а) Y-излучение ( Гамма-излучение) это поток квантов с большой электромагнитной энергии, их длина волны значительно меньше межатомных расстояний, т.е. y

б) рентгеновское излучение - электромагнитные волн, энергия фотонов которых

Корпускулярное ионизирующее излучение состоит из потока заряженных частиц (альфа-,бета-частиц, протонов, электронов), их кинетическая энергия достаточна для ионизации атомов при столкновении.

а) нейтроны - незаряженные частицы, образуются при реакциях деления ядер атомов урана или плутония. Эти частицы нейтральны, и они глубоко проникают во всякое вещество, включая живые ткани. Нейтронное излучение превращает атомы стабильных элементов в атомы их радиоактивных изотопов. Проникающая способность нейтронов такая же как и у Y- излучением.

б) бета частицы - электроны, излучаемые при радиоактивном распаде с средней ионизирующей и проникающей способностью (пробег в воздухе до 10-20 м).

в) альфа частицы - положительно заряженные ядра атомов гелия. Они обладают малой проникающей способностью (пробег в воздухе - не более 10 см), бумага и неповрежденная кожа является для них непреодолимым препятствием. Но при попадании внутрь они наиболее опасны.

2. Источники ионизирующего излучения

Источники ионизирующего излучения:

Естественные источники ионизирующего излучения: космическое излучение, естественные радиоактивные вещества в почве, воздухе и материалах. Одним из наиболее распространенных естественных источников радиации является радон - газ, не имеющий вкуса и запаха. Его концентрация в закрытых помещениях в 8 раз больше, чем в проветриваемых.

2. Искусственные источники: производства связанные с добычей, переработкой, хранением, транспортировкой, утилизацией и использованием радиоактивных изотопов: атомные станции, научно-исследовательские установки, военные объекты, медицинская аппаратура лучевой терапии,

Главная причина опасности ионизирующего излучения - радиационная авария. Она может быть вызвана неисправностью оборудования, нарушением техники безопасности или ошибками персонала, стихийными бедствиями или другими причинами, из-за которых произошло облучение людей выше установленных норм или к радиоактивное загрязнение окружающей среды.

При авариях выбрасываются:

-части и осколки активной зоны реактора;

-топливо и отходы в виде пыли, в аэрозоли в смеси с воздухом при попадании в организм могут вызывать мучительный кашель;

-выбросы состоящие из двуокиси кремния. Дозы облучения огромны и даже недолгое облучение губительно для человека.

На предприятиях по разработке месторождений и обогащению урана. Из их отходов выделяется радиоактивный газ – радон , который вызывает облучение тканей лёгких. Так же отходы могут попасть в расположенные рядом водоемы.

Использование ядерного топлива приводит в возможным кражам радиоактивного вещества. Использование его в террористических целях. Для изготовления ядерных боеприпасов кустарным способом, а также угрозы вывода из строя ядерных объектов, с целью получения выкупа.

Так же испытания ядерного оружия дает свой вклад в ионизирующее излучение.

3. Способы радиационного воздействия на живые организмы

В зависимости от того где расположен ИИИ облучение может быть внутренне и внешнее.

При внешнем облучении источник находится вне человека.: космические лучи, радиоактивные излучатели в воздухе, в земле, в стенах

Внутреннее облучение, зависит от попадания радиоактивных веществ внутрь организма человека.

- через открытые раны и повреждения кожи;

- через пищеварительный тракт с пищей и водой.

- при вдыхании воздуха, Из дыхательной системы радиоактивные элементы попадают в кровь, лимфу разносятся по всему организму, оседая в различных органах.

Внутреннее облучение более опасно, а его последствия более тяжёлые, так как:

- увеличивается доза облучения, которая связана со временем нахождения радионуклида в организме;

- происходит непосредственное контактное облучение;

- в облучении участвуют альфа частицы, самые активные и самые опасные;

- радиоактивные вещества в разных количествах накапливаются в разных органах, усиливая местное облучение

- невозможно использовать какие-либо меры защиты: ОЗК, противогаз.

4. Меры измерения биологического действия ионизирующего

При определенных дозах ионизирующее излучение может представлять опасность для человеческого организма.

Чем больше получаемая человеком энергия и чем меньше его масса, тем к более серьезным нарушениям может привести облучение.

Энергия облучения, поглощенная веществом и рассчитанная на единицу массы – поглощенная доза излучения ( D ). Единица измерения в СИ - 1 Грей (Гр).

Поглощенная доза равна 1 Гр , если 1 кг вещества получил энергию в 1 Дж.

Если при облучении используются рентгеновские лучи или гамма-излучение, то поглощенную дозу измеряют в рентгенах (Р): 1 Гр= 100 Р

Для достоверности измерений надо учитывать, что различные виды излучениё вызывают разные биологические эффекты. Поэтому вводят коэффициент качества К, показывающий, во сколько раз опасность от воздействия данного излучения больше, чем от гамма-излучения, при той же поглощенной дозе. К равен 10 для нейтронного излучения, 20 - для альфа излучения.

Поэтому для оценки биологического эффекта введена эквивалентная доза (Н) она учитывает поглощенную дозу D и коэффициент качества К:

Н = D * В СИ единицей эквивалентной дозы является зиверт (Зв). Также применяют миллизиверт (мЗв) и микрозиверт (мкЗв).

Так же необходимо учитывать, что ионизирующее излучение при одной и той же эквивалентной дозе по разному действует на разные органы. Каждый орган имеет свой коэффициент радиационного риска: для легких – 0,12 для щитовидной железы – 0,03.

5. Действия ионизирующего излучения на живые организмы

Ионизирующее излучение способно проникать в биологические ткани и клетки, выбивая электроны из атомов клетки, вызывая ионизацию живой ткани. Ионизация нарушает жизнедеятельность клеток и отрицательно сказывается на здоровье человека.

Механизм такого воздействия заключается в поглощении энергии ионизации организмом и разрыве химических связей его молекул с образованием высокоактивных соединений, так называемых свободных радикалов.

Воздействие ионизирующего излучения изменениет структуры молекулы воды. Так же изменяется структура атомов, из которых состоит живая ткань. Происходит разрушение ядра и разрыв наружной мембраны. Утрачивается основная функция растущих клеток - способность к делению, и это приводит к гибели клеток. Либо для зрелых клеток ионизация вызывает разрушение функций клеток. Наступает гибель клеток, и она которая в отличие от фи з иологической гибели необратима.

Дополнительное поглощение энергии при ионизации в организме нарушает равновесие энергетических процессов, которые происходят в организме.

В работе представлены описание ионизирующего излучения, способы влияния на организм человека, рассказано о мерах измерения излучения.

Затронут вопрос о том, что малые дозы облучения не представляют серьезной опасности для человека.

Так же рассказано об источниках радиоактивного излучения. Хотелось бы отметить , что в обычной жизни человек получает достаточную дозу облучения не от АЭС, а от естественного фона излучения.

Житель промышленно развитой страны, имеющий всю индивидуальную дозу облучения от естественных и от техногенных источников радиации, имеет вероятность преждевременной смерти из-за курения (при выкуривании пачки сигарет в день) в 100 раз больше вероятности умереть от рака вследствие облучения.

Рассказано о естественной радиации которая вносит большой вклад в эквивалентную дозу каждого человека, так же обращается внимание на техногенные источники радиации.

Говорится о том ,что атомная энергетика является экологически чистой индустрией с большими перспективами. АЭС и ледоколы, кардиостимуляторы сердца, системы пожарной охраны и дефектоскопы – это далеко не свё, что может предложить наука.

Информация представленная в работе предоставляет информацию необходимую для оценки понимая риска, связанного с радиационным излучением для каждого человека.

Список литературы

1. Акимов В.А., Дурнев Р.А.,Миронов С.К., Защита от чрезвычайных ситуаций. 5-11 классы; Энциклопедический справочник. – М.; Дрофа, 2011

3. Навратил Д.Д., Хала И., Радиоактивность, ионизирующее излучение и ядерная энергетика, 2013.
4. Радиация. Дозы, эффекты, риск: Пер. с англ. - М.: Мир, 1990.-79 с, ил.

5. Нормы радиационной безопасности (НРБ-99): Гигиенические нормативы. - М.: Центр санитарно-эпидемиологического нормирования, гигиенической сертификации и экспертизы Минздрава России, 1999.- 116с.

Читайте также: