Реферат на тему химическая обработка материалов и получение новых веществ

Обновлено: 02.07.2024

§ 24. Современные технологии обработки материалов

Создание новых технологий всегда связано, с одной стороны, с возникновением у людей новых потребностей, а с другой стороны, с уровнем развития науки, который даёт возможность развивать технику. Например, бурное развитие техники в конце XX в. требовало использования всё большей энергии, а успехи атомной и ядерной физики XX в. открыли возможность для появления новых источников энергии. В результате с середины XX в. началось строительство атомных электростанций.

Какие промышленные предприятия есть в вашем регионе? Что они производят? Люди каких профессий на них работают?

Для обеспечения человечества необходимыми продуктами труда: изделиями и энергией – используются сложные технологические системы, входящие в промышленные предприятия, которые образуют промышленность страны.

Для работы промышленности необходимо использовать специальные знания, которые называются промышленными технологиями . Наиболее важными промышленными технологиями являются следующие.

Технологии металлургии включают в себя знания о процессах получения металлов и сплавов из руд и других материалов, а также о процессах, связанных с изменениями состава и свойств металлических материалов (рис.1). Разновидностями технологий металлургии являются технологии получения стали, меди, бронзы.

https://i2.wp.com/1001student.ru/wp-content/uploads/2018/09/0_b6f91_41234a4f_XXL.jpg

Рис.1. Использование технологий металлургии:

а – добыча железной руды; б – процесс литья алюминия

Машиностроительные технологии включают разработку процессов конструирования и производства различных машин, приборов, проектирования машиностроительных заводов и организации производства на них (рис. 2).

https://for.ge/uploads/images/1592398262_188278.jpg
https://hevcars.com.ua/wp-content/uploads/2019/12/audi-e-tron-batteries-hevcars-3.jpg

Рис. 2. Использование машиностроительных технологий:

а – сборочный конвейер на автомобильном заводе;

б – автоматическая линия на машиностроительном заводе

Энергетические технологии – технологии производства, передачи и использования различных видов энергии, в первую очередь электрической. Современная техника позволяет осваивать новые, поистине неисчерпаемые источники энергии: солнечной, ветровой, энергии морских и океанских приливов и отливов (рис. 3).

https://experience-ireland.s3.amazonaws.com/thumbs2/1dc1dd2c-b03f-11e4-8c69-22000ad04020.800x600.jpg

Рис. 3. Использование энергетических технологий:

а – Красноярская гидроэлектростанция;

б – линии электропередачи

Биотехнологии – технологии использования живых организмов или продуктов их жизнедеятельности для решения технологических задач, а также создания живых организмов с необходимыми свойствами (рис. 4). Всемирная известность к шотландскому ученому, обладателю докторских степеней в медицине, биологии и генетике сэру Иэну Уилмуту пришла в 1997 году – с явлением миру первого в мире клонированного из взрослой клетки животного, которое окрестили овечкой Долли. Эксперимент команды исследователей под его руководством доказал, что для создания копий животных – их клонов могут быть использованы не только половые или стволовые, но также соматические клетки, то есть обычные. Биотехнологии с давних пор используются, например, для получения молочных продуктов.

https://www.patrasevents.gr/imgsrv/f/full/1385394.jpg

Рис. 4. Использование биотехнологий: первое клонированное животное – овечка Долли с сэром Иэн Уилмут

Биотехнологии используются в медицине для создания новых лекарств. Так, первый антибиотик — пенициллин — был создан в 1928 г. британским учёным Александром Флемингом (1881—1955) на основе продуктов жизнедеятельности плесневых грибов. До этого открытия десятки тысяч людей умирали от болезней, которые сейчас успешно лечат антибиотиками.

Технологии производства продуктов питания – технологии, связанные с производством, обработкой продуктов сельского хозяйства и получения из них продуктов, пригодных для питания человека (рис. 5).

https://airsprings.com.au/wp-content/uploads/2016/12/icecream-machine.jpg
https://zeny.osobnosti.cz/wp-content/uploads/2019/01/011.jpg

Рис. 5. Использование технологий производства продуктов питания:

а – линия по производству мороженного;

б – производство кондитерских изделий

Космические технологии – технологии, связанные с запуском объектов или живых существ в космос, спуском на Землю и с непосредственной работой в космосе. Эти технологии используются при создании космической техники.

Космической техникой являются все космические аппараты, в том числе спутники, космические телескопы, межпланетные автоматические станции, орбитальные станции, а также оборудование, которое на них расположено (рис. 6). Ракеты-носители, спускаемые аппараты и прочая техника, обеспечивающая работу космических аппаратов, но постоянно не работающая в космосе, также относится к космической технике. В конце XX в. началось промышленное освоение космоса. Кроме использования привычных уже спутников связи, сейчас на космических станциях при меняют уникальные биотехнологии, выращивают кристаллы. Учёные и инженеры изучают возможности строительства космических электростанций и промышленного освоения Луны для добычи на ней сырья, например железа, алюминия, титана, а также гелия, который может использоваться как топливо для перспективных атомных электростанций.

https://teletype.in/files/5b/12/5b1299ad-0d05-410e-8b3f-f7c6d569794a.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/%D0%A6%D0%9A%D0%A1_%D0%94%D1%83%D0%B1%D0%BD%D0%B0_%D0%93%D0%9F%D0%9A%D0%A1_-2.jpg/800px-%D0%A6%D0%9A%D0%A1_%D0%94%D1%83%D0%B1%D0%BD%D0%B0_%D0%93%D0%9F%D0%9A%D0%A1_-2.jpg

Рис. 6. Космические технологии:

а – Международная космическая станция;

Электрофизические и электрохимические методы

Под электрофизическими и электрохимическими методами размерной обработки понимается совокупность электрических, электрохимических, электромагнитных и ядерных процессов воздействия на твердое тело для придания ему заданной формы и размеров. Эти процессы действуют в различных сочетаниях с тепловыми, механическими и химическими процессами.

Электрофизические и электрохимические методы используются для формообразования поверхностей заготовок из труднообрабатываемых материалов (весьма вязких, твердых и очень твердых, керамических, металлокерамических) и позволяют обрабатывать сложные фасонные внешние и внутренние поверхности, отверстия малых диаметров и т. д.

Эти методы можно разделить на 6 групп:

  • электроэрозионные,
  • лучевые,
  • ультразвуковые
  • электрохимические,
  • плазменная обработка,
  • формование в магнитном поле.
  1. Электроэрозионные методы обработки применяют для всех токопроводящих материалов. Эти методы основаны на явлении электрической эрозии, т.е. разрушение поверхности электродов электрическим разрядом, проходящим между ними. Разрушение материала происходит путем его плавления с последующим выбросом из рабочей зоны в виде парожидкостной смеси. Основными методами электроэрозионной обработки являются электроискровая и анодно-механическая. Для этих методов характерны наличие жидкой диэлектрической среды между электродами и подачи энергии в форме импульсов. Жидкая среда повышает эффективность разрушения металла и является средством эвакуации продуктов эрозии из зоны обработки.

Электроэрозионный метод обработки токопроводящих металлов и сплавов основан на использовании преобразуемой в теплоту энергии импульсных электрических разрядов, возбуждаемых между инструментом и изделием. В зависимости от вида электрического разряда (искра, дуга), параметров импульсов тока, напряжения и других условий электроэрозионная обработка подразделяется на электроискровую, электроимпульсную, электроконтактную и анодо-механическую. Каждой разновидности электроэрозионной обработки свойственны определенные технологические характеристики, оборудование и область промышленного применения.

При электроискровом метоле обработки применяют импульсы длительностью 20…200 мкс. Электрическая эрозия проявляется наиболее интенсивно, если межэлектродное пространство заполнено диэлектрической жидкостью. В качестве такой жидкости используют керосин, минеральное масло, водные растворы электролитов и дистиллированную воду.

  1. Лучевой метод обработки, к которому относится обработка световым, электронным и ионным лучами, используют для обработки токопроводящих материалов и диэлектриков. Они основаны на съеме материала при воздействии на него сфокусированными лучами с высокой плотностью энергии. Съем материала осуществляется преобразованием этой энергии непосредственно в зоне обработке в теплоту.

Высокая плотность энергии сфокусированного электронного луча так же, как и светового луча лазера, позволяет проводить размерную обработку за счет нагрева и испарения материала с узколокального участка. Для этих методов характерна практическая независимость обрабатываемости материала от механических характеристик, поэтому как металлы, так и неметаллические материалы (магнитные материалы, керамика, полупроводниковые материалы, легированные стали и ферриты, твердые сплавы, корунд и т.д.) обрабатываются одинаково успешно.

Возможность точного дозирования энергии луча позволяет осуществлять широкий круг технологических процессов от местной термообработки, ионной очистки и сварки до механической обработки. В ряде случаев, когда для обработки особо миниатюрных деталей изготовление инструмента практически неосуществимо (например, для отверстий диаметром 5…10ики), лучевая обработка является единственно возможной.

  1. Ультразвуковой метод обработки заключается в механическом воздействии на материал. Он назван ультразвуковым благодаря тому, что частота ударов соответствует диапазону неслышимых звуков, т.е. выше 16 кГц. Ультразвуковым методом можно обрабатывать твердые и хрупкие материалы, частицы которых могут, как бы выкалываться при ударе.

Широко используют ультразвуковую очистку деталей. Ультразвуковые колебания, накладываемые на жидкость для очистки деталей, особенно малогабаритных и имеющих сложную конфигурацию, резко повышают скорость и качество очистки.

Для пайки алюминия и его сплавов применяют способ удаления окисленной пленки, основанный на ее механическом разрушении интенсивными ультразвуковыми колебаниями. При этом осуществляется процесс ультразвукового лужения. Сущность явлений, происходящих при ультразвуковом лужении, заключается в следующем. Излучаемые рабочей частью паяльника знакопеременные упругие колебания частотой 16…22 кГц вызывают периодические растяжения и сжатия частиц жидкого припоя. В результате чего образуются кавитационные процессы в расплавленном припое. При этом возникают большие ударные импульсы, воздействующие на жидкий припой и поверхность облуживаемых деталей и вызывающие разрушение окисной пленки. Раздробленные частицы окисной пленки, обладают меньшей плотностью, всплывают на поверхность припоя, и он беспрепятственно облуживает очищенную поверхность металла.

Процесс ультразвукового лужения позволяет облудить всю обрабатываемую поверхность, с которой сняты окисные пленки, в то время как при механическом удалении окисной пленки обслуживаются только отдельные зачищенные места поверхности.

  1. Электрохимические методы обработки материалов основаны на преобразовании электрической энергии в энергию химических связей, на превращении материала заготовки в легко удаляемые из зоны обработки химические соединения (анодное растворение). Электрохимическая обработка имеет две разновидности: обработка в среде проточного электрона и электроабразивная. В последнем случае происходит комбинированный электрохимический и механический съем металла.
  2. Плазмой называют ионизированный газ, перешедший в это состояние результате нагрева до очень высокой температуры или в следствии столкновении частиц газа с быстрыми электронами (в газовом разряде). При этом молекулы распадаются на атомы, от которых отрываются электроны и возникают ионы. Последние ионизируют газ и делают его электропроводным. Однако не всякий ионизированный газ можно назвать плазмой. Необходимым условие существования плазмы является ее электрическая квазинейтральность, т.е. она должна содержать в единице объема примерно равное количество электронов и положительно заряженных ионов. Наряду с ними в плазме может находиться некоторое количество неионизированных атомов или молекул.

На плазму могут воздействовать магнитные и электрические поля.

Внешнее магнитное поле позволяет сжимать струю плазмы, а также управлять ею (отклонять, фокусировать).

Большая степень ионизации обуславливает высокую температуру газоразрядной плазмы которая может достигать 5000˚С и выше. Свойство плазмы можно изменять путем применения различных газов (азота, карбона, водорода, гелия и др.).

Основным методом получения плазмы для технологических целей является пропускание струи сжатого газа через пламя электрической дуги. Современные плазменные горелки делят на горелки прямого действия (с внешней дугою) и косвенного действия (с внутренней дугой).

В качестве рабочего газа наиболее часто используют аргон, который ионизируется. Напряжение зажигания и рабочее напряжение при этом не большие и электрическая дуга получается стабильной и инертной. При использовании в качестве рабочего газа гелия скорость истечения при t=10000…15000˚С приблизительно равна звуковой. Плазменная грелка рассматриваемого типа потребляет мощность 50кВт и создает концентрацию мощности плотностью 3мВт/дм 2 .

Обычно промышленные технологии состоят из нескольких частей, которые называются производственными технологиями . Например, на электростанциях получают электрическую энергию. Для этого используют технологии производства электроэнергии. С помощью линий электропередачи электроэнергия передаётся потребителям. При этом используют технологии передачи электроэнергии. Затем электроэнергия может использоваться для освещения и обогрева помещений. Здесь применяются технологии использования электроэнергии. Таким образом, промышленные энергетические технологии состоят из следующих производственных технологий: производства, передачи и использования электроэнергии.

Основные понятия и термины:

промышленные технологии, производственные технологии, технологии металлургии, машиностроительные технологии, энергетические технологии, биотехнологии, технологии производства продуктов питания, космические технологии; электрофизические и электрохимические методы: электроэрозионные, лучевые, ультразвуковые, электрохимические, плазменная обработка.

? Вопросы и задания

1. Какие промышленные технологии вам известны?

2. Что включают в себя технологии металлургии?

3. Чем отличаются промышленные технологии от производственных технологий? Приведите примеры.

Найдите в Интернете примеры использования биотехнологий и проанализируйте их влияние на окружающую среду.

Поиск информации в Интернете о современных технологиях обработки материалов: ультразвуковая резка и ультразвуковая сварка; лазерное легирование, лазерная сварка, лазерная гравировка; плазменная наплавка и сварка, плазменное бурение горных пород .

Найдите в Интернете информацию о предприятиях вашего региона и профессиях людей, которые на них работают. Составьте таблицу.

Таблица. Предприятия моего региона

Факторы, влияющие на производительность процесса и качество поверхности: материал заготовки; метод получения заготовки и термическая обработка; начальное состояние поверхности заготовки. Большой расход материалов покрытий и растворителей покрытий (необходимость нанесения нескольких слоев защитных покрытий до обработки и снятия их после обработки); Химическая обработка заключается в направленном… Читать ещё >

Химическая обработка. Технология конструкционных материалов ( реферат , курсовая , диплом , контрольная )

Химическая обработка заключается в направленном и контролируемом разрушении металлов и сплавов травлением их в растворах кислот и щелочей [6].

Схема химической обработки.

Рис. 8.7. Схема химической обработки

Снятие слоя припуска (рис. 8.7) осуществляется за счет химического взаимодействия материала обрабатываемой заготовки 1 с кислотным или щелочным составом 2 травильных ванн 3. Поверхность детали предварительно очищается, необрабатываемые участки детали защищают химически стойким покрытием. Детали устанавливаются на подпорках 4, или подвешиваются в корзинах. Травильный раствор циркулирует через ванну и блок регенерации 5, очищающий его от шлама, и восстанавливающий концентрацию раствора.

Преимущества химических методов:

  • — отсутствие механических и тепловых явлений в зоне съема металла;
  • — возможность обработки почти всех материалов в любом состоянии независимо от их механических свойств;
  • — достаточно высокая производительность;
  • — возможность съема металла на тех участках детали, где использовать другие методы обработки неэффективно или невозможно;
  • — сравнительно высокая точность обработки (до ±0,05 мм против ±0,25 мм при механическом фрезеровании);
  • — возможность получения деталей переменной толщины, конической формы, ступенчатой формы травлением различных участков в течение различного времени (эшелонированное травление с последовательным удалением защитного покрытия поверхности);
  • — обработка магнитных материалов без снижения их магнитных свойств; одновременная обработка большого числа деталей;
  • — простота автоматизации.

Недостатки химических методов:

  • — большой расход материалов покрытий и растворителей покрытий (необходимость нанесения нескольких слоев защитных покрытий до обработки и снятия их после обработки);
  • — сравнительная продолжительность травления, особенно при удалении значительных толщин металла;
  • — снижение класса шероховатости поверхности;
  • — невозможность получения узких глубоких пазов вследствие плохой циркуляции раствора.

Процесс химического травления можно разделить на три периода:

  • 1) растворение окисной пленки (окалины), строение которой приводится на рис. 8.8. Окалина обладает значительно большей химической стойкостью, чем основной металл, процесс ее травления протекает очень медленно;
  • 2) установившаяся стадия процесса растворения металла;
  • 3) образование на металле слоя из продуктов реакции, что снижает скорость растворения.

Факторы, влияющие на производительность процесса и качество поверхности: материал заготовки; метод получения заготовки и термическая обработка; начальное состояние поверхности заготовки.

Строение поверхностного слоя стали.

Рис. 8.8. Строение поверхностного слоя стали

Последовательность операций химического травления металлов:

  • — контроль толщины и состояния поверхностного слоя детали;
  • — очистка поверхности детали; обезжиривание;
  • — травление для снятия окалины (растворы едкого натра, плавиковой, азотной кислот);
  • — пароабразивная обдувка (при большой толщине слоя окалины);
  • — промывка в горячей и холодной воде;
  • — сушка;
  • — нанесение защитных покрытий на необрабатываемые поверхности.

В качестве защитных покрытий используются:

  • — механические и вакуумные экраны;
  • — гальванические покрытия;
  • — клейкая лента (для ступенчатого травления детали на различную глубину);
  • — сплавы на основе парафина (для травления в холодных растворах);
  • — светочувствительные эмульсии (в сочетании с негативами из пластмассы);
  • — лакокрасочные покрытия (наиболее распространены и эффективны), например перхлорвиниловая эмаль.

Существует два способа выборочного покрытия определенных участков заготовки:

  • а) сначала покрывают всю деталь, затем обрабатываемые поверхности очищают;
  • б) предварительно защищают места травления, а затем наносят покрытие на все открытые поверхности (применяется в массовом производстве).

Так как процесс травления идет по всем направлениям с одинаковой скоростью, то защитное покрытие должно перекрывать требуемую границу размера выемки, А на величину, равную глубине травления R (рис. 8.9). Под покрытием металл травится по радиусу R. При недостаточной ширине паза (менее 2 мм) в пространстве под покрытием скапливается газ, препятствующий травлению. Для его удаления деталь необходимо периодически встряхивать, переворачивать, прикладывать вибрации.

Травление металла заготовки под покрытием.

Рис. 8.9. Травление металла заготовки под покрытием:

1 — покрытие; 2 — заготовка После травления шероховатость обработанных поверхностей увеличивается на 1—2 класса (причем больше всего улитых заготовок). Глубина травления обычно составляет 6—8 мм (реже до 12 мм). Чем больше глубина травления, тем меньше точность и больше шероховатость поверхности.

На ход процесса совершенно не влияет твердость материала заготовки, что позволяет обрабатывать твердые и сверхтвердые электропроводные материалы (т.е. практически любые металлы).

2.Размеры, форма поверхностей.

Размеры обрабатываемых поверхностей принципиально не ограничены.
Технологические задачи, решаемые таким методом обработки, обусловили
выпуск оборудования, позволяющего обрабатывать заготовки с

максимальными габаритами менее 1м. Форма обрабатываемой поверхности может быть сколь угодно сложной и зависит от профиля

электрода инструмента при реализации процессов копирования (рис.8.1а,в) или задаваться программой перемещения электрода при реализации схемы профильной вырезки электродом-проволокой (рис.8.1б).

3.Точность и шероховатость поверхностей. Отсутствие значительных силовых нагрузок на заготовку и инструмент в процессе обработки позволяет

получать точность до 4-5 квалитетов. Шероховатость поверхности зависит от размеров кратеров, образующихся при каждом элементарном разряде.

Уменьшая мощность разрядов можно достичь шероховатости до Ra 0,1. Уменьшение мощности разрядов приводит к падению производительности обработки. Поэтому процесс часто проводят в два этапа: на черновых режимах удаляют основную массу припуска, а затем на пониженных режимах достигают заданной шероховатости поверхности.

НЕДОСТАТКОМ процессов электроэрозионной обработки являются значительные энергозатраты, на порядок и более превышающие энергозатраты при обработке резанием. Поэтому процесс следует применять только в тех случаях, когда обработка резанием невозможна.

Типичные области применения процесса:

-производство штампов и прессформ для изготовления изделий сложной формы , например, турбинных лопаток,

-обработка штампов из металлокерамических и других твердых материалов, обработка резанием которых невозможна,

-обработка сложнопрофильных матриц для реализации процесса прессования.

Химическая обработка (рис.8.2) основана на растворении определённых областей обрабатываемого изделия в активных растворителях. Большинство металлов растворяется в кислотах, но есть металлы (например, алюминий) хорошо растворяющиеся в щелочах. Ограничение областей растворения осуществляется за счет покрытия защищаемых зон каким либо веществом, не реагирующим с растворителем.

Художественная обработка металлов таким способом известна со средних веков, когда в качестве растворителей использовали соляную кислоту, а в качестве защитного покрытия пчелиный воск.

В настоящее время процесс широко применяется в промышленности для получения проводников и контактных площадок на печатных платах, применяемых для монтажа радиоэлектронной аппаратуры.

Недостатком процесса является необратимый расход электролита, значительные расходы на его регенерацию.

Электрохимическая обработка обладает значительно большими технологическими возможностями и позволяет производить полирование Изделий (рис.8.2), их размерную профильную обработку(рис.8.2,б), механическую обработку ряда труднообрабатываемых материалов (рис.8.2,а).


Процесс основан на анодном растворении при прохождении электрического тока через электролитический раствор.

Более интенсивное растворение анода происходит в тех областях, где плотность электрического тока выше. Более высокая плотность тока образуется там, где электроды расположены ближе друг к другу. Поэтому, по истечении определенного периода после начала процесса, профиль анода (заготовки) становится эквидистантен профилю катода (инструмента) (б). При работе такого оборудования специальная следящая система поддерживает определенный средний зазор между электродами , перемещая катод -инструмент по мере растворения анода-заготовки.

Таким способом можно обрабатывать сложные по форме поверхности: лопатки турбин, лопасти гребных винтов, поверхности штампов и прессформ. Отличительной особенностью процесса является независимость его протекания от механических свойств материала заготовки.

НЕДОСТАТКОМ же процесса является значительный (на 2-3 порядка) больший расход энергии, чем при механической обработке, что связано с разрушением обрабатываемого материала до молекулярного уровня.

Естественно, что способ позволяет обрабатывать только электропроводные материалы (металлы), не образующие прочных диэлектрических пленок на поверхности при анодном электролитическом процессе.


Химия и материаловедение играют большую роль в жизни людей. Материал – это вещество или предметы, идущие на изготовление чего-либо. От них зависит будущее человека, поскольку новый материал дает широкие возможности и не только в одной отрасли. Поиск и в конечном итоге результат, т.е. изготовление нового, осуществляют непосредственный прогресс, тем более в XXI веке возрастает важность решения подобной проблемы. А основные запасы часто используемых материалов (например: железо, медь, цинк, олово, золото, серебро и т.д.), при нынешних масштабах добычи, иссякнут практически в течение столетия, что за историю всего земного шара покажется моментальным.

И потому очень важно раскрыть все возможности химии и материаловедения в различных отраслях. Они помогут преобразить наш мир красками, улучшить экологию, создать новые лекарства, медикаменты и приборы, и просто сделать жизнь проще и комфортнее.

Но перед нами стоит ряд нерешенных вопросов, на некоторые из которых мы можем дать на сегодняшний день лишь поверхностный ответ. Рассмотрим некоторые пару из них: За какими материалами стоит будущее? Какими свойствами они должны обладать?

1 Возможности и разработки химии в создании новых материалов1.1 Существует ли материал XXI века?

Так существует ли материал XXI века на самом деле? Определенного ответа на поставленный вопрос не существует. Поскольку век только начинается, нельзя с совершенной уверенностью дать ответ. Возможно, это металлическое стекло, силикон, или, быть может, композиционные материалы….

1.2 Композиционные материалы

Требования XXI века и будущего упираются в создание новой технологии композиционных материалов на основе углеродных волокон, способных выдерживать высокие температуры. Речь идет даже не о повседневной обычной жизни на Земле, а о космосе, где требуются двигатели и более незначительные детали, как кромки крыльев, которые выдерживают температуру в 4000°C, обладать прочностью до 200 МПа и плотностью около 2 г/см3. Аналогично можно рассмотреть необходимые характеристики и для авиации. В основном композиционные материалы получают путем пропитки каркаса из волокон наполнителя расплавом металла под высоким давлением и температурой, с дальнейшей прессовкой и прокаткой. Но также применяются и методы порошковой металлургии.

По общему мнению, свойства, которыми обладают композиты, получить тяжело и применяемым путем использования углеродных волокон нельзя ограничиваться. Нужно искать другие способы создания композиционных материалов с подобными качествами.

1.3 Тверже алмаза

Алмаз уже давно не является самым твердым материалом, его твердость составляет порядка 150 гигапаскалей. В отличие, например от фуллеритов, которые занимают лидирующие позиции в перечне самых твердых материалов.

Первое место получил ультратвердый фуллерит, твердость которого от 150 до 300 ГПа. Способ получения такого материала был открыт российскими учеными. Они предложили добавить к смеси реагентов сероуглерод, который является катализатором в синтезе фуллерита. Именно за счет такого добавления стало возможным получить столь ультратвердый материал при достаточно малом давлении – 8 ГПа. Раньше все попытки получить подобный фуллерит заканчивались неудачей, так как его синтез без потусторонних веществ был возможен только при давлении в 13 ГПа, а так же требовался нагрев свыше 830°C.

Использование материала в промышленных масштабах пока невозможно. Это обусловлено тем, что создание большого количества трехмерного материала требует высокого давления от 13ГПа. По сути, проблема заключается не просто в создании подобного давления, а его создания в достаточно большом объеме, что не позволяет современная техника.

1.4 Умный материал

Если же разработки пойдут дальше, то можно будет говорить о совершенстве животного тела. Так как все царапины и раны зарастут сами без шрамов и под контролем времени заживления. А что если тот же эффект можно будет проделать и с внутренними органами? Или даже с костями и хрящами? Тогда живое существо смогло бы жить чуть ли не вечно. Поскольку можно дойти до того, что просто не будет омертвевших клеток внутри организма, и о распространенных болезнях связанных именно с таким типом клеток, можно было бы забыть.

1.5 Волокна и волокнистые материалы

1.6 Углеродный аэрогель

Углеродный аэрогель лишен недостатков своих предшественников состоящих либо из графена, либо из углеродных нанотрубок. Он сочетает в себе и первый, и второй ингредиент. Отличие его в том, что он особо низкой плотности, твердости и теплопроводности, имеет высокую способность восстанавливать форму, т.е. эластичность.

Аэрогели по прочности схожи с твердыми телами, а по прочности с газом. Один из лучших примеров кварцевого аэрогеля имеет плотность примерно 2 мг/см3. Еще одно качество аэрогеля, это – пористость. Благодаря ему в 2006 году удалось собрать и доставить на Землю образцы межпланетной пыли.

Если рассматривать старые образцы аэрогеля, то недостатком их являлась хрупкость. Таким минусом обладали аэрогели из кварца и из некоторых оксидов металлов и углерода, все они при повторных нагрузках растрескивались. Но создание углеродного материала (аэрогеля) исключило подобную хрупкость и непрактичность.

Кроме качества упругости углеродный аэрогель, состоящий из графена и углеродных нанотрубок, обладает электропроводностью. А свойство абсорбирования жидкостей может послужить для ликвидации разливов нефти и очищения воды от органических веществ. Так его можно сравнить с губкой, которая как впитывает, так и выводит жидкость, а остаток веществ удаляется в результате испарения.

Поскольку углерод обладает различными формами и настолько же разнообразными свойствами, то можно ожидать новых открытий в этой области.

Так же как и другие двумерные материалы, например графен и силицен, германен получают путем осаждения отдельных атомов на подложку при высоких температурах в вакууме. Подложка может быть разной, главное чтобы оставалась характерная ячеистая структура двумерного материала.

В качестве эксперимента сначала решили использовать серебро, так как оно является подложкой для получения силицена. Однако для получения германена такая подложка не подошла. В качестве другого материала было предложено золото, с которым эксперимент завершился удачно. Плюсом подобной находки является то, что золото по сравнению с платиной, которую предложили применять в Китае, гораздо дешевле. А если слои германена в будущем получится наращивать на тончайшую золотую подложку, то это дополнительно удешевит процесс производства и партии выпускаемого материала значительно увеличатся.

Разработка принципиально новых химических технологий послужит причиной образования нового поколения продуктов с большим количеством различных свойств, которые приведут в конечном итоге к появлению их во многих отраслях промышленности, в т.ч. здравоохранении, ракетостроении, электронике, энергетике, связи.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Выберите документ из архива для просмотра:

Выбранный для просмотра документ 8 класс.Современные технологии обработки материалов НАНОТЕХНОЛОГИИ - копия.ppt


Описание презентации по отдельным слайдам:


РАЗДЕЛ: ТЕХНОЛОГИИ ПОЛУЧЕНИЯ, ОБРАБОТКИ, ПРЕОБРАЗОВАНИЯ И ИСПОЛЬЗОВАНИЯ МАТЕР.

Цели и задачи 1.Познакомиться с современными технологиями обработки материало.

Цели и задачи 1.Познакомиться с современными технологиями обработки материалов. 2.Знакомство с нанотехнологией в современном мире. 3.Выявить преимущества наноматериалов и недостатки.


Наномедицина Наноэлектроника Наноинжене́рия Наноионика Наноробототехника Нано.

Наномедицина Наноэлектроника Наноинжене́рия Наноионика Наноробототехника Нанохимия Науки , появившиеся благодаря нанотехнологиям


Что такое нанотехнологии? Наномедицина Биочипы Наноодежда Наноавтомобили Воен.

Что такое нанотехнологии? Наномедицина Биочипы Наноодежда Наноавтомобили Военные разработки



Применение нанотехнологических разработок Медицина Применение нанотехнологий.

Применение нанотехнологических разработок Медицина Применение нанотехнологий сделает медицину неузнаваемой. 1.Наночастицы будут использоваться для точной доставки лекарств и управления скоростью химических реакций. 2.В ближайшем будущем появятся медицинские устройства размером с почтовую марку. Нанороботы в кровеносных сосудах

Искусственный глаз вернёт слепым зрение Вакцина от ВИЧ – перспективное направ.

Наномашины В нанотехнологии используются специальные наномашины – ассемблеры.

Наномашины В нанотехнологии используются специальные наномашины – ассемблеры. Ассемблеры – это своеобразный сборщик атомов и молекул. Они должны захватывать их , соединять между собой и с базовой поверхностью, а также выполнять другие манипуляции с заданным алгоритмом. Ассемблер

Будущее за нанороботами. Робототехника В настоящее время существуют устройств.

Будущее за нанороботами. Робототехника В настоящее время существуют устройства – прототипы нанороботов. Их использование направлено на лечение различных заболеваний. Сами же нанороботы представляют собой машины, размер которых – с молекулу. Они могут передвигаться, обрабатывать, выполнять заданные программы, а также передавать информацию. Учёные научились доставлять нанолекарство точечно

Нанотехнологии в пищевой промышленности Термин наноеда никому не известен. Уч.

Нанотехнологии в пищевой промышленности Термин наноеда никому не известен. Учитывая то, что непрекращающийся рост населения Земли, наряду с ростом потребления, в последние годы становится одной из наиболее острых глобальных проблем.. На помощь приходят нанотехнологии – БАДы и витамины, заключённые в мицеллы диаметром в несколько десятков нанометров, усваиваются организмом гораздо лучше.

В косметических средствах Новое в медицине на стыке наук : биологии, химии и.

В косметических средствах Новое в медицине на стыке наук : биологии, химии и физики В косметических средствах - наносеребро

Искусство Перспективы развития науки и техники также определяют пути искусст.

Искусство Перспективы развития науки и техники также определяют пути искусства. В 2001 году японские учёные, используя передовые лазерные технологии, создали самую маленькую в мире скульптуру размерами 10 микрон в длину и 7 микрон в высоту. Она изображает разъярённого быка, разворачивающегося для атаки. Скульптура быка Нано-Библия

Электроника и компьютерные технологии С появлением новых средств наноманипули.

Электроника и компьютерные технологии С появлением новых средств наноманипулирования возможно создание нанороботов размером всего 1-2 микрон, оснащенных бортовыми механокомпьютерами и источниками энергии, которые будут полностью автономны и смогут выполнять разнообразные функции. Охранная наносистема Радиопиемники – от макро до нано

Компьютеры и микроэлектроника Центральные процессоры Жёсткие диски Сканирующи.

Компьютеры и микроэлектроника Центральные процессоры Жёсткие диски Сканирующий зондовый микроскоп Квантовый компьютер

Нанотехнологии в строительстве Город будущего Отель аэроплан Использование на.

Нанотехнологии в строительстве Город будущего Отель аэроплан Использование нанотехнологий в строительстве позволит добавлять к традиционным строительным материалам определенные свойства, достижение которых еще недавно считалось небывалым.

Материаловедение Нанотехнологии позволят создавать более легкие, тонкие и пр.

 В США разработали плащ - невидимку На пути к шапке -невидимке

В США разработали плащ - невидимку На пути к шапке -невидимке

Экология Нанотехнологии способны также стабилизировать экологическую обстанов.

Экология Нанотехнологии способны также стабилизировать экологическую обстановку. Новые виды промышленности не будут производить отходов, отравляющих планету, а нанороботы смогут уничтожить последствия старых загрязнений. Очистительная нанофабрика

Нанотехнологии на службе военных Военно-промышленный комплекс

Нанотехнологии на службе военных Военно-промышленный комплекс

Космический лифт – это трос длиной в несколько десятков тысяч километров, со.

Космический лифт – это трос длиной в несколько десятков тысяч километров, соединяющий орбитальную космическую станцию с платформой, размещенной посреди Тихого океана. Космический лифт Космонавтика Nаsа запустит лифт в открытый космос Робот-амеба для освоения планет


Нанотехнологии в животноводстве В молочном скотоводстве появятся нанотехнологии

Нанотехнологии в животноводстве В молочном скотоводстве появятся нанотехнологии

Опасны ли нанотехнологии?

Опасны ли нанотехнологии?

Опасности, связанные с нанотехнологиями Биологическая угроза Нанотехнологии м.

Опасности, связанные с нанотехнологиями Биологическая угроза Нанотехнологии могут представлять угрозу здоровью человека. Крошечные частички углерода могут попасть в мозг человека через дыхательные пути и оказать на организм разрушительное воздействие. Речь идёт о C60 — одной из трёх основных форм чистого углерода. Фуллерен ( С60)

Польза нанотехнологий Нанотехнологии помогут создать новое поколение лекарств.

Польза нанотехнологий Нанотехнологии помогут создать новое поколение лекарств. Благодаря им появятся новые методы лечения. Многие неизлечимые болезни будут побеждены. На основе нанотехнологий будут созданы новые образцы вооружений, новые системы защиты, что в итоге улучшит существенным образом обороноспособность страны. Благодаря развитию нанотехнологий произойдет революция в компьютерных технологиях. В настоящий момент наноматериалы являются наименее токсичными и наиболее биосовместимыми с живой клеткой (человека, растения, животного). Нанотехнологии позволят решить энергетические проблемы, их внедрение позволит более эффективно использовать традиционные и откроет путь к новым источникам энергии.

Вред нанотехнологий Нанотехнологии станут причиной новых болезней, от которых.

Вред нанотехнологий Нанотехнологии станут причиной новых болезней, от которых не спасут даже новые нанолекарства. Новое вооружение на основе нанотехнологий может попасть в руки террористов, что приведет к хаосу и войне. Разработка наносенсоров, нанодатчиков и прочих систем отображения и передачи информации в итоге поставит крест на неприкосновенности частной жизни. Развитие индустрии производства наноматериалов приведет к еще более серьезному загрязнению окружающей среды.

Вывод Общество, как изменяющаяся структура не должно стоять на месте. Человеч.

Вывод Общество, как изменяющаяся структура не должно стоять на месте. Человечество постоянно должно прогрессировать, развиваться, стремиться к лучшему. Нанотехнологии – это путь к успеху! Они необходимы для улучшения комфорта жизни человечества.

Заключение Нанотехнология – это молодая наука, результаты развития которой м.

Заключение Нанотехнология – это молодая наука, результаты развития которой могут до неузнаваемости изменить окружающий мир. Каковы будут эти изменения, полезными, несравненно облегчающими жизнь, или вредными, угрожающими человечеству, зависит от взаимопонимания и разумности людей.

Вопросы для самоконтроля 1.Что такое нанотехнологии? 2.Какие науки появились.

Творческое задание 1.С помощью дополнительной литературы или Интернета найдит.

Всеросийский интеллектуальный форум – олимпиада по нанотехнологиям Прорыв в б.

Всеросийский интеллектуальный форум – олимпиада по нанотехнологиям Прорыв в будущее! ?

Читайте также: