Реферат на тему гравитационное поле

Обновлено: 05.07.2024

Гравитационное поле Земли - силовое поле, обусловленное притяжением масс Земли и центробежной силой, которая возникает вследствие суточного вращения Земли; незначительно зависит также от притяжения Луны и Солнца и других небесных тел и масс земной атмосферы. Распределение силы тяжести на земной поверхности. Исследование аномалий.

Содержание

Введение
1. Сила тяжести и её составляющие
2. Измерение силы тяжести
3. Аномалии силы тяжести
4. Сила тяжести и фигура Земли
5. Поле силы тяжести и его значение для географической оболочки
Список литературы

Прикрепленные файлы: 1 файл

реферат.docx

  1. Сила тяжести и её составляющие
  2. Измерение силы тяжести
  3. Аномалии силы тяжести
  4. Сила тяжести и фигура Земли
  5. Поле силы тяжести и его значение для географической оболочки

Гравитационное поле Земли - силовое поле, обусловленное притяжением масс Земли и центробежной силой, которая возникает вследствие суточного вращения Земли; незначительно зависит также от притяжения Луны и Солнца и других небесных тел и масс земной атмосферы. Гравитационное поле Земли характеризуется силой тяжести, потенциалом силы тяжести и различными его производными. Потенциал имеет размерность м2•с-2, за единицу измерения первых производных потенциала (в т.ч. силы тяжести) в гравиметрии принят миллигал (мГал), равный 10-5 м•с-2, а для вторых производных — этвеш (Э, Е), равный 10-9•с-2.

Обычно гравитационное поле Земли представляют состоящим из 2 частей: нормальной и аномальной. Основная — нормальная часть поля соответствует схематизированной модели Земли в виде эллипсоида вращения (нормальная Земля). Она согласуется с реальной Землёй (совпадают центры масс, величины масс, угловые скорости и оси суточного вращения). Поверхность нормальной Земли считают уровненной, т.е. потенциал силы тяжести во всех её точках имеет одинаковое значение (см. геоид); сила тяжести направлена к ней по нормали и изменяется по простому закону.

На основании гравитационного поля Земли определяется геоид, характеризующий гравиметрическую фигуру Земли, относительно которой задаются высоты физической поверхности Земли. Гравитационное поле Земли в совокупности с другими геофизическими данными используется для изучения модели радиального распределения плотности Земли. По нему делаются выводы о гидростатическом равновесном состоянии Земли и о связанных с этим напряжениях в её недрах. По наблюдениям приливных вариаций силы тяжести изучают упругие свойства Земли.

Гравитационное поле Земли используется при расчёте орбит искусственных спутников Земли и траекторий движения ракет. По аномалиям гравитационного поля Земли изучают распределение плотностных неоднородностей в земной коре и верхней мантии, проводят тектоническое районирование, поиски месторождений полезных ископаемых (см. гравиметрическ ая разведка). Гравитационное поле Земли используется для вывода ряда фундаментальных постоянных геодезии, астрономии и геофизики.

Сила тяжести и её составляющие

Среди многих причин, обусловливающих строение Земли и ее поверхности, одно из главных мест принадлежит силе тяжести. Под влиянием силы тяжести опускаются и поднимаются громадные участки земной коры, разрушаются горы, текут реки, движутся ледники, образуются слои осадочных пород и т. д. Сила тяжести оказывает огромное влияние на развитие органической жизни и на деятельность человека.

Сила тяжести является равнодействующей силы притяжения Земли и центробежной силы, возникающей вследствие суточного вращения нашей планеты вокруг своей оси. Некоторое влияние на величину силы тяжести оказывает также притяжение Солнца, Луны и других небесных тел. Однако это влияние столь незначительно, что его можно совершенно не принимать в расчет.

Величина силы тяжести обычно измеряется ускорением свободно падающего тела или, как часто говорят, ускорением силы тяжести (g). Единицей измерения ускорения силы тяжести служит гал (1 гал = = 1 см/сек2). Среднее ускорение силы тяжести равно 981 галу2. Направление силы тяжести (направление вектора) определяет положение отвесной линии (вертикали) и астрономического зенита в данном пункте.

Распределение силы тяжести на земной поверхности. Если бы Земля имела форму правильного шара, состояла из совершенно одинаковых пород и не вращалась вокруг своей оси, то сила тяжести во всех точках земной поверхности была бы одинакова. Как мы уже говорили, сила тяжести является равнодействующей силы притяжения и центробежной силы вращения Земли. Понятно, что центробежная сила, уменьшающая силу тяжести, будет наибольшей на экваторе и совершенно отсутствовать на полюсах. Хотя величина центробежной силы очень невелика по сравнению с силой земного притяжения (даже на экваторе она составляет лишь 7288 часть силы тяжести), тем не менее вызывает уменьшение силы тяжести на экваторе по отношению к полюсам.

В то же время нам известно, что Земля представляет собой не правильный шар, а геоид, полярный радиус которого на 21,4 км меньше экваториального. Эта особенность формы Земли еще в большей степени, чем ее вращение, приводит к тому, что сила тяжести увеличивается по направлению от экватора к полюсам. В целом сила тяжести в основном зависит от формы и размеров земной поверхности и распределения плотностей внутри Земли. Как правило, сила тяжести возрастает при движении от экватора к полюсам и уменьшается с нарастанием абсолютной высоты местности. Однако эта общая закономерность часто нарушается в связи с особенностями строения того или иного участка Земли.

Измерение силы тяжести

Сила тяжести на поверхности Земли есть равнодействующая двух сил: силы притяжения, направленной к центру массы Земли, и центробежной силы, направленной перпендикулярно к оси вращения Земли. Так как Земля сплюснута вдоль оси вращения, то сила притяжения у полюсов больше, чем в других местах, и уменьшается к экватору.

Кроме того, центробежная сила действует против силы притяжения. Поэтому сила тяжести на поверхности Земли уменьшается при переходе от полюсов к экватору. Разница в ускорении силы тяжести между полюсами и экватором составляет g90 - g0 = 983,2 - 978,0 = 5,2 см/сек2. Около 2/3 этой разности возникает за счет центробежного ускорения на земном экваторе и около 1/3 - за счет сплюснутости Земли. Среднее значение ускорения силы земной тяжести принимается равным g = 981см/сек2.

Результаты измерений ускорения силы тяжести в различных точках земной поверхности показали отклонения (возмущения) силы тяжести по сравнению с ее нормальным ходом, соответствующим эллипсоиду. Эти отклонения называются аномалиями силы тяжести и объясняются тем, что строение земной коры неоднородно как в отношении видимых наружных масс (горных массивов и т.п.), так и в отношении плотностей горных пород, составляющих земную кору.

Ряд мелких неоднородностей в строении верхних слоев земной коры вызывают местные аномалии силы тяжести, охватывающие небольшие районы. Местные аномалии свидетельствуют о наличии залежей ископаемых, обладающих либо очень большой плотностью (например, руды металлов) либо очень маленькой плотностью (например, залежи нефти, каменной соли).

Аномалии силы тяжести

Как известно, Земля, а в особенности ее верхняя оболочка (земная кора), слагается разнообразными породами, имеющими различную плотность и удельный вес. Сила тяжести над участками, сложенными более плотными породами, будет несколько большей, а над участками менее плотных пород — несколько меньшей, чем она должна была бы быть, если бы Земля слагалась однородными породами. Всякая разница между измеренной силой тяжести, приведенной к уровню моря при помощи специальных расчетов, и теоретически вычисленным значением силы тяжести в той же точке Земли носит название аномалии силы тяжести. В том случае, когда измеренное значение силы тяжести превышает теоретическое, говорят о положительной аномалии, в обратном — отрицательной.

Исследование аномалий силы тяжести играет громадную роль в геологии и разведке полезных ископаемых. Изучение распределения аномалий позволяет получить представление о строении и равновесии глубоких слоев земной коры. Сравнение карты аномалий с геологической картой позволяет судить о характере пород, перекрытых более молодыми отложениями. Например, известно, что Уральский хребет сложен несколькими меридионально вытянутыми полосами пород. Каждая из этих полос характеризуется своей аномалией силы тяжести. Как показали специальные исследования, в пределах Западно-Сибирской низменности наблюдается сходное чередование положительных и отрицательных аномалий. Эти аномалии показывают, что здесь мы имеем продолжение горных систем Урала, скрытых под толщей более молодых осадков.

Изучение изменения силы тяжести на отдельных небольших участках позволяет обнаружить месторождение полезных ископаемых и изучить их условия залегания. Особенно широко применяется этот метод при исследовании нефтяных и некоторых рудных месторождений.

В последние годы было установлено, что аномалии силы тяжести отмечаются также в районах, форма поверхности которых отличается от формы теоретически вычисленного геоида. Это позволяет применить метод изучения силы тяжести для более точного определения фигуры Земли. Советским ученым М. С. Молоденским разработан практический метод использования аномалий силы тяжести для целей геодезии и картографии.

Сила тяжести и фигура Земли

Фигура Земли понятие или представление о форме Земли, как планете в целом, изменявшееся в ходе историческогоразвития знаний и определяемое по соглашению.

Ещё в древности было осознано, что Ф. З. имеет вид шара. Это явилось первым приближением впредставлении о Ф. З. Задача изучения, Ф. З. сводилась к определению радиуса земного шара (Эратосфе н,Бируни). И. Ньютон, исходя из открытого им закона всемирного тяготения, высказал предположение, что Ф. З. вследствие её вращения около оси и взаимного притяжения составляющих её масс должна быть слабосплюснута в направлении оси вращения и иметь вид сфероида, близкого к эллипсоиду вращения (см.Земной сфероид, Земной эллипсоид). Результаты градусных измерений (См. Градусные измерения) в 1йполовине 18 в. подтвердили обоснованность этого предположения, а также и закона всемирного тяготения. Предположение, что Ф. З. имеет вид эллипсоида вращения, явилось вторым приближением впредставлениях о ней. Задача изучения Ф. З. в этом приближении сводилась к определениюэкваториального радиуса и сжатия Земли (См. Сж атие земли).

Работа А. Клеро по теории фигур равновесия вращающейся жидкой массы развивала исследования И.Ньютона и заложила основы теории Ф. З. Развитие теории Ф. З. в 19 в. Дж. Стоксом и др. учёными привело квведению понятия Геои д, отождествление с которым Ф. З. явилось следующим приближением впредставлениях о ней. Ф. З. в этом понимании имеет довольно сложный вид и зависит от внутреннего строения Земли.

Созданная М. С. Молоденским ( См. Молоденский) теория определения Ф. З. в её современномпонимании как фигуры реально существующей физической поверхности Земли, образованной на морях иокеанах невозмущённой поверхностью воды, а на материках и островах – рельефом, свободна от каких быто ни было гипотез о внутреннем строении Земли. В качестве вспомогательной поверхности им введёнквазигеоид, строгое математическое определение которого позволило изучать Ф. З. без привлечения такихгипотез. Задача изучения Ф. З. состоит в определении истинных координат точек земной поверхности, атакже в изучении внешнего гравитационного поля (См. Грав итационное поле)Земли в системе координат,общей для всей Земли. Это составляет предмет и основную научную проблему геодезии, которая решаетсяна основании астрономо-геодезических и гравиметрических измерений и наблюдений за движениемискусственных спутников Земли. Практически фигуру геоида заменяют наиболее близкой к нейповерхностью земного эллипсоида. В СССР в геодезических и картографических работах принят Красовского эллипсоид.

Поле силы тяжести и его значение для географической оболочки

Сила тяжести — равнодействующая притяжения массы Земли и центробежной силы от вращения планеты. В экваториальных широтах она равна в среднем 978 галл, а в полярных возрастает до 983 галл, что связано как с фигурой Земли, так и с уменьшением с широтой центробежной силы.

О значении силы тяжести для географической оболочки выше говорилось в разных аспектах. Обобщим это, поскольку гравитационное поле Земли для ее природы имеет чрезвычайно важное значение.

Анализ понятий "гравитации" и "гравитационное поле", рассмотрение истории развития их научного объяснения. Примеры классических теорий гравитации. Напряженность гравитационного поля, формулы и единицы ее измерения. Потенциал гравитационного поля.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 28.12.2020
Размер файла 76,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Егорьевский технологический институт (филиал)

Федерального государственного бюджетного образовательного учреждения высшего образования

Работу выполнил: Некрасов С.М/

г. Егорьевск 2020

1. Проанализировать понятия Гравитации и Гравитационного поля.

2. Рассмотреть историю развития научного объяснения понятия Гравитация.

3. Привести примеры классических теорий гравитации.

4. Изучить понятие Напряженности гравитационного поля, формулы Напряженности гравитационного поля, единицы измерения.

5. Выяснить, что такое Потенциал гравитационного поля.

Гравитационное поле, или поле тяготения -- физическое поле, через которое осуществляется гравитационное взаимодействие.

В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием r, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния

Здесь -- гравитационная постоянная, равная примерно 6,6725Ч10?11 мі/(кг·сІ).

Для расчёта поля в более сложных случаях, когда тяготеющие массы нельзя считать материальными точками, можно воспользоваться тем фактом, что поле ньютоновского тяготения потенциально. Если обозначить плотность вещества с, то потенциал поля ц удовлетворяет уравнению Пуассона:

гравитационный поле напряженность

Закон всемирного тяготения -- одно из приложений закона обратных квадратов, встречающегося также и при изучении излучений, и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Гравитационное поле, так же как и поле силы тяжести, потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты -- планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Гравитация -- слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях, и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами в космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления -- орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. Аристотель считал, что объекты с разной массой падают с разной скоростью. Только много позже Галилео Галилей экспериментально определил, что это не так -- если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.

Классические теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая классическая теория гравитации -- общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой. Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты.

Гравитационное поле в общей теории относительности

В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени. Таким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии. Гравитационное поле (обобщение ньютоновского гравитационного потенциала), иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем -- метрикой четырёхмерного пространства-времени, а напряжённость гравитационного поля -- с аффинной связностью пространства-времени, определяемой метрикой.

Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих геометрические свойства пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырёхмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием её формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка.

Известно, что в ОТО имеются затруднения в связи с неинвариантностью энергии гравитационного поля, поскольку данная энергия не описывается тензором и может быть теоретически определена разными способами. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия (так как спин протяжённого объекта также не имеет однозначного определения).

Теория Эйнштейна -- Картана

Теория Эйнштейна -- Картана (ЭК) была разработана как расширение ОТО, внутренне включающее в себя описание воздействия на пространство-время кроме энергии-импульса также и спина объектов. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана -- Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса. Один из них аналогичен ОТО, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением. Второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения. Получаемые поправки к ОТО в условиях современной Вселенной настолько малы, что пока не видно даже гипотетических путей для их измерения.

Теория Бранса -- Дикке

В скалярно-тензорных теориях, самой известной из которых является теория Бранса -- Дикке (или Йордана -- Бранса -- Дикке), гравитационное поле как эффективная метрика пространства-времени определяется воздействием не только тензора энергии-импульса материи, как в ОТО, но и дополнительного гравитационного скалярного поля. Источником скалярного поля считается свёрнутый тензор энергии-импульса материи. Следовательно, скалярно-тензорные теории, как ОТО и РТГ, относятся к метрическим теориям, дающим объяснение гравитации, используя только геометрию пространства-времени и его метрические свойства. Наличие скалярного поля приводит к двум группам уравнений для компонент гравитационного поля: одна для метрики, вторая -- для скалярного поля.

Теория Бранса -- Дикке вследствие наличия скалярного поля может рассматриваться также как действующая в пятимерном многообразии, состоящем из пространства-времени и скалярного поля.

Подобное распадение уравнений на два класса имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского. Благодаря наличию безразмерного параметра в теории Йордана -- Бранса -- Дикке появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов. При этом при стремлении параметра к бесконечности предсказания теории становятся всё более близкими к ОТО, так что опровергнуть теорию Йордана -- Бранса -- Дикке невозможно никаким экспериментом, подтверждающим общую теорию относительности.

Каждое тело (например, Земля) создает вокруг себя силовое поле -- поле тяготения. Напряженность этого поля в любой его точке характеризует силу, которая действует на находящееся в этой точке другое тело.

Если: g -- напряженность гравитационного поля,

F -- гравитационная сила действующая на тело массой m,

m -- масса тела в гравитационном поле, то Напряженность поля g представляет собой векторную величину, направление которой определяется направлением гравитационной силы F, а численное значение -- формулой ускорения свободного падения.

Напряженность гравитационного поля совпадает по величине, направлению и единицам измерения с ускорением свободного падения, хотя по своему физическому смыслу, это совершенно разные физические величины. В то время, как напряженность поля характеризует состояние пространства в данной точке, сила и ускорение появляются только тогда, когда в данной точке находится пробное тело.

Напряженность гравитационного поля

Напряженность гравитационного поля (), силовая характеристика поля, равна силе, действующей со стороны поля на материальную точку единичной массы, и совпадает по направлению с действующей силой (это ничто иное как ускорение, с которым тело движется в поле тяготения):

Единица измерения напряженности гравитационного поля [g]=м/с2.

Линия напряженности гравитационного поля - линия, касательные, к каждой точке которой совпадает с вектором напряженности.

На всякое тело массой m, внесенное в поле, действует сила тяготения или сила тяжести, равная произведению массы тела на напряженность гравитационного поля в месте расположения тела:

Независимо от своей массы все тела под действием силы тяжести движутся с одинаковым ускорением ()

Потенциал гравитационного поля

Потенциал гравитационного поля (ц) - энергетическая характеристика поля, скалярная величина, определяемая потенциальной энергией тела единичной массы в данной точке поля:

Единица измерения [ц]=Дж/кг.

Потенциальная энергия тела в гравитационном поле равна:

Тогда работа гравитационного поля по перемещению тела из точки с потенциалом ц1 в точку с потенциалом ц2 равна:

Работа гравитационного поля по перемещению тела между двумя точками не зависит от траектории движения тела, а определяется только разностью потенциалов начальной и конечной точек, на замкнутом пути работа гравитационного поля равна нулю. То есть, сила всемирного тяготения и сила тяжести являются консервативными.

Эквипотенциальные поверхности - поверхности, образованные точками поля, потенциал которых одинаков. Работа гравитационного поля при движении тела вдоль эквипотенциальной поверхности равна нулю.

Можно дать второе определение потенциала поля тяготения - это работа по перемещению единичной массы из данной точки поля в бесконечность.

Каждое тело создает вокруг себя силовое поле -- поле тяготения. Напряженность этого поля в любой его точке характеризует силу, которая действует на находящееся в этой точке другое тело.

Напряженность поля представляет собой вектор величины, направление которой определяется направлением гравитационной силы F, а численное значение -- формулой ускорения свободного падения. Данное поле действует на любое тело определенной массы m, находящееся в поле, на которое действует сила тяготения или сила тяжести, которая равна произведению массы тела на напряженность гравитационного поля в месте расположения тела.

Потенциалом гравитационного поля (ц) является энергетическая характеристика поля, скалярная величина которого, определяется потенциальной энергией тела единичной массы в данной точке поля.

Список используемой литературы

1. Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900--1915). -- М.: Наука, 1981. -- 352c.

2. Визгин В. П. Единые теории в 1-й трети ХХ в. -- М.: Наука, 1985. -- 304c.

3. Иваненко Д. Д., Сарданашвили Г. А. Гравитация. 3-е изд. -- М.: УРСС, 2008. -- 200с.

Подобные документы

Гравитационное взаимодействие как первое взаимодействие, описанное математическлй теорией. Небесная механика и некоторые её задачи. Сильные гравитационные поля. Гравитационное излучение. Тонкие эффекты гравитации. Классические теории гравитации.

презентация [1,8 M], добавлен 05.09.2011

Гравитационное поле и его свойства. Направленность гравитационных сил, силовая характеристика гравитационного поля. Действие магнитного поля на движущийся заряд. Понятие силы Лоренца, определение ее модуля и направления. Расчет обобщенной силы Лоренца.

контрольная работа [1,7 M], добавлен 31.01.2013

Понятие гравитационного поля как особого вида материи и его основные свойства. Сущность теории вихревых полей. Определение радиуса действия гравитационного поля. Расчет размеров гравитационных полей планет, их сравнение с расстоянием между ними.

реферат [97,9 K], добавлен 12.03.2014

Магнитное поле — составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Магнитные свойства веществ. Условия создания и проявление магнитного поля. Закон Ампера и единицы измерения магнитного поля.

презентация [293,1 K], добавлен 16.11.2011

Четыре типа взаимодействий: гравитационное, электромагнитное, ядерное (сильное), слабое. Фундаментальные свойства зарядов. Закон Кулона. Напряженность поля. Теорема Гаусса. Дифференциальная формулировка закона Кулона. Объемная плотность заряда шара.

реферат [87,3 K], добавлен 21.10.2013

Гравитоны - это кванты гравитационного поля. М.П. Бронштейн - украинский физик, который в начале 30-х годов решился проквантовать гравитационное поле. Появление термина "гравитон" в 1934 г. в научно-популярной статье Д.И. Блохинцева и Ф.М. Гальперина.

реферат [16,4 K], добавлен 24.06.2010

Описание главных реальных сил и их действие: упругости, трения. Понятие поля и его основные разновидности, отличительные особенности: гравитационное и электромагнитное. Напряженность и потенциал поля, факторы, влияющие и определяющие данные параметры.

Название работы: Гравитация. Гравитационное поле

Предметная область: Физика

Описание: Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты как структура галактик черные дыры и расширение Вселенной и за элементарные астрономические явления орбиты планет и за простое притяжение к поверхности Земли и падения тел.

Дата добавления: 2015-03-06

Размер файла: 162.95 KB

Работу скачали: 144 чел.

1– А) Гравитация___________________________________________ 3

1 – В) Гравитационное поле__________________________________ 3

2 - Классические теории гравитации

2-А) Гравитационное поле в общей теории относительности______6

2-Б) Теория Эйнштейна — Картана___________________________7

2-В) Теория Бранса -Дикке__________________________________8

3 - Гравитационное поле

3-А) Гравитационное поле, поле тяготения_____________________9

3-Б) Гравитационное поле земли _____________________________10

Список используемой литературы_____________________________ 14

Гравитацио́нное по́ле, или по́ле тяготе́ния — физическое поле , через которое осуществляется гравитационное взаимодействие .

В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы и , разделёнными расстоянием , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния — то есть:




Здесь — гравитационная постоянная , равная примерно 6,6725×10 −11 м³/(кг·с²).

Для расчёта поля в более сложных случаях, когда тяготеющие массы нельзя считать материальными точками, можно воспользоваться тем фактом, что поле ньютоновского тяготения потенциально. Если обозначить плотность вещества ρ, то потенциал поля φ удовлетворяет уравнению Пуассона :


Закон всемирного тяготения — одно из приложений закона обратных квадратов , встречающегося также и при изучении излучений , и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Гравитационное поле, так же как и поле силы тяжести, потенциально . Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты — планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях, и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами в космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. Аристотель считал, что объекты с разной массой падают с разной скоростью. Только много позже Галилео Галилей экспериментально определил, что это не так — если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности , более точно описывающую гравитацию в терминах геометрии пространства-времени.

2 - Классические теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая классическая теория гравитации — общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой. Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

2 - А) Гравитационное поле в общей теории относительности.

В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени. Таким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии. Гравитационное поле (обобщение ньютоновского гравитационного потенциала), иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем — метрикой четырёхмерного пространства-времени, а напряжённость гравитационного поля — с аффинной связностью пространства-времени, определяемой метрикой.

Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих геометрические свойства пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырёхмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием её формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка.

Известно, что в ОТО имеются затруднения в связи с неинвариантностью энергии гравитационного поля, поскольку данная энергия не описывается тензором и может быть теоретически определена разными способами. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия (так как спин протяжённого объекта также не имеет однозначного определения). Считается, что существуют определённые проблемы с однозначностью результатов и обоснованием непротиворечивости (проблема гравитационных сингулярностей).

Другие существенные отличия гравитационного поля ОТО от ньютоновского: возможность нетривиальной топологии пространства, особых точек, гравитационные волны.

Однако экспериментально ОТО подтверждается до самого последнего времени (2012 год). Кроме того, многие альтернативные эйнштейновскому, но стандартные для современной физики подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в низкоэнергетическом приближении, которое только и доступно сейчас экспериментальной проверке.

2 - Б) Теория Эйнштейна — Картана

Теория Эйнштейна — Картана (ЭК) была разработана как расширение ОТО, внутренне включающее в себя описание воздействия на пространство-время кроме энергии-импульса также и спина объектов. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана — Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса. Один из них аналогичен ОТО, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением. Второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения. Получаемые поправки к ОТО в условиях современной Вселенной настолько малы, что пока не видно даже гипотетических путей для их измерения.

2 - В) Теория Бранса — Дикке

В скалярно-тензорных теориях, самой известной из которых является теория Бранса — Дикке (или Йордана — Бранса — Дикке), гравитационное поле как эффективная метрика пространства-времени определяется воздействием не только тензора энергии-импульса материи, как в ОТО, но и дополнительного гравитационного скалярного поля. Источником скалярного поля считается свёрнутый тензор энергии-импульса материи. Следовательно, скалярно-тензорные теории, как ОТО и РТГ, относятся к метрическим теориям, дающим объяснение гравитации, используя только геометрию пространства-времени и его метрические свойства. Наличие скалярного поля приводит к двум группам уравнений для компонент гравитационного поля: одна для метрики, вторая — для скалярного поля. Теория Бранса — Дикке вследствие наличия скалярного поля может рассматриваться также как действующая в пятимерном многообразии, состоящем из пространства-времени и скалярного поля.

Подобное распадение уравнений на два класса имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского [7] . Благодаря наличию безразмерного параметра в теории Йордана — Бранса — Дикке появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов. При этом при стремлении параметра к бесконечности предсказания теории становятся всё более близкими к ОТО, так что опровергнуть теорию Йордана — Бранса — Дикке невозможно никаким экспериментом, подтверждающим общую теорию относительности.

3 - Гравитационное поле

3 - А)Гравитационное поле, поле тяготения

Каждое тело (например, Земля) создает вокруг себя силовое поле — поле тяготения. Напряженность этого поля в любой его точке характеризует силу, которая действует на находящееся в этой точке другое тело.


Если:
g — напряженность гравитационного поля,
F — гравитационная сила действующая на тело массой m,
m — масса тела в гравитационном поле,
то

Напряженность поля g представляет собой векторную величину, направление которой определяется направлением гравитационной силы F, а численное значение — формулой ускорения свободного падения.

Напряженность гравитационного поля совпадает по величине, направлению и единицам измерения с ускорением свободного падения, хотя по своему физическому смыслу, это совершенно разные физические величины. В то время, как напряженность поля характеризует состояние пространства в данной точке, сила и ускорение появляются только тогда, когда в данной точке находится пробное тело.


Гравитационные поля небесных тел перекрываются. Если двигаться вдоль прямой, соединяющей центры Земли и Луны, то, начиная с определенного места, будет преобладать напряженность гравитационного поля Луны.

3 - Б) Гравитационное поле земли

Гравитационное поле земли — силовое поле, обусловленное притяжением масс Земли и центробежной силой, которая возникает вследствие суточного вращения Земли; незначительно зависит также от притяжения Луны и Солнца и других небесных тел и масс земной атмосферы. Гравитационное поле Земли характеризуется силой тяжести, потенциалом силы тяжести и различными его производными. Потенциал имеет размерность м 2 •с -2 , за единицу измерения первых производных потенциала (в т.ч. силы тяжести) в гравиметрии принят миллигал (мГал), равный 10 -5 м•с -2 , а для вторых производных — этвеш (Э, Е), равный 10 -9 •с -2 .


Значения основных характеристик гравитационного поля Земли: потенциал силы тяжести на уровне моря 62636830 м 2 •с -2 ; средняя сила тяжести на Земле 979,8 Гал; уменьшение средней силы тяжести от полюса к экватору 5200 мГал (в т.ч. за счёт суточного вращения Земли 3400 мГал); максимальная аномалия силы тяжести на Земле 660 мГал; нормальный вертикальный градиент силы тяжести 0,3086 мГал/м; максимальное уклонение отвеса на Земле 120"; диапазон периодических лунно-солнечных вариаций силы тяжести 0,4 мГал; возможная величина векового изменения силы тяжести
Обычно гравитационное поле Земли представляют состоящим из 2 частей: нормальной и аномальной. Основная — нормальная часть поля соответствует схематизированной модели Земли в виде эллипсоида вращения (нормальная Земля). Она согласуется с реальной Землёй (совпадают центры масс, величины масс, угловые скорости и оси суточного вращения). Поверхность нормальной Земли считают уровенной, т.е. потенциал силы тяжести во всех её точках имеет одинаковое значение (см. геоид); сила тяжести направлена к ней по нормали и изменяется по простому закону. В гравиметрии широко используется международная формула нормальной силы тяжести:

g(р) = 978049(1 + 0,0052884 sin 2 р — 0,0000059 sin 2 2р), мГал.

В CCCP и других социалистических странах в основном применяется формула Ф. Р. Гельмерта:

g(р) = 978030(1 + 0,005302 sin 2 р — 0,000007 sin 2 2р), мГал.


Из правых частей обеих формул вычитают 14 мГал для учёта ошибки в абсолютной силе тяжести, которая была установлена в результате многократных измерений абсолютной силы тяжести в разных местах. Выведены другие аналогичные формулы, в которых учитываются изменения нормальной силы тяжести вследствие трёхосности Земли, асимметричности её северного и южного полушарий и пр. Разность измеренной силы тяжести и нормальной называют аномалией силы тяжести (см. геофизическая аномалия). Аномальная часть гравитационного поля Земли по величине меньше, чем нормальная, и изменяется сложным образом. Поскольку положения Луны и Солнца относительно Земли изменяются, то происходит периодическая вариация гравитационного поля Земли. Это вызывает приливные деформации Земли, в т.ч. морские приливы. Существуют также неприливные изменения гравитационного поля Земли во времени, которые возникают из-за перераспределения масс в земных недрах, тектонических движений, землетрясений, извержения вулканов, перемещения водных и атмосферных масс, изменения угловой скорости и мгновенной оси суточного вращения Земли. Многие величины неприливных изменений гравитационного поля Земли не наблюдаются и оценены только теоретически.

На основании гравитационного поля Земли определяется геоид, характеризующий гравиметрическую фигуру Земли, относительно которой задаются высоты физической поверхности Земли. Гравитационное поле Земли в совокупности с другими геофизическими данными используется для изучения модели радиального распределения плотности Земли. По нему делаются выводы о гидростатическом равновесном состоянии Земли и о связанных с этим напряжениях в её недрах. По наблюдениям приливных вариаций силы тяжести изучают упругие свойства Земли.

Гравитационное поле Земли используется при расчёте орбит искусственных спутников Земли и траекторий движения ракет. По аномалиям гравитационного поля Земли изучают распределение плотностных неоднородностей в земной коре и верхней мантии, проводят тектоническое районирование, поиски месторождений полезных ископаемых (см. гравиметрическая разведка). Гравитационное поле Земли используется для вывода ряда фундаментальных постоянных геодезии, астрономии и геофизики .

Гравитационное поле Земли - поле силы тяжести, обусловленное притяжением (тяготением) Земли и центробежной силой, вызванной ее суточным вращением. Гравитационное поле Земли незначительно зависит также от притяжения Луны, Солнца и других небесных тел и масс земной атмосферы. Все планеты Солнечной системы имеют форму, близкую к сферической. Поэтому, гравитационное поле шара можно рассматривать, как первое приближение к гравитационному полю планеты. Во втором приближении можно учесть тот факт, что некоторые планеты, в том числе и Земля, гораздо лучше могут быть представлены эллипсоидом вращения, чем шаром. В третьем приближении мы можем учесть и некоторые особенности в распределении масс внутри планеты.

Содержание

I.Введение………………………………………………………. 3
II. Гравитационное поле Земли. Что это. 4
III. Как гравитационное поле влияет на форму Земли. 5
IV. Гравитационные аномалии…………………………………6
V. Загадки гравитации………………………………………. 7-8
VI. Гравитационный потенциал Вселенной …………………..9
Список использованной литературы…………………………..10

Работа состоит из 1 файл

Документ Microsoft Word.docx

Министерство образования и науки РФ

Бурятский Государственный Университет

Биолого – Географический Факультет

Кафедра физической географии

Выполнила: Урусова А.И.

студентка 01220 гр.

Проверила: Шарипова С. Д.

II. Гравитационное поле Земли. Что это. . 4

III. Как гравитационное поле влияет на форму Земли. 5

IV. Гравитационные аномалии…………………………………6

V. Загадки гравитации………………………………………. 7- 8

VI. Гравитационный потенциал Вселенной …………………..9

Список использованной литературы…………………………..10

II. Гравитационное поле Земли. Что это?

Гравитационное поле Земли - поле силы тяжести, обусловленное притяжением (тяготением) Земли и центробежной силой, вызванной ее суточным вращением. Гравитационное поле Земли незначительно зависит также от притяжения Луны, Солнца и других небесных тел и масс земной атмосферы. Все планеты Солнечной системы имеют форму, близкую к сферической. Поэтому, гравитационное поле шара можно рассматривать, как первое приближение к гравитационному полю планеты. Во втором приближении можно учесть тот факт, что некоторые планеты, в том числе и Земля, гораздо лучше могут быть представлены эллипсоидом вращения, чем шаром. В третьем приближении мы можем учесть и некоторые особенности в распределении масс внутри планеты.

III. Как гравитационное поле влияет на форму Земли.

Геодезические и астрономические исследования последующих столетий дали возможность судить о действительной форме Земли и ее размерах. Известно, что формирование Земли происходило под действием двух сил - силы взаимного притяжения частиц ее массы и центробежной силы, обусловленной вращением планеты вокруг своей оси. Равнодействующей обеих названных сил является сила тяжести, выражаемая в ускорении, которое приобретает каждое тело, находящееся у поверхности Земли. На рубеже XVII и XVIII вв. впервые Ньютон теоретически обосновал положение о том, что под воздействием силы тяжести Земля должна иметь сжатие в направлении оси вращения и, следовательно, ее форма представляет эллипсоид вращения, или сфероид. Степень сжатия зависит от угловой скорости вращения. Чем быстрее вращается тело, тем больше оно сплющивается у полюсов. Разница полярного и экваториального радиусов составляет 21 км. Детальными последующими измерениями, особенно новыми методами исследования с искусственных спутников, было показано, что Земля сжата не только на полюсах, но также несколько и по экватору (наибольший и наименьший радиусы по экватору отличаются на 210 м), т.е. Земля является не двухосным, а трехосным эллипсоидом. Кроме того, расчетами учёных показана несимметричность Земли по отношению к экватору: южный полюс расположен ближе к экватору, чем северный. В связи с расчленением рельефа (наличием высоких гор и глубоких впадин) действительная форма Земли является более сложной, чем трехосный эллипсоид. Наиболее высокая точка на Земле - гора Джомолунгма в Гималаях - достигает высоты 8848м. Наибольшая глубина 11 034 м обнаружена в Марианской впадине. Таким образом, наибольшая амплитуда рельефа земной поверхности составляет немногим менее 20 км. Учитывая эти особенности, немецкий физик Листинг в 1873 г. фигуру Земли назвал геоидом, что дословно обозначает "земле подобный".

IV. Гравитационные аномалии.

На карте желтые участки обозначают- самую высокую силу тяжести, красные- высокая сила тяжести, синие и голубые участки - пониженная сила тяжести. Карту продемонстрировали специалисты из Института астрономической физики и физической геодезии Технического университета Мюнхена. Точную форму Земли удалось определить с помощью данных, полученных с помощью спутника GОСЕ (Gravity Field and Steady-State Ocean Circulation Explorer) Европейского космического агентства. Он был запущен в марте 2009 года, летает на высоте порядка 250 километров - ниже, чем другие аппараты. И улавливает малейшие гравитационные аномалии. В Евразии и Африке в основном попадаются участки с повышенным притяжением (обозначены красным и желтым). А вот в Северной Америке сила тяжести меньше (синие участки). Разница в силе тяжести между США и Россией может достигать 0,04 процента.

V. Загадки гравитации.

Гравитация распределяется по поверхности Земли неравномерно. Оказывается, в некоторых местах вы можете почувствовать себя тяжелее, чем в других. Область низкой гравитации наблюдается возле берегов Индии, а относительно высокая гравитация – в южной части Тихого океана. Причина этого неизвестна , так как существующие поверхностные образования не являются доминирующими. Спутники-близнецы NASA под названием GRACE, запущенные в марте 2002 г., производят подробные измерения гравитационного поля Земли, что позволит совершить новые открытия в области гравитации и экологической системы планеты.

Гост

ГОСТ

Напряженность гравитационного поля

В этой формуле $F$ есть гравитационная сила, действующая на материальную точку массы $m$ в данной точке поля.

Размерность $G$ совпадает с размерностью ускорения. Напряженность поля тяготения вблизи поверхности Земли равна ускорению свободного падения $g$ (с точностью до поправки, обусловленной вращением Земли).

Из формулы (1) легко заключить, что напряженность поля, создаваемого материальной точкой массы $m'$, равна:

где $e_ $ --- орт радиус-вектора, проведенного из материальной точки в данную точку поля, $r$ - модуль этого радиус-вектора.

Потенциал гравитационного поля

Пусть гравитационное поле создается закрепленной в начале координат материальной точкой массы $m$. Тогда на материальную точку массы $m'$, находящуюся в точке с радиус-вектором $r$, будет действовать сила:

Потенциальная энергия точки $m'$ определяется в этом случае выражением:

(потенциальная энергия при $r=\infty $ принята равной нулю). Выражение (3) можно трактовать также как взаимную потенциальную энергию материальных точек $m'$и $m$.

Из (3) видно, что каждой точке поля, создаваемого материальной точкой $m$, соответствует определенное значение потенциальной энергии, которой обладает в этом поле материальная точка $m'$. Поэтому поле можно характеризовать потенциальной энергией, которой обладает в данном месте материальная точка с $m'=1$ Величину

Готовые работы на аналогичную тему

называют $потенциалом$ гравитационного поля. В этой формуле $U$ есть потенциальная энергия, которой обладает материальная точка массы $m'$ в данной точке поля.

Потенциал поля, созданного материальной точкой массы $m$на расстоянии $r$ от нее:

Зная потенциал поля, можно вычислить работу, совершаемую над частицей $m'$ силами поля при перемещении ее из положения 1 в положение 2. Эта работа будет равна:

$A_ =U_ -U_ =m(\varphi _ -\varphi _ )$. (5)

Согласно (4) сила, действующая на частицу $m'$, равна $F=m'G$, а потенциальная энергия этой частицы равна $U=m'\varphi $.

Так как $F=-\nabla U$, т. е. $m'G=-\nabla (m'\varphi )$. Вынеся из-под знака градиента константу $m'$ и сократив затем на эту константу, придем к соотношению между напряженностью и потенциалом гравитационного поля:

Принцип суперпозиции гравитационных полей

Принцип независимости действия сил для полей приводит к принципу их суперпозиции: гравитационное поле, создаваемое несколькими телами, равно геометрической сумме гравитационных полей, возбуждаемых этими телами в отдельности. Математически этот принцип выражается формулами:

На основе этих формул можно вычислить гравитационное поле любого тела. Для этого надо мысленно разбить тело на малые части, и подсчитать характеристики поля.

Гравитационное поле Земли является силовым полем, которое обусловлено притяжением ее массы и центробежной силой, возникающей как следствие вращения Земли. Гравитационное поле Земли:

  • зависит (хотя и в незначительной степени) от притяжения Луны, Солнца и прочих тел, а также массы земной атмосферы;
  • характеризуется силой тяжести, потенциалом и рядом различных производных (часть потенциала называют геопотенциалом - он обусловлен только притяжением Земли);
  • является основанием для определения геоида, который характеризует гравиметрическую фигуру Земли - по этой фигуре задаются высоты поверхности планеты;
  • по нему делают заключение о гидростатическом равновесном состоянии планеты и возникающих из-за этого напряжениях в её недрах, исследуют упругие свойства Земли;
  • помогает производить расчеты орбит искусственных спутников, траектории движения ракет;
  • аномалии поля помогают узнавать распределение неоднородностей по плотности в земной коре, верхней части мантии, проводить тектоническое районирование, искать полезные ископаемые.

Определить напряженность и потенциал гравитационного поля Земли вблизи ее поверхности.

Дано: $r=\cdot 6,4\cdot 10^

Согласно второму закону Ньютона отношение силы тяготения, действующей на частицу, к массе этой частицы равно ускорению частицы:

У поверхности Земли это ускорение есть ускорение свободного падения $g$- величина, постоянная для всех тел.

Таким образом, получаем:

По формуле (1) напряженность гравитационного поля Земли равна:

Эта формула выражает величину напряженности через отношение силы тяготения, действующей на частицу, к массе этой частицы.

Сравнивая выражения для ускорения частицы и напряженности гравитационного поля, получаем:

Зная величину напряженности и выражения для напряженности $G=-\gamma \frac > $ и потенциала $\varphi =-\gamma \frac $ гравитационного поля, найдем величину его потенциала:

Читайте также: