Реферат на тему грозовые разряды

Обновлено: 04.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Изучение грозо-разрядных явлений в облаках интенсивно проводится в течение длительного времени, что обусловлено научным и прикладным значением проблемы. К настоящему времени накоплен большой объем данных об электрических явлениях в облаках, в частности, о процессах, обуславливающих начало, интенсивность и продолжительность гроз [1, 4, 6]. Однако удовлетворительного соответствия между экспериментальными и теоретическими результатами не достигнуто, особенно для процессов разделения электрических зарядов и разрядных явлений. Это, по-видимому, обусловлено отсутствием надежных экспериментальных данных комплексных исследований разрядных явлений в облаках.

В наибольшей степени современным требованиям в исследовании грозового электричества облаков удовлетворяют данные, получаемые методами активной и пассивной радиолокации грозовых очагов в СВ- и УКВ-диапазонах радиоволн в сочетании с обычными наблюдениями за облаками с помощью метеорадиолокаторов (МРЛ). Приоритет в разработке этих методов принадлежит отечественным исследователям [5, 6, 9]. Созданный в Высокогорном геофизическом институте комплекс активно-пассивной радиолокации грозовых и грозоопасных очагов [2,3], включает в себя метеорологический радиолокатор МРЛ-2П, штатные радиолокационные станции (РЛС) П-12, П-15, приемные устройства в спектре частот от десятка килогерц до сотен мегагерц, грозопеленгатор-дальномер АГПД-2, электростатический флюксиметр, электрическая и магнитная антенны со своими усилительными устройствами, устройства селекции и измерения параметров (УСИП) эхо сигналов.

Указанный комплекс позволяет вести непрерывные наблюдения за грозой в радиусе до 200 км, подробно прослеживать структуру грозовых очагов, их трансформацию, определять интенсивность грозового процесса в целом по всему очагу и в отдельных его частях.

Комплекс позволяет производить синхронные измерения следующих параметров:

- временной ход радиолокационной отражаемости метеообразований на длине волны 3.2 см;

- скорость изменения и временной ход верхней границы зоны отражения, высот областей максимальной и повышенной радиолокационных отражаемостей;

- характер, направление и скорость перемещения облака;

- время прихода каждого импульса радиоизлучения от исследуемого облака;

- длительность (продолжительность) различных стадий грозовой деятельности облака;

- время возникновения первого молниевого разряда в облаке;

- частоту появления разрядных явлений различных масштабов в облаке;

- число импульсов и пакетов импульсов радиоизлучения на различных частотах;

- амплитудно-частотные характеристики радиоизлучения облака;

- изменение длительности существования отраженных радиолокационных сигналов от ионизированных каналов (молний) в облаке;

- напряженности электрического поля, обусловленного грозовыми разрядами.

Выполняемые нами исследования показали, что на определенной стадии развития конвективного облака, когда его верхняя граница достигает уровня естественной кристаллизации капель воды, в нем спонтанно возникает предгрозовое электромагнитное радиоизлучение (ЭМИ). По нашему мнению, ЭМИ на этой стадии возникает в результате развития лавинных и лавинно-стримерных процессов между зонами электрических неоднородностей. Исследования момента перехода из предгрозовой стадии в стадию грозовой активности в зависимости от его термодинамики показывают, что наиболее информативным параметром является отношение переохлажденной части облака к его теплой части:

где Н b - высота верхней границы облака, Н о - высота нулевой изотермы, Н k - высота уровня конденсации.

Так, например, если это отношение меньше 1.2, и максимальная отражаемость () облака на длине волны 3.2 см не превышает 4 10 -8 см -1 , то с вероятностью 80 % в конвективном облаке отсутствуют электрические разряды, способные создать концентрацию свободных электронов и ионов с эффективной отражающей поверхностью, достаточной для получения отраженного сигнала на входе приемника РЛС дециметрового диапазона, чувствительность которого 2.8 10 -14 Вт при максимуме отражаемости на длине волны 3.2 см 4 10 -8 см -1 и более.

В 85 % случаев переход конвективного облака из предгрозовой стадии в стадию грозовой активности происходит если отношение толщины переохлажденной части к толщине теплой части составляет 1.2 . 1.5. При К > 1.5 и 4 10 -8 см -1 в облаках, как правило происходят интенсивные молниевые разряды.

В начальной стадии развития грозовых явлений, когда размеры и плотность объемных зарядов в неоднородной электрической структуре облака очень малы, внутриоблачные разряды между ними носят мелкомасштабный характер. Длительность пакета импульсов радиоизлучения в этой стадии составляет 10-15 мс с характерной частотой следования 3-4 импульса в минуту. По мере развития конвективного облака происходит постепенный рост плотности объемных зарядов и усиление грозовой активности. В частности, увеличивается интенсивность и длительность радиоизлучения, происходит постепенный переход конвективного облака в грозовое состояние. Исследованиями 1984-1995 гг. установлено, что продолжительность предгрозового состояния по времени может достигать 16 мин., со средним значением 8 минут. В 75 % случаев продолжительность предгрозового состояния облака находится в интервале от 3 до 10 минут. Если за 14-16 минут облако не перешло в грозовое состояние, то оно, как правило, распадается.

По мере дальнейшего развития конвективного облака при достижении верхней границы радиоэха температурного уровня -18 . - 35 о С и радиолокационной отражаемости на длине волны 3.2 см значения 6 10 -8 см -1 происходит переход облака из предгрозового состояния в состояние грозовой активности, т.е. появляются молниевые разряды, фиксируемые с помощью радиолокационных станций и в ряде случаев визуально.

На рис. 1 представлены результаты синхронных исследований радиолокационных и электрических параметров конвективных облаков в процессе их развития, построенные по измерениям более 200 развивающихся конвективных облаков.

Как правило, продолжительность грозовой активности конвективных облаков различна как в течение одного дня, так и в разные дни. Поэтому, чтобы сравнить характер изменения радиолокационных и электрических параметров в одинаковые периоды развития облака, по оси абсцисс отложено время изменения характеристик грозовой деятельности облака в относительных единицах. Как показывают данные, приведенные на рис.1, с развитием облака, в частности с изменением высоты верхней границы радиоэха Н b и отражаемости 3.2. происходит рост его грозовой активности: числа импульсов ЭМИ N u и числа грозовых разрядов N p в единицу времени. При этом радиолокационные параметры растут быстрее и достигают своего максимума за 15-20 мин. до момента времени, когда грозовая активность достигает наибольшей величины. Следовательно, грозо-разрядная деятельность является следствием развития облака, в частности, увеличения среднего размера частиц, водности и ледности облака.

Рис. 1 Изменение грозовой активности конвективных облаков с их развитием.

В период диссипации облака, вследствие выпадения осадков и появления нисходящих потоков как правило образуется несколько конвективных ячеек. В этот период наряду с разрядами в этих ячейках появляются молниевые разряды между ними. В результате этого и поддерживается достаточная грозовая активность конвективного облака.

В дальнейшем, с продолжением выпадения осадков, ячейки постепенно распадаются и происходит постепенное уменьшение их грозовой активности.

При благоприятных метеорологических условиях нисходящие потоки в приземном слое создают холодный мезофронт, который выталкивает вверх более теплый воздух. Это способствует образованию и росту новой конвективной ячейки по мере разрушения ?старых¦ грозовых ячеек. Развитие новой ячейки и достижение высоты верхней границы растущей ячейкой уровня естественной кристаллизации капель воды приводит к появлению предгрозового радиоизлучения. Продолжительность предгрозового радиоизлучения у новой развивающейся ячейки значительно короче, чем у первоначального конвективного облака и длится примерно 3-5 мин. С ростом ?новой¦ ячейки происходит постепенное увеличение интенсивности и длительности радиоизлучения и происходит переход ?новой¦ конвективной ячейки в активное грозовое состояние, появляются молниевые разряды. С началом выпадения осадков в этой ячейке зарождаются новые конвективные ячейки, т.е. происходит повторное развитие грозового процесса как в первоначальной ячейке. Таким образом, грозовая активность конвективных облаков носит циклический характер. Количество циклов в данном облаке, продолжительность отдельного цикла и длительность предгрозового состояния зависят от метеоусловий и орографии района развития конвективного облака. Анализы экспериментальных данных показывают, что число отдельных циклов грозовой деятельности ячейки составляет 2. 5. Продолжительность грозовой активности отдельных циклов различная, от нескольких минут до часа, при среднем значении 25 мин.

Нами также проводились исследования изменения параметров отдельных молниевых разрядов с развитием конвективного облака. Эти исследования показывают, что в процессе роста облака происходит изменение амплитуды сигнала, отраженного от ионизированного канала молниевого разряда и времени его существования, а также времени, в течение которого ионизированный канал после молниевого разряда является идеальной отражающей поверхностью для электромагнитной волны РЛС дециметрового диапазона длин волн. Последнее характеризует мощность молниевого разряда и количество обратных ударов в нем [5].

Рис. 2. Изменения характеристик молниевого разряда с развитием конвективных облаков. На рис.2 приведены результаты исследования характера изменения параметров молниевых разрядов. Как показывают данные, приведенные на этом рисунке, по мере развития облака, с ростом верхней границы радиоэха, радиолокационной отражаемости и грозовой активности происходит рост среднего времени существования отраженного сигнала от ионизированного канала молниевого разряда.

В начале грозового процесса длительности существования отраженных сигналов от ионизированного канала молниевого разряда составляют 0.1 . 0.3 сек. В процессе развития облака происходит рост его грозовой активности и в зрелой стадии появляются грозовые разряды с большей амплитудой и длительностью существования отраженного сигнала (0.4 . 0.6 сек.), чем в начале развития. В это время от отдельных разрядов появляются отраженные сигналы со временем существования до 0.8 сек.

С развитием облака происходит увеличение не только среднего времени существования отраженного сигнала от ионизированного канала молниевого разряда, но и интенсивности разрядов. Число грозовых разрядов в единицу времени, достигнув максимума в середине развития грозового процесса, постепенно уменьшается. А среднее время существования отраженного сигнала от канала молниевого разряда постепенно увеличивается и достигает своего максимума в стадии диссипации облака. Время существования отраженного сигнала от ионизированного канала после молниевого разряда является функцией мощности или числа разрядов, проходящих по одному и тому же каналу. В том и другом случаях увеличивается количество электричества, нейтрализуемого при молниевом разряде, т.е. увеличиваются масштабы разрядных промежутков по мере развития электрических явлений в конвективном облаке. Поэтому конвективные облака в стадии диссипации более опасны для летательных аппаратов, чем в зрелой стадии, хотя вход в них летательных аппаратов более вероятен из-за малой величины радиолокационной отражаемости этих грозовых ячеек.

Высокая чувствительность приемного тракта и относительно узкая диаграмма направленности антенны, используемой РЛС дециметрового диапазона в пассивном режиме, позволяет исследовать характер изменения параметров импульсов ЭМИ в промежутке между молниевыми разрядами.

Радиоизлучение облака между молниевыми разрядами по длительности сигналов можно разделить на 2 группы:

а) излучение с длительностью импульсов 20-150 мкс;

б) излучение с длительностью импульсов свыше 150 мкс.

Первый тип излучения является характерным для внутриоблачных разрядов. Этот тип излучения наблюдается с момента возникновения грозового очага до его диссипации. Второй тип излучения, по нашему мнению, связан с разрядами между облаками и разрядами типа облако-земля.

На рис. 3 приведены вероятности появления разрядов с данной длительностью радиоизлучения облака в промежутках между молниевыми разрядами. Точками на графике отмечено среднее время появления импульсов радиоизлучения заданной длительности относительно времени между молниевыми разрядами. График построен на основе анализа более 2000 межразрядных импульсов радиоизлучения.

Как показывают данные, приведенные на рис. 3, длительность импульсов радиоизлучения увеличивается с приближением следующего молниевого разряда. Характерной во всех промежутках между молниевыми разрядами является пауза в несколько млс. перед разрядом, когда из облака практически не регистрируются импульсы радиоизлучения.

В зависимости от стадии развития грозового процесса в конвективном облаке число межразрядных импульсов излучения меняется от 4 до 100 импульсов и их длительности лежат в интервале от 10 до 130 мкс. Максимум числа межразрядных импульсов излучения приходится на начальный период зрелой стадии грозового очага.

Рис. 3 Вероятность (Р) появления межразрядных импульсов радиоизлучения заданной длительности в промежутках между молниевыми разрядами

В ряде случаев регистрируются импульсы излучения с длительностью до десятков млс. Появляются они редко и только в промежутках между мощными грозовыми разрядами, длительность существования отраженного сигнала от ионизированного канала которых более 0.4 с.

Выполненные нами исследования показали, что эти типы радиоизлучения существенно отличаются от рассмотренных как по мощности, так и по длительности и появляются они только после мощных молниевых разрядов. По всей вероятности, при мощных молниевых разрядах образуются локальные небольшие долгоживущие плазменные образования. Процесс распада этих образований длится от доли до десятка млс. и сопровождается радиоизлучением. Исследования параметров этих типов радиоизлучения помогут глубже понять природу шаровой молнии.

Приведенные комплексные исследования радиолокационных и электрических параметров развивающегося конвективного облака показывают, что с развитием облака происходит постепенное увеличение масштабов грозовых явлений в нем, возможны разномасштабные электрические разряды, обусловленные разномасштабностью электрических неоднородностей в облаке. Параметры ЭМИ могут служить диагнозом грозового состояния конвективного облака, а их изменения могут быть критерием оценки физической эффективности результатов воздействия на электрическое состояние конвективного облака и на процессы градообразования.

Таким образом, характерной особенностью развития грозы в конвективных облаках является постепенное увеличение линейного размера электрических разрядов. Об этом свидетельствует увеличение пакетов импульсов радиоизлучения молниевых разрядов, частоты их появления в облаке и времени существования сигналов отраженных от каналов молний. В результате изменения микроструктуры облака и турбулентных пульсаций возникают электрические разряды разного линейного размера, ответственные за радиоизлучение с соответствующей длительностью пакетов импульсов. Разрядные промежутки постепенно увеличиваются по мере приближения следующего разряда.


х озяйств енную де ятельно сть человек а, причем, как правило, нег ативн о е.

Поражение лю дей, х озяйственных об ъект ов и летательных а ппарат ов

мо лниями, помехи рад и о связи, перебои в э лектро снабж ении - во т далек о не

полный пер ечень нега тивных факт оров, связанных с грозовыми разрядами.

Обеспечение э ффективной грозозащиты, в т ом числе путем ак тивных

воз действий на облак а и о садки, воз можно т ольк о при знании физиче ских

К насто ящему времени ок онча тельная физическая кар тина формиров ани я

мо лниевых разрядов в к онвективных об лаках до сих пор еще не сост авлена.

Исследов ание гроз связано, прежде всег о, с обе спе чением безопасности

жизнедеятельности человека. С развитием челове че ск ой цивилизации и

техническ ой оснащенн о сти жизни человек а, явления приро ды не сут угроз у и

для человек а и для его иск усственной среды. В т ом числе, эт о отно сится и к

Изучить природу грозовых явлений, правила поведения при грозе и оказание

В данной работе использовались материалы и данные МЧС России, такие как

учебники и методические пособия и энциклопедии, а так же переработанные

Изло жим о сновные представления, с уще ств ующие на сег од няшний день.

Стихийным бедствием называется природное явление значительного

масштаба, в результате которого может возникнуть или возникла угроза

жизни или здоровью людей, произойти разрушение или уничтожение

материальных ценностей и компонентов окружающей природной среды.

Чрезвычайная ситуация (ЧС) — обстановка на определенной территории,

сложившаяся в результате аварии, опасного природного явления,

катастрофы, стихийного или иного бедствия, которые могут повлечь или

повлекли за собой человеческие жертвы, ущерб здоровью людей или

окружающей природной среде, значительные ма териальные потери и

Гроза - это атмосферное явление, связанное с развитием мощных кучево-

дождевых облаков, сопровождающееся многократными электрическими

разрядами (молниями) между облаками, облаками и земной поверхностью,

шквалистым ветром, звуковыми явлениями (громом), ливневыми дождями,

Молния - это высоко-энергетический электрический разряд, возникающий

вследствие установления разности электрических потенциалов (иногда до

нескольких миллионов вольт) между поверхностями облачного покрова и

Молниезащита – комплекс мер, направленных на предупреждение ударов


Одновременно на Земле действует около полутора тысяч гроз, средняя

интенсивность разрядов оценивается как 46 молний в секунду. По

поверхности планеты грозы распределяются неравномерно. Над океаном гроз

наблюдается приблизительно в десять раз м еньше, чем над континентами. В

тропической и субтропической зоне (от 30° северной широты до 30° южной

широты) сосредоточено около 78 H% всех молниевых разрядов. Максимум

грозовой активности приходится на Центральную Африку. В полярных

районах Арктики и Антарктики и над полюсами гроз практически не бывает.

Интенсивность гроз следует за солнцем: максимум гроз приходится на лето и

приходится на время перед восходом солнца. На грозы влияют также

географические особенности местности: сильные грозовые центры находятся

Одним из проявлений грозы является шаровая молния. Общепринятого

научного обоснования природы шаровой молнии пока нет. Шаровая молния

может появиться неожиданно в любом месте. Многократными

наблюдениями установлена связь ша ровой молнии с линейными молниями.

Шаровая молния может достигать размера футбольного мяча. Наряду с

шаровидной, встречаются яйцеобразные и грушевидные формы. Она

движется в пространстве медленно, с остановками, иногда взрывается,


шаровая мо лния примерно одну минуту. Во время движения шаровой

молнии слышится лег кий свист или шипение, порой она движется беззвучно.

Цвет шаровой молнии может быть различным: красным, белым, синим,

черным, перламутровым. Иногда шаровая молния вращается и искрит.

Благодаря своей пластичности шаровая м олния может проникнуть в

помещение, в палатку, пещеру, в салон автомобиля. Траектория ее дви жения

и варианты поведения непредсказуемы. При появлении шаровой молнии

нельзя резко двигаться, пытаться поймать огненный шар или вытолкнуть его.

Даже при соприкосновении шаровой Молнии с телом человека следует

сохранять спокойств ие и помнить, что она может исчезнуть так же

неожиданно, как и появилась. Иногда ша ровая молния взрывается, что может

привести к получению травмы. В этой ситуации пострадавшему необходимо

оказать такую же помощь, как и в случае поражения ли нейной молнией или

Р аспре де л ение гроз овых разрядов по повер хности Зе мли.


Необ х о димыми условиями для в озникновения грозовог о об лака яв л яется

наличие условий для развития к онв екции или иного ме ханиз ма, создающег о

восх о дящие пот оки, запаса влаги, дост а то чного д ля образов ания о с адк ов, и

наличия ст рук туры, в к от орой часть обла чных частиц нах о дится в жидк о м

со сто янии, а часть — в ледяно м. К онв екция, приво дящая к развитию гроз,

— при неравно мерном нагрев ании приземного сло я воз духа над различной

по дстилающей поверхностью. Например, над во дной поверхностью и сушей

из-за различий в темпера туре во ды и по чвы. Над крупны ми горо дами

интенсивно сть к о нвекции зна чительно выше, чем в окре стно стях г оро да.

— при по дъеме или выте снении теплог о воздух а х оло дным на а тмо сферных

фронтах. А тмос ферная к онвекция на а тмос ферных фронт ах зна чительно

интенсивнее и чаще, чем при внутримассовой к онв екции. Часто фронтальная

к онвекция развивается о дновременно со слоисто-до ждевыми облак ами и

об ла чными о садками, что маскир ует образ ующие ся кучево-до ждевые об лака.

— при по дъеме воз духа в районах г орных массивов. Даж е небольшие

возвышенности на ме стности приво дят к усилению образования об лак ов (за

с чет вынужденной к онвекции). Высокие горы соз дают особенно сло жные

условия для развития к онвекции и, по чти все г да, увеличиваю т ее


Все грозовые об лака, независимо от их типа, по следов ат ельно прох одят

стадии кучевог о об лака, стадию зрелого г розовог о об лака и стадию распада.

Одно время г ро зы классифицировались в соо тветствии с тем, г де они

наб лю дались,H— например, лок альные, фронт альные или орографиче ские. В

насто ящее время более принят о классифицирова ть грозы в соотв ет ствии с

харак теристиками самих гроз и эти харак теристики в о сновном зависят от

метеорологическ ог о окру жения, в к оторо м развивается гроза.

Основным необ х о димым условием для образ о вания гроз овых облак ов

явля ет ся со стояние не уст ойчиво сти ат мо с феры, формир ующее во сх о дящие

пот оки. В зависимо сти от величины и мощности т аких пот ок ов фор мируются

Одно ячейк овые куч ево-дождевые (Cumulonimbus, Cb) об лака раз ви ваю тся в

дни со слабым ветром в малоградиентно м бариче ск о м поле. Их назыв ают еще

внутримассовыми или локальными грозами. Они состоят из к онвек тивной

ячейки с восх о дящим пот ок о м в центра льной своей части. Они могут

до стига ть грозовой и градовой интенсивности и быст ро разруша ться с

выпадением о садк ов. Размеры так ого об лак а: попере чный 5-20 Hкм,

до 1 часа. С ерье зных изменений пог о ды после гро зы не происх од ит .

Г роза на чинается с возникновения к учевог о облак а х орошей пог о ды (Cumulus

humulus). При б лаг оприятных условиях возникшие кучевые об лака быстро

растут к ак в вертик альном, так и в г оризонтальном направ лении, при это м

восх о дящие пот оки нах о дятся почти по в с ему объему об лак а и

увеличив аются от 5 м/с до 15-20 м/с. Нисх одящие по токи о чень слабы.

Окру жающий воз дух активно проникает в нут рь об лака за с чет смешения на

границе и вершине об лака. Об лак о перех о дит в стадию Cumulus mediocris.

Образ ующие ся в ре з у ль та те к онденсации мель чайшие во дяные к апли в так о м

об лак е сливаются в более кр упные, к о торые унос ятся мощными

восх о дящими пот оками вв ерх. Облак о еще о днород но е, со стоит из ка пель

во ды, у держив а емых восх о дящим пот ок о м, о с адкиH— не выпадают . В верхней

части об лака при попадании частиц во ды в зону о трицательных темпера тур

ка пли по степенно на чинают превраща ться в кристаллы льда. Облак о

перех одит в стадию мощно-к учевог о облак а (Cumulus congestus). Смешанный

со став об лака прив о дит к укрупнению об ла чных эле ментов и создани ю

условий для выпадения о садк ов. Т ак ое об лак о назыв ают куч е во-до ждевым

(Cumulonimbus) или куч ево-дождевым лысым (Cumulonimbus calvus).

Вертик альные потоки в нем до сти гают 25 м/с, а уровень в ершины до стигает

Испаряющие ся частицы о с адк ов о хлаждают окр ужающий воз дух, что

приво дит к дальнейшему усилению нисх од ящих пот ок ов. На ст адии зрело сти

в об лак е однов ременно присутст в уют и в о сх о дящие и нис х о дящие воздушные

Основные сведения о разрядах молнии и их параметрах. Характеристики грозовой деятельности. Опасные воздействия молнии. Классификация защищаемых от молнии объектов. Средства и способы молниезащиты (внешние и внутренние). Характеристика грозозащитных зон.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид курсовая работа
Язык русский
Дата добавления 26.07.2015
Размер файла 1,5 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное агентство по образованию

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Нижегородский государственный технический университет

по дисциплине "Безопасность жизнедеятельности"

на тему: "Молниезащита зданий и сооружений"

Н. Новгород 2010 год

Содержание

Введение

Молниезащита - это комплекс технических решений и специальных приспособлений для обеспечения безопасности здания, а также имущества и людей находящихся в нем. На земном шаре ежегодно происходит до 16-и миллионов гроз, то есть около 44 тысяч за день. Прямой удар молнии очень опасен для здоровья людей, нередки случаи смертельного исхода. Для зданий и сооружений угрозами вследствие непосредственного контакта канала молнии с поражаемыми объектами являются возможность возгорания либо разрушения, а также повреждение чувствительного оборудования вследствие сопутствующего молнии импульсного электромагнитного поля.

Последствия, в тех случаях, когда в здании нет надежной системы молниезащиты - унесенные жизни, разрушенные здания, пожары, выход из строя электропроводки, оборудования и приборов. Однако многие, зная это, не торопятся устанавливать системы молниезащиты.

1. Краткие сведения о разрядах молнии и их параметрах

Молния представляет собой электрический разряд длиной в несколько километров, развивающийся между грозовым облаком и землей или каким-либо наземным сооружением.

Разряд молнии начинается с развития лидера - слабо светящегося канала с током в несколько сотен ампер. По направлению движения лидера - от облака вниз или от наземного сооружения вверх - молнии разделяются на нисходящие и восходящие. Данные о нисходящих молниях накапливались продолжительное время в нескольких регионах земного шара. Сведения о восходящих молниях появились лишь в последние десятилетия, когда начались систематические наблюдения за грозопоражаемостью очень высоких сооружений, например Останкинской телевизионной башни.

Лидер нисходящей молнии возникает под действием процессов в грозовом облаке, и его появление не зависит от наличия на поверхности земли каких-либо сооружений. По мере продвижения лидера к земле с наземных объектов могут возбуждаться направленные к облаку встречные лидеры. Соприкосновение одного из них с нисходящим лидером (или касание последнего поверхности земли) определяет место удара молнии в землю или какой-либо объект.

Восходящие лидеры возбуждаются с высоких заземленных сооружений, у вершин которых электрическое поле во время грозы резко усиливается. Сам факт появления и устойчивого развития восходящего лидера определяет место поражения. На равнинной местности восходящие молнии поражают объекты высотой более 150 м, а в горных районах возбуждаются с остроконечных элементов рельефа и сооружении меньшей высоты и потому наблюдаются чаще.

Рассмотрим сначала процесс развития и параметры нисходящей молнии.

После установления сквозного лидерного канала следует главная стадия разряда - быстрая нейтрализация зарядов лидера, сопровождающаяся ярким свечением и нарастанием тока до пиковых значений, варьирующихся от единиц до сотен килоампер. При этом происходит интенсивный разогрев канала (до десятков тысяч кельвин) и его ударное расширение, воспринимаемое на слух как раскат грома. Ток главной стадии состоит из одного или нескольких последовательных импульсов, наложенных на непрерывную составляющую. Большинство импульсов тока имеет отрицательную полярность. Первый импульс при общей длительности в несколько сотен микросекунд имеет длину фронта от 3 до 20 мкс; пиковое значение тока (амплитуда) варьируется в широких пределах: в 50% случаев (средний ток) превышает 30, а в 1-2% случаев 100 кА. Примерно в 70% нисходящих отрицательных молний за первым импульсом наблюдаются последующие с меньшими амплитудами и длиной фронта: средние значения соответственно 12 кА и 0,6 мкс. При этом крутизна (скорость нарастания) тока на фронте последующих импульсов выше, чем для первого импульса.

Накопленные фактические данные о параметрах нисходящих молний не позволяют судить об их различиях в разных географических регионах. Поэтому для всей территории СССР их вероятностные характеристики приняты одинаковыми.

Восходящая молния развивается следующим образом. После того как восходящий лидер достиг грозового облака, начинается процесс разряда, сопровождающийся примерно в 80% случаев токами отрицательной полярности. Наблюдаются токи двух типов: первый - непрерывный безымпульсный до нескольких сотен ампер и длительностью в десятые доли секунды, переносящий заряд 2-20 Кл; второй характеризуется наложением на длительную безымпульсную составляющую коротких импульсов, амплитуда которых в среднем составляет 10-12 кА и лишь в 5 % случаев превышает 30 кА, а переносимый заряд достигает 40 Кл. Эти импульсы сходны с последующими импульсами главной стадии нисходящей отрицательной молнии.

В горной местности восходящие молнии характеризуются более длительными непрерывными токами и большими переносимыми зарядами, чем на равнине. В то же время вариации импульсных составляющих тока в горах и на равнине отличаются мало. На сегодняшний день не выявлена связь между токами восходящей молнии и высотой сооружений, с которых они возбуждаются. Поэтому параметры восходящих молний и их вариации оцениваются как одинаковые для любых географических регионов и высот объектов.

2. Характеристики грозовой деятельности

Об интенсивности грозовой деятельности в различных географических пунктах можно судить по данным разветвленной сети метеорологических станций о повторяемости и продолжительности гроз, регистрируемых в днях и часах за год по слышимому грому в начале и конце грозы. Однако более важной и информативной характеристикой для оценки возможного числа поражений объектов молнией является плотность ударов нисходящих молний на единицу земной поверхности.

Плотность ударов молнии в землю сильно колеблется по регионам земного шара и зависит от геологических, климатических и других факторов. При общей тенденции роста этого значения от полюсов к экватору оно, например, резко сокращается в пустынях и возрастает в регионах с интенсивными процессами испарения. Особенно велико влияние рельефа в горной местности, где грозовые фронты преимущественно распространяются по узким коридорам, поэтому в пределах небольшой площади возможны резкие колебания плотности разрядов в землю.

В целом по территории земного шара плотность ударов молнии варьируется практически от нуля в приполярных областях до 20-30 разрядов на 1 км земли за год во влажных тропических зонах. Для одного и того же региона возможны вариации от года к году, поэтому для достоверной оценки плотности разрядов в землю необходимо многолетнее усреднение.

В настоящее время ограниченное количество пунктов земного шара оборудовано счетчиками молний, и для небольших территорий возможны непосредственные оценки плотности разрядов в землю. В массовых масштабах (например, для всей территории РФ) регистрация числа ударов молнии в землю пока невыполнима из-за трудоемкости и недостатка надежной аппаратуры.

Однако для географических пунктов, в которых установлены счетчики молний и ведутся метеорологические наблюдения за грозами, обнаружена корреляционная связь между плотностью разрядов в землю и повторяемостью или продолжительностью гроз, хотя каждый из перечисленных параметров подвержен разбросу от года к году или от грозы к грозе. Эта корреляционная зависимость представлена в приложении 2.

3. Опасные воздействия молнии

первичные, вызванные прямым ударом молнии, и вторичные, индуцированные близкими ее разрядами или занесенные в объект протяженными металлическими коммуникациями. Опасность прямого удара и вторичных воздействий молнии для зданий и сооружений и находящихся в них людей или животных определяется, с одной стороны, параметрами разряда молнии, а с другой - технологическими и конструктивными характеристиками объекта (наличием вэрыво - или пожароопасных зон, огнестойкостью строительных конструкций, видом вводимых коммуникаций, их расположением внутри объекта и т.д.). Прямой удар молнии вызывает следующие воздействия на объект: электрические, связанные с поражением людей или животных электрическим током и появлением перенапряжении на пораженных элементах. Перенапряжение пропорционально амплитуде и крутизне тока молнии, индуктивности конструкций и сопротивлению заземлителей, по которым ток молнии отводится в землю. Даже при выполнении молниезащиты прямые удары молния с большими токами и крутизной могут привести к перенапряжениям в несколько мегавольт. При отсутствии молниезащиты пути растекания тока молнии неконтролируемы и ее удар может создать опасность поражения током, опасные напряжения шага и прикосновения, перекрытия на другие объекты; термические, связанные с резким выделением теплоты при прямом контакте канала молнии с содержимым объекта и при протекании через объект тока молнии. При протекании тока молнии по тонким проводникам создается опасность их расплавления и разрыва;

механические, обусловленные ударной волной, распространяющейся от канала молнии, и электродинамическими силами, действующими на проводники с токами молнии. Это воздействие может быть причиной, например, сплющивания тонких металлических трубок. Контакт с каналом молнии может вызвать резкое паро - или газообразование в некоторых материалах с последующим механическим разрушением, например, расщеплением древесины или образованием трещин в бетоне.

Вторичные проявления молнии связаны с действием на объект электромагнитного поля близких разрядов. Обычно это поле рассматривают в виде двух составляющих: первая обусловлена перемещением зарядов в лидере и канале молнии, вторая - изменением тока молнии во времени. Эти составляющие иногда называют электростатической и электромагнитной индукцией.

Еще одним видом опасного воздействия молнии является занос высокого потенциала по вводимым в объект коммуникациям (проводам воздушных линий электропередачи, кабелям, трубопроводам). Он представляет собой перенапряжение, возникающее на коммуникации при прямых и близких ударах молнии и распространяющееся в виде набегающей на объект волны. Опасность создается за счет возможных перекрытий с коммуникации на заземленные части объекта. Подземные коммуникации также представляют опасность, так как могут принять на себя часть растекающихся в земле токов молнии и занести их в объект.

4. Классификация защищаемых объектов

Тяжесть последствий удара молнии зависит прежде всего от взрыво - или пожароопасности здания или сооружения при термических воздействиях молнии, а также искрениях и перекрытиях, вызванных другими видами воздействий. Например, в производствах, постоянно связанных с открытым огнем, процессами горения, применением несгораемых материалов и конструкции, протекание тока молнии не представляет большой опасности. Напротив, наличие внутри объекта взрывоопасной среды создаст угрозу разрушений, человеческих жертв, больших материальных ущербов. При таком разнообразии технологических условий предъявлять одинаковые требования к молниезащите всех объектов означало бы или вкладывать в ее выполните чрезмерные запасы, или мириться с неизбежностью значительных ущербов, вызванных молнией. Поэтому здания и сооружения разделены на три категории, отличающиеся по тяжести возможных последствий поражения молнией.

К I категории отнесены производственные помещения, в которых в нормальных технологических режимах могут находиться и образовываться взрывоопасные концентрации газов, паров, пылей, волокон. Любое поражение молнией, вызывая взрыв, создает повышенную опасность разрушений и жертв не только для данного объекта, но и для близрасположенных.

Во II категорию попадают производственные здания и сооружения, в которых появление взрывоопасной концентрации происходит в результате нарушения нормального технологического режима, а также наружные установки, содержащие взрывоопасные жидкости и газы. Для этих объектов удар молнии создает опасность взрыва только при совпадении с технологической аварией или срабатыванием дыхательных или аварийных клапанов на наружных установках. Благодаря умеренной продолжительности гроз на территории РФ вероятность совпадения этих событий достаточно мала.

К III категории отнесены объекты, последствия поражения которых связаны с меньшим материальным ущербом, чем при взрывоопасной среде. Сюда входят здания и сооружения с пожароопасными помещениями или строительными конструкциями низкой огнестойкости, причем для них требования к молниезащите ужесточаются с увеличением вероятности поражения объекта (ожидаемого количества поражений молнией). Кроме того, к III категории отнесены объекты, поражение которых представляет опасность электрического воздействия на людей и животных: большие общественные здания, животноводческие строения, высокие сооружения типа труб, башен, монументов. Наконец, к III категории отнесены мелкие строения в сельской местности, где чаще всего используются сгораемые конструкции. Согласно статистическим данным на эти объекты приходится значительная доля пожаров, вызванных грозой. Из-за небольшой стоимости этих строений их молниезащита выполняется упрощенными способами, не требующими значительных материальных затрат.

5. Средства и способы молниезащиты

В 1753 году мир впервые узнал об электрической природе молнии и методах борьбы с ее разрушительной силой благодаря опытам Франклина и изобретению молниеотвода. Последующие идеи по усовершенствованию систем молниезащиты положили начало эре многочисленных разработок, результатом которых служит создание современных систем эффективной молниезащиты.

Рис.1. Одностержневой молниеотвод

Система молниезащиты типа "пространственной клетки" представляет собой проводящую сеть, которую устанавливают на крыше защищаемого строения. В ее конструкции применяются материалы, соответствующие стандарту устройства молниезащиты сооружений и коммуникаций СО 153-34.21.122-2003. Эти же параметры распространяются на все молниеотводы.

Рис. 2. Система молниезащиты "пространственная клетка"

Традиционная система молниезащиты (без ионизатора) состоит из:

· специального молниеотвода h=35 см, выполненного из меди или стали, закрепленного на стержне h=2м;

· удлиняющей мачты h=2м. Комбинация молниеотвода с мачтами позволяет достичь необходимой высоты: 2,35; 4,1; 5,85; 7,6 м;

Чрезвычайные ситуации (ЧС) — это обстоятельства, возникающие в результате аварий, катастроф, стихийных бедствий, диверсий или иных факторов, при которых наблюдаются резкие отклонения протекающих явлений и процессов от нормальных, что оказывает отрицательное воздействие на жизнеобеспечение, экономику, социальную сферу и природную среду .
Рассмотрим классификацию чрезвычайных ситуаций естественного (природного) происхождения.
Метеорологические опасные явления:
— аэрометеорологические: бури, ураганы (12—15 баллов), штормы (9—11 баллов), смерчи, шквалы, торнадо, циклоны;

Оглавление

Введение
География гроз
Стадии развития грозового облака
Классификация грозовых облаков
Физические характеристики грозовых облаков
Погодные явления под грозами
Электрическая структура грозового облака
Гроза, ее влияние на человека и народное хозяйство
Вывод
Список литературы

Файлы: 1 файл

Реферат по ОБЖ на тему Грозы.doc

Реферат по ОБЖ на тему:

ЧРЕЗВЫЧАЙНЫЕ СИТУАЦИИ ПРИРОДНОГО

г. Нижний Новгород

  1. Введение
  2. География гроз
  3. Стадии развития грозового облака
  4. Классификация грозовых облаков
  5. Физические характеристики грозовых облаков
  6. Погодные явления под грозами
  7. Электрическая структура грозового облака
  8. Гроза, ее влияние на человека и народное хозяйство
  9. Вывод
  10. Список литературы

Чрезвычайные ситуации (ЧС) — это обстоятельства, возникающие в результате аварий, катастроф, стихийных бедствий, диверсий или иных факторов, при которых наблюдаются резкие отклонения протекающих явлений и процессов от нормальных, что оказывает отрицательное воздействие на жизнеобеспечение, экономику, социальную сферу и природную среду .

Рассмотрим классификацию чрезвычайных ситуаций естественного (природного) происхождения.

Метеорологические опасные явления:

— аэрометеорологические: бури, ураганы (12—15 баллов), штормы (9—11 баллов), смерчи, шквалы, торнадо, циклоны;

— агрометеорологические: крупный град, ливень, снегопад, сильный туман, сильные морозы, необычайная жара, засуха;

— природные пожары: чрезвычайная пожарная опасность, лесные пожары, торфяные пожары, пожары хлебных массивов, подземные пожары горючих ископаемых.

Тектонические и теллурические опасные явления:

Топологические опасные явления:

— гидрологические: половодье, паводки, ветровые нагоны, подтопления;

— оползни, сели, обвалы, лавины, осыпи, цунами, провал земной поверхности.

Космические опасные явления:

— падение метеоритов, остатков комет;

— прочие космические катастрофы.

В нашей работе мы рассмотрим грозы и грозовые явления из вышеперечисленных ЧС природного характера.

Гроза́ — атмосферное явление, при котором внутри облаков или между облаком и земной поверхностью возникают электрические разряды — молнии, сопровождаемые громом. Как правило, гроза образуется в мощных кучево-дождевых облаках и связана с ливневым дождём, градом и шквальным усилением ветра.

Уже в древности люди пытались защититься от ударов молнии: древние иудеи окружили Иерусалимский храм высокими мачтами, обитыми медью (за 1000-летнюю историю он ни разу не был поврежден молнией, хотя располагался в одном из самых грозоопасных районов планеты).

Гроза является ярким примером огромной энергии, имеющей место в окружающей человека среде. Это пример статического атмосферного электричества, возникающего в результате процессов, протекающих в атмосфере. Люди часто бывают свидетелями появления шаровой молнии — светящегося шара диаметром 5. 30 см, путь движения которого непредсказуем и причиненный ущерб может быть огромным.

Грозовые разряды атмосферного электричества опасны для жизни людей, а попадая в здание, приводят к его разрушению. Грозы часто приводят к наиболее опасным явлениям — пожарам.

2. География гроз

Среднегодовое число дней с грозой в некоторых городах России:

Архангельск — 16, Мурманск — 5, Санкт-Петербург — 18, Москва — 27, Воронеж — 32, Ростов-на-Дону — 27, Астрахань — 15, Самара — 26, Казань — 23, Екатеринбург — 26, Сыктывкар — 21, Оренбург — 22, Омск — 26, Ханты-Мансийск — 17, Томск — 23, Иркутск — 15, Якутск — 14, Петропавловск-Камчатский — 0, Хабаровск — 20, Владивосток — 9.

3. Стадии развития грозового облака

Необходимыми условиями для возникновения грозового облака является наличие условий для развития конвекции или иного механизма, создающего восходящие потоки, запаса влаги, достаточного для образования осадков, и наличия структуры, в которой часть облачных частиц находится в жидком состоянии, а часть — в ледяном. Конвекция, приводящая к развитию гроз, возникает в следующих случаях:

  • при неравномерном нагревании приземного слоя воздуха над различной подстилающей поверхностью. Например, над водной поверхностью и сушей из-за различий в температуре воды и почвы. Над крупными городами интенсивность конвекции значительно выше, чем в окрестностях города.
  • при подъёме или вытеснении тёплого воздуха холодным на атмосферных фронтах. Атмосферная конвекция на атмосферных фронтах значительно интенсивнее и чаще, чем при внутримассовой конвекции. Часто фронтальная конвекция развивается одновременно со слоисто-дождевыми облаками и обложными осадками, что маскирует образующиеся кучево-дождевые облака.
  • при подъёме воздуха в районах горных массивов. Даже небольшие возвышенности на местности приводят к усилению образования облаков (за счёт вынужденной конвекции). Высокие горы создают особенно сложные условия для развития конвекции и почти всегда увеличивают ее повторяемость и интенсивность.

Они состоят из нагроможденных друг на друга облачных масс, основание которых имеет вид ровного слоя серо-свинцового, иногда весьма темного, почти черного цвета с желтым, синим и другими оттенками, причина которых, по всей вероятности, заключается в различной толщине облаков; остальная часть состоит из белых облачных куч с сероватыми серединами; края грозовых туч при солнечном освещении кажутся блестящими белыми, что составляет резкий контраст с темным основанием. У вершины грозовые облака нередко переходят в облака, напоминающие перистые. В большинстве случаев высота грозовых облаков невелика: в среднем выводе основание их находится на высоте 1400 м, вершина - на высоте 4000 м. Такою незначительною высотою грозовых облаков объясняется, между прочим, то обстоятельство, что настоящие перистые облака, средняя высота которых около 9000 м, наблюдаемые иногда над грозовыми, не принимают участия в том движении, которое происходит во время гроз в нижнем слое воздуха. Географическое распределение гроз весьма неравномерно. Оно зависит от распределения температуры и количества водяного пара, от осадков, а также местных условий, что и понятно, так как грозы являются следствием восходящих движений воздуха. Всего больше бывает гроз в дождливых тропических странах; так, в Бейтонцорге на острове Яве в году более 160 дней с грозами; в Гвиане и Венецуэле в дождливое время года гром гремит почти каждый день с утра до вечера. В умеренных широтах грозы реже; так, во Франции их средним числом бывает 16, в Италии 38, в Баварии 20 в год. За полярными кругами они чрезвычайно редки; часто проходят целые года без гроз. Наиболее северные грозы наблюдались во время особенно жаркого лета в Карском море и в западной части Шпицбергена в шир. 78°. Не бывает гроз в странах бездождия, напр. в обширных азиатских и африканских пустынях, в Лиме. В областях пассатов они бывают лишь в те времена года, когда господствуют ураганы, являясь непременными спутниками последних. Эти грозы замечательны необыкновенною силою электрических разрядов: молнии сверкают непрерывно, гром гремит со страшною силою, шаровые молнии по всем направлениям бороздят небо. В областях постоянных барометрических максимумов гроз не бывает. Все грозовые облака, независимо от их типа, последовательно проходят стадии кучевого облака, стадию зрелого грозового облака и стадию распада.

4. Классификация грозовых облаков

Одно время грозы классифицировались в соответствии с тем, где они наблюдались, — например, локальные, фронтальные или орографические. В настоящее время более принято классифицировать грозы в соответствии с характеристиками самих гроз и эти характеристики в основном зависят от метеорологического окружения, в котором развивается гроза.
Основным необходимым условием для образования грозовых облаков является состояние неустойчивости атмосферы, формирующее восходящие потоки. В зависимости от величины и мощности таких потоков формируются грозовые облака различных типов.

Многоячейковые кластерные грозы

Это наиболее распространённый тип гроз, связанный с мезомасштабными (имеющими масштаб от 10 до 1000 км) возмущениями. Многоячейковый кластер состоит из группы грозовых ячеек, двигающихся как единое целое, хотя каждая ячейка в кластере находится на разных стадиях развития грозового облака. Грозовые ячейки, находящиеся в стадии зрелости, обычно располагаются в центральной части кластера, а распадающиеся ячейки с подветренной стороны кластера. Они имеют поперечные размеры 20—40 км, их вершины нередко поднимаются до тропопаузы и проникают в стратосферу. Многоячейковые кластерные грозы могут давать град, ливневые дожди и относительно слабые шквальные порывы ветра. Каждая отдельная ячейка в многоячейковом кластере находится в зрелом состоянии около 20 минут; сам многоячейковый кластер может существовать в течение нескольких часов. Данный тип грозы обычно более интенсивен, чем одноячейковая гроза, но много слабее суперячейковой грозы.

Многоячейковые линейные грозы (линии шквалов)

Многоячейковые линейные грозы представляют собой линию гроз с продолжительным, хорошо развитым фронтом порывов ветра на передней линии фронта. Линия шквалов может быть сплошной или содержать бреши. Приближающаяся многоячейковая линия выглядит как тёмная стена облаков, обычно покрывающая горизонт с западной стороны (в северном полушарии). Большое число близко расположенных восходящих/нисходящих потоков воздуха позволяет квалифицировать данный комплекс гроз как многоячеечный, хотя его грозовая структура резко отличается от многоячейковой кластерной грозы. Линии шквалов могут давать крупный град и интенсивные ливни, но больше они известны как системы, создающие сильные нисходящие потоки. Линия шквалов близка по свойствам к холодному фронту, но является локальным результатом грозовой деятельности. Часто линия шквалов возникает впереди холодного фронта. На радарных снимках эта система напоминает изогнутый лук. Данное явление характерно для Северной Америки, на территории Европы и Европейской территории России наблюдается реже.

Суперячейка — наиболее высокоорганизованное грозовое облако. Суперячейковые облака относительно редки, но представляют наибольшую угрозу для здоровья и жизни человека и его имущества. Суперячейковое облако схоже с одноячейковым тем, что оба имеют одну зону восходящего потока. Различие состоит в том, что размер ячейки огромен: диаметр порядка 50 км, высота 10-15 км (нередко верхняя граница проникает в стратосферу) с единой полукруглой наковальней. Скорость восходящего потока в суперячейковом облаке значительно выше, чем в других типах грозовых облаков: до 40 — 60 м/с. Основной особенностью, отличающей суперячейковое облако от облаков других типов является наличие вращения. Вращающийся восходящий поток в суперячейковом облаке (в радарной терминологии называемым мезоциклоном) создаёт экстремальные по силе погодные явления, такие, как гигантский град (более 5 см в диаметре), шквальный ветер до 40 м/с и сильные разрушительные смерчи. Окружающие условия являются основным фактором в образовании суперячейкового облака. Необходима очень сильная конвективная неустойчивость воздуха. Температура воздуха у земли (до грозы) должна быть +27…+30 и выше, необходим ветер переменного направления, вызывающий вращение. Однако главным условием для образования суперячейки является сдвиг ветра в средней тропосфере. Осадки, образующиеся в восходящем потоке, переносятся по верхнему уровню облака сильным потоком в зону нисходящего потока. Таким образом, зоны восходящего и нисходящего потоков оказываются разделёнными в пространстве, что обеспечивает жизнь облака в течение длительного периода времени. Обычно на передней кромке суперячейкового облака наблюдается слабый дождь. Ливневые осадки выпадают вблизи зоны восходящего потока, а наиболее сильные осадки и крупный град выпадают к северо-востоку от зоны основного восходящего потока. Наиболее опасные условия наблюдаются неподалёку от зоны основного восходящего потока (обычно смещённые к задней части грозы).

Читайте также: