Реферат на тему геометрия в алгебре

Обновлено: 02.07.2024

Аналитическая геометрия – это раздел математики, в котором с помощью алгебраических методов изучаются геометрические объекты. Основными понятиями аналитической геометрии являются простейшие геометрические образы (точки, прямые, плоскости, кривые и поверхности 2 - го порядка). Основными средствами исследования в аналитической геометрии служат метод координат и методы элементарной алгебры. Возникновение метода координат тесно связано с бурным развитием астрономии, механики и техники в 17 веке. Отчетливое и исчерпывающее изложение этого метода и основ аналитической геометрии было сделано Р. Декартом в его "Геометрии" (1637).

Содержание

Введение.
Развитие аналитической геометрии.

Декартовые координаты на прямой.

Декартовые и полярные координаты на плоскости.

Декартовая прямоугольная система координат в пространстве.
Заключение.
Список используемой литературы.

Вложенные файлы: 1 файл

курсовая геометрия.docx

Содержание:

Введение.

  1. Декартовые и полярные координаты на плоскости.
  1. Декартовая прямоугольная система координат в пространстве.

Заключение.

Список используемой литературы.

Введение.

Аналитическая геометрия – это раздел математики, в котором с помощью алгебраических методов изучаются геометрические объекты. Основными понятиями аналитической геометрии являются простейшие геометрические образы (точки, прямые, плоскости, кривые и поверхности 2 - го порядка). Основными средствами исследования в аналитической геометрии служат метод координат и методы элементарной алгебры. Возникновение метода координат тесно связано с бурным развитием астрономии, механики и техники в 17 веке. Отчетливое и исчерпывающее изложение этого метода и основ аналитической геометрии было сделано Р. Декартом в его "Геометрии" (1637). Метод координат представляет собой глубокий и мощный аппарат, позволяющий привлекать для исследования геометрических объектов методы алгебры и математического анализа. Французский математик Декарт широко применял координаты для исследования многих геометрических вопросов. Он пользовался не двумя осями, а одной, на которой откладывал абсциссы. Ординаты он определял как расстояния точек плоскости от оси абсцисс. Эти расстояния Декарт отсчитывал по любому заранее выбранному направлению, а не обязательно по перпендикуляру. Как абсциссы так и ординаты у Декарта были всегда величинами положительными, независимо от направления соответствующих отрезков. Различение направлений на осях знаками было введено позже, учениками Декарта. Основные идеи метода были известны также его современнику П. Ферма. Дальнейшая разработка аналитической геометрии связана с трудами Г. Лейбница, И. Ньютона и особенно Л. Эйлера. Средствами аналитической геометрии пользовался Ж. Лагранж при построении аналитической механики, Г. Монж в дифференциальной геометрии. Наряду с декартовой системой координат применяются и другие системы. Наиболее используемая полярная система координат.

Алгебраическая трактовка вопросов геометрии подготавливала почву для создания аналитической геометрии, предметом которой является уже не только нахождение отдельных отрезков, выражаемых корнями уравнений с одним неизвестным, но изучение свойств различных геометрических образов, прежде всего алгебраических линий и поверхностей, выражаемых уравнениями с двумя или более неизвестными или координатами.

Координаты появились еще в древности, притом в различных формах, между собой непосредственно не связанных. С одной стороны, это были географические координаты, именовавшиеся долготой и широтой, причем положение пунктов земной поверхности, изображенной в виде прямоугольника, характеризовалось парой чисел. Сходными были астрономические координаты, служившие для определения положения светил на небесной сфере. Другой вид координат представляли собой отрезки, зависимости между которыми, так называемые симптомы, выражали определяющие свойства этих кривых. В этом случае речь шла не о числовых координатах любых точек с отсчетом от фиксированного меридиана и параллели, а об отрезках диаметров и хорд, связанных с точками рассматриваемой фигуры.

Большую роль в развитии геометрии сыграло применение алгебры к изучению свойств геометрических фигур, разросшееся в самостоятельную науку — аналитическую геометрию. Возникновение аналитической геометрии связано с открытием метода координат, являющегося основным ей методом.

Координатами точки, называются числа, определяющие положение точки на данной линии или на данной поверхности или же в пространстве. Так, положение точки на земной поверхности будет определено, если известны её географические координаты — широта и долгота.

Для нахождения координат точки необходимо задание ориентиров, от которых ведётся отсчёт. В случае географических координат такими ориентирами будут экватор и нулевой меридиан. Если даны ориентиры и указано, как, пользуясь ими, находить координаты точки, то говорят, что задана система координат.

Характерной особенностью метода координат является определение геометрических фигур уравнениями, что позволяет производить геометрические исследования и решать геометрические задачи средствами алгебры. Придавая геометрическим исследованиям алгебраический характер, метод координат переносит в геометрию наиболее важную особенность алгебры — единообразие способов решения задач. Если в арифметике и элементарной геометрии приходится, как правило, искать для каждой задачи особый путь решения, то в алгебре и аналитической геометрии решения проводятся по общему для всех задач плану, легко приспособляемому к любой задаче. Можно сказать, что аналитическая геометрия занимает такое же положение по отношению к элементарной геометрии, какое алгебра занимает относительно арифметики. Перенесение в геометрию свойственных алгебре и поэтому обладающих большой общностью способов решения задач, составляет главную ценность метода координат. Но иногда удобнее обращаться к приёмам элементарной геометрии, так как в отдельных случаях они позволяют находить изящные решения, более простые, чем получаемые методом координат.

Другое достоинство метода координат состоит в том, что его применение избавляет от необходимости прибегать к наглядному представлению сложных пространственных конфигураций.

При практическом применении понятия координат координаты предмета, рассматриваемого условно как точка, могут быть определены лишь приближённо. Задание координат предмета означает, что точка, определяемая этими координатами, либо является одной из точек этого предмета либо достаточно близка к нему.

Основная задача аналитической геометрии заключается в изучении геометрических фигур с помощью соотношений между координатами точек, из которых эти фигуры образованы. Любую фигуру можно рассматривать как множество точек, удовлетворяющих некоторому геометрическому условию. Это условие можно записать в виде алгебраического уравнения, связывающего координаты x и y каждой точки фигуры. Суть метода аналитической геометрии состоит в изучении свойств фигуры с помощью соответствующего уравнения, исследуемого средствами алгебры.

Этот метод позволяет устанавливать геометрические факты систематичным образом, в отличие от традиционной "синтетической" геометрии, где приходилось изобретать методы доказательства для каждого отдельного случая.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Актуальность темы состоит в необходимости связи алгебры и геометрии, как элементов, составляющих одно целое – науку математику, а также в применении знаний геометрии в жизни. Данная тема интересна, потому что она позволяет находить новые неординарные подходы к решению задач. Многие задачи алгебры очень трудно решить аналитическим путем. Поэтому любое представление условия задачи в виде рисунка или чертежа облегчает решение задачи. Геометрический метод состоит в том, что само доказательство или решение задачи направляется наглядным представлением.

Цель работы: рассмотреть различные геометрические методы в решении алгебраических задач.

Задачи работы:

1) показать, что преимущество геометрического решения алгебраических задач в его наглядности, так как геометрический подход допускает изящное решение;

2) рассмотреть применение теоремы Пифагора и обратной ей теоремы для решения алгебраических задач;

3) рассмотреть применение метода линейных и двумерных диаграмм для решения алгебраических задач;

4) продемонстрировать применение геометрического метода для решения текстовых задач.

hello_html_md7f7702.jpg
hello_html_m5ae58ccc.jpg

Решение: Пусть х- расстояние от лестницы до стены (рис. 2).

П

о теореме Пифагора: 117 2 + х 2 =125 2

х 2 =1936; х=44 , так как х>0

Исторические задачи

Решение: Пусть х - искомая глубина, тогда х+1 - длина камыша.

По теореме Пифагора: 5 2 +х 2 =(х+1) 2 , х=12

Ответ: глубина воды 12 чи, длина камыша 13 чи.

Какова высота бамбука после сгибания?

Решение: Пусть х - высота бамбука после сгибания. Тогда 10-х - вершина бамбука, которую согнули.

По теореме Пифагора: (10-х) 2 =х 2 +3 2

Ответ: 4 11 / 20 чи - высота бамбука после сгибания.

Ответ: на 5 футов.

Задача Бхаскари из Индии.

Н а берегу реки рос тополь одинокий.

Вдруг ветра порыв его ствол надломал.

Бедный тополь упал. И угол прямой

С теченьем реки его ствол составлял.

Запомни теперь, что в этом месте река

В четыре лишь фута была широка

Верхушка склонилась у края реки.

Осталось три фута всего от ствола,

Прошу тебя, скоро теперь мне скажи:

У тополя как велика высота?

По теореме Пифагора 3 2 +4 2 =5 2

Ответ: высота тополя равна 5 футам.

2.1 Решение алгебраических задач с помощью теоремы Пифагора

Теперь решим некоторые алгебраические задачи с помощью теоремы Пифагора.

Задача 1 . Решите уравнение .

Задача 2. Решите систему уравнений при условии, что x, y, z и t – положительны:

hello_html_64cf9dc3.jpg

Рис. 4.

2.2 Применение в решении задач теоремы, обратной теореме Пифагора

Рассмотрим простую на первый взгляд задачу с неожиданным ответом.

Задача 3. Следует ли из теоремы Пифагора, что треугольник со сторонами 6, 8, 10 прямоугольный?

Решение: Нет. Треугольник со сторонами 6, 8, 10, конечно, прямоугольный, но это следует не из теоремы Пифагора, а из теоремы ей обратной: если а 2 + b 2 =с 2 то, угол С=90°.

Задача 4. Из условий х 2 +у 2 =9, у 2 + z 2 =16 и у 2 =х z для положительных х, у, z , не вычисляя их значений, указать значение выражения ху+у z

Решение: По теореме, обратной теореме

Пифагора, числа х, у и 3 являются соответственно длинами катетов и гипотенузы треугольника АВ D с прямым углом D . А рассмотрев второе уравнение системы, можно сделать вывод, что у, z и 4 так же есть соответственно длины катетов и гипотенузы треугольника ВС D с прямым углом D . Третье уравнение системы разрешает утверждать, что число у есть среднее пропорциональное чисел х и z , и по теореме, обратной теореме о пропорциональных отрезках в прямоугольном треугольнике, угол АВС – прямой (рис. 5). Теперь рассмотрим выражение ху+у z =(х+ z )у= 2 S A ВС =3·4=12.

Ответ: ху+у z =12.

Задача 5. Решить систему уравнений:

Решение:
По теореме, обратной теореме Пифагора, из уравнения х 2 + у 2 =3 2 , числа х и у являются катетами АBD ( D – прямой) с гипотенузой АВ = 3. Рассматривая второе уравнение у 2 + z 2 = 16, построим BDC, где у и z – катеты, а ВС = 4 – гипотенуза. Третье уравнение y 2 = xz подсказывает, что число у есть среднее пропорциональное чисел х и z.

П о теореме обратной теореме о пропорциональных отрезках АВС = 90 0 АС = ( х + z ) = = 5, тогда

AB 2 = AD • AC, 9 = х • 5, х =9/5

BC 2 = DC • AC, 16 = z • 5, z = 16/5

BD 2 = y 2 = x • z = 9/5 • 16/5 и BD =12/5 = y .

Однако, такой прием дает потерю корней, легко убедиться, что х = ± 9/5; у = ± 12/5; z = ± 16/5.

2.3 Геометрическое решение текстовых задач

Очень многие текстовые задачи на составление уравнений (или систем уравнений) можно решать графически. К ним относятся задачи на движение и на совместную работу. Решение задачи основывается на точных геометрических соотношениях. Преимущество геометрического решения в его наглядности, так как чертёж помогает глубже понять условия задачи.

hello_html_3aee14d1.jpg

З

Рис. 6.

адача 6. В одном элеваторе было зерна в два раза больше, чем в другом. Из первого элеватора вывезли 750 т зерна, во второй элеватор привезли 350 т, после чего в обоих элеваторах зерна стало поровну. Сколько зерна было первоначально в каждом элеваторе?

Решаем данную задачу с помощью линейной диаграммы (рис. 6). Построенная линейная диаграмма превращает алгебраическую задачу в геометрическую, решение которой основано на использовании свойств длины отрезка, а именно:

1) равные отрезки имеют равные длины; меньший отрезок имеет меньшую длину;

2) если точка делит отрезок на два отрезка, то длина всего отрезка равна сумме длин этих двух отрезков.

Решение: AB = 2CD — первоначальное распределение зерна между двумя элеваторами; BK = 750, DE = 350. AK = CE — конечное распределение зерна между элеваторами.

CD=AF=FB (по построению), FB= 350 + 750 = 1100, тогда CD=1100, AB = 1100·2 = 2200.

Ответ: 2200 т, 1100 т.

Рис. 7.

адача 7. Предприятие уменьшило выпуск продукции на 20% . На с колько процентов необходимо теперь увеличить выпуск продукции, чтобы достигнуть его первоначального уровня.

Решение: Представим первоначальный выпуск продукции в виде отрезка АВ (рис. 7). Разделим его на 5 равных частей и отметим точку С на расстоянии 1/5 от В. Мы получим отрезок АС, равный 4/5 АВ. Из чертежа видно, что требуется найти какую часть составляет ВС от АС. Решение очевидно. Так как ¼ АС =ВС, тогда требуется увеличить выпуск продукции на ¼ АС, т. е. на 25%. Ответ: на 25%.

Задача 8. Бригада лесорубов ежедневно перевыполняла норму на 16 м 3 , поэтому недельную норму (шесть рабочих дней) она выполнила за четыре дня. Сколько кубометров леса заготовляла бригада в день?

hello_html_704f6f5f.jpg

Так как в задаче рассматривается произведение двух величин (A = p·n), то для наглядности представим его в виде двумерной диаграммы. Двумерная диаграмма — это площадь одного или нескольких прямоугольников, стороны которых изображают численные значения рассматриваемых величин (p и n), а площадь прямоугольника изображает их произведение (S = A).

Решение: Пусть S ABCD определяет недельную норму бригады лесорубов. AB — производительность (м 3 ) бригады в день по плану; AD — количество дней; S AMNK — объем работы, выполненный бригадой за четыре дня (рис. 8).

S AMNK = S ABCD = S; S 1 = S 2 , так как S 1 + S 3 = S 2 + S 3 . S 1 = 2KE, S 2 = =16·4 = 64, значит 2KE = 64, тогда KE = 32. AB = KE = 32, AM = AB + BM = 32 + 16 = 48.

Ответ: бригада заготовляла в день 48 м 3 леса.

Итак, метод длин и диаграмм является одним из удобных, интересных и наглядных способов, позволяющих лучше понять условие и решить задачу на этапе чертежа.

hello_html_m7873079b.jpg

Расстояние между двумя городами равно 450 км. Два автомобиля выходят одновременно навстречу друг другу. Один автомобиль мог бы пройти все расстояние за 9 часов, другой – вдвое быстрее. Через сколько часов они встретятся?

Читаем с чертежа ответ: 3 часа.

Задача 10. На двух типографских станках, работающих одновременно, можно сделать копию пакета документов за 10 минут. За какое время можно выполнить эту работу на каждом станке в отдельности, если известно, что на первом ее можно сделать на 15 минут быстрее, чем на второй?

hello_html_6182b62e.jpg

Р

Рис. 9.

ешение: На оси абсцисс откладываем время работы станков в минутах. Оба станка сделают работу вместе за 10 минут. ОМ=10. Тогда одной первой понадобится t минут. А второй ( t +15) минут. V - объем работ, который нужно выполнить. ОВ - график работы первого станка, ОС - второго, ОА – вместе (рис. 9). ΔО VB ≅ Δ NAB и Δ OP С ≅ ΔOMK, откуда VO / AN = VB / AB и С P / KM = OP / OM ; покажем, что AN = KM . Так как за 10 минут первый станок выполнит часть работы, соответствующий отрезку NM ( AN - отрезок работы который выполнит второй станок). Но за 10 минут второй станок выполнит часть работы, соответствующую МК. Поэтому А N =КМ. Учитывая это равенство и то, что СР= VO , получаем, VO/AN=CP/KM. Так как VO / AN = VB / AB и С P / KM = OP / OM , то получаем соотношение: VB / AB = OP / OM , значит t /( t -10)=( t +15)/10; t 2 -5 t -150=0; t =15 Таким образом, I станок выполнит работу за 15 минут, а II за 30 минут.

Ответ: 15 минут, 30 минут.

З адача 11. Два велосипедиста выезжают одновременно из пунктов А и В навстречу друг другу. Один прибывает в В через 27 минут после встречи, а другой прибывает в А через 12 минут после встречи. За сколько минут проехал каждый велосипедист свой путь?

Рис. 10.

ешение: Рассмотрим две системы координат tAy и t By (рис. 10). На оси А t откладываем время движения первого велосипедиста, а на оси В t – время движения второго велосипедиста. Оси А t и Bt сонаправлены. Оси пройденного пути противоположно направлены, длина отрезка АВ в каждом случае равна пройденному пути. Отрезок АВ 1 – график движения первого велосипедиста, а отрезок ВА 1 – график движения второго. Точка О соответствует моменту их встречи. Время движения до встречи обозначим t . ΔВ 1 ОМ подобен ΔАО N , ΔМОВ подобен ΔNOA 1 . Тогда MB 1 / AN = MO / ON и BM / NA 1 = MO /О N . Из равенства следует: 27/ t = t /12, откуда t =18. Таким образом, первый велосипедист проехал весь путь за 18+12=30 (мин.), а второй за 18+27=45 (мин.).

Ответ: 30 минут, 45 минут.

З адача 12. На двух копировальных машинах, работающих одновременно, можно сделать копию пакета документов за 10 мин. За какое время можно выполнить эту работу на каждой машине в отдельности, если известно, что на первой её можно сделать на 15 мин. быстрее, чем на второй?

Решение: На оси абсцисс откладываем время работы копировальных машин в минутах (рис). Обе машины, работая вместе, сделают копию за 10 мин. (ОМ=10). Тогда одной первой для этого понадобится t мин, а одной второй – (t+15) мин. Положение точки V на оси ординат соответствует объёму работы, которую необходимо выполнить.

Так как объём работы прямо пропорционален затраченному времени, то график работы копировальных машин представляют собой отрезки: ОВ – график работы первой, ОС – график работы второй, ОА – график совместной работы.

Рассмотрим две пары подобных треугольников ОСР и ОКМ
Покажем, что AN=KM. За 10 мин. первая машина выполнит часть работы, соответствующую отрезку NM (AN – отрезок работы, который выполнит вторая машина). Но за 10 мин. Вторая машина выполнит часть работы, соответствующую MK. Поэтому AN=KM. Учитывая это равенство и то, что CP=VO, получаем = . Из пропорций (1) и (2) получаем соотношение: = , из которого легко перейти к уравнению =

Решая это уравнение, находим положительный корень t = 15. Таким образом, первая машина сделает копию пакета документов за 15 мин, а вторая – 30 мин.

Ответ: 15 мин, 30 мин.

Итак, геометрический метод в решении алгебраических задач отличается быстротой. Мы убедились, что задачи на движение и совместную работу возможно решать с помощью геометрии. И такое решение является неординарным и рациональным, а также позволяет экономить время и быстро находить правильный ответ.

К ак в прошлом, так и в настоящем для решения практических задач люди использовали знания геометрии. Например, работники некоторой судоверфи часто сталкивались с задачами, которые можно решить с помощью теоремы Пифагора.

Задача 13 Парусное судно стояло на ремонте на судоверфи. Для крепления мачты необходимо было установить 4 троса. Один конец каждого троса должен крепиться на высоте 12 м, другой на земле на расстоянии 5 м от мачты. Хватило ли 50 м троса для крепления мачты? (рис. 11)

Решение: По теореме Пифагора 12 2 +5 2 =144+25=169; 13·4=52 (м)

Рис. 11.

твет: троса не хватило.

hello_html_m12345664.jpg

Высота первой сосны равна 29 м, второй – 4 м. Как велико расстояние между их верхушками?

Рис. 12.

ешение: Искомое расстояние АВ между верхушками сосен (рис. 12) находится по теореме Пифагора: (29-4) 2 +38 2 =25 2 +38 2 ≈45,5 2

Ответ: ≈45,5 м.

Подобные задачи решаются в различных областях: в судостроении, ракетостроении, машиностроении, строительстве и т.д.

В процессе исследования мы решили много исторических, практических, алгебраических задач геометрическими способами. Решения некоторых из них продемонстрированы в работе. Рассматривая различные источники и анализируя литературу, мы пришли к выводу, что алгебраические задачи, которые можно решить геометрически, встречаются очень часто, как на ЕГЭ, так и в школьных учебниках. Мы убедились, что геометрические подходы часто упрощают решение задач. Таким образом, цель работы достигнута.

Преимущества решения задач геометрическим способом:

Графическая иллюстрация облегчает проведение анализа, составления уравнений, помогает найти несколько способов решения.

Расширяется область использования графиков, повышается графическая культура.

Реализуются внутри предметные (алгебра и геометрия) и межпредметные (математика и физика) связи.

Выводы

Мы рассмотрели различные задачи, подобрали для них геометрические способы решения, сравнили алгебраический и геометрический методы решения.

Удобнее и нагляднее всего решать геометрическим методом тригонометрические задачи. Этот метод можно использовать в качестве проверки при решении задач.

Рассмотренные геометрические методы подходят для решения конкурсных нестандартных и олимпиадных задач. Позволяют существенно упростить их решение, сделать его более понятным и наглядным.

Применение геометрических методов позволяет развивать пространственное воображение, которое является основным для освоения материала в старших классах. Позволяет сократить время решения задач (применимо к тестам).

Куликова Л. В. , Литвинова С. А., За страницами учебника математики, М. - Глобус, 2012.

В.А. Филимонов, Геометрия помогает решить задачу – Математика в школе № 2-3,2012

Алгебра: учеб. для 8 кл. общеобразоват. учреждений/ Ю.Н. Макарычев [и др.]; Под ред. С.А. Теляковского. – М.: Просвещение, 2012.

Геометрия, 7-9: учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2012.

Генкин Г.З. Геометрические решения алгебраических задач// Математика в школе. – 2013. – №7.

Знание истории науки , её связей с различными современными задачами очень важно, так как позволяет выяснить происхождение понятий, узнать развитие их с течением времени, познакомиться с различными нестандартными методами решения современных задач.

ВложениеРазмер
proekt_geometrich_algebra_drevney_gretsii.docx 191.54 КБ
geometricheskaya_algebra_drevney_gretsii.pptx 1023.67 КБ

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

гимназия №19 им. Н.З. Поповичевой г. Липецка

Выполнила: Александрова Анастасия Ильинична,

Черных Дарина Алексеевна

учащиеся 7а класса

Руководитель проекта: Алябьева Елена Анатольевна

Актуальность темы. История математических идей интересна для всех, кто изучает математику. Знание истории науки , её связей с различными современными задачами очень важно, так как позволяет выяснить происхождение понятий, узнать развитие их с течением времени, познакомиться с различными нестандартными методами решения задач.

Гипотеза. Г еометрическая алгебра древних греков применима на уроках математики в современной школе и её можно использовать для доказательства теорем и решения задач.

Цель. И зучить возможность применения методов геометрической алгебры на уроках математики.

  1. Изучить историю развития чисел и отношений между величинами в Древней Греции.
  2. Познакомиться с основными положениями геометрической алгебры.
  3. Рассмотреть способы решения некоторых современных задач методом геометрической алгебры.
  4. Проанализировать область применения методов геометрической алгебры для современных задач математики.

Греческие математики, столь много внесшие в современную науку, занимались, в основном, геометрическими проблемами. При этом — как известно многие греческие ученые находились под влиянием философии Платона, считавшего геометрию наукой, которой достойны заниматься только представители умственной элиты греческого общества. В этих условиях, геометрия превратилась в своеобразную гимнастику ума, в искусство, а ее практическое применение считалось унизительным, являлось профанацией этого искусства.

По этой причине развитие арифметики и алгебры как дисциплин связанных с практическими нуждами, встречалось с серьезными препятствиями. Конечно, грекам приходилось заниматься вопросами этих дисциплин, но проблемам алгебры и арифметики в этом случае придавались геометрические формы. Что же побудило греков избрать геометрический путь развития математики?

“Все вещи суть числа”

Первой научной школой, предложившей свой вариант математического плана строения Вселенной, были пифагорейцы. Школа пифагорейцев существовала в Древней Греции около 585–500 годов до нашей эры и возглавлялась Пифагором Самосским. Пифагорейцы видели сущность явлений в числе и числовых отношениях.

Привычное нам понятие числа возникло в результате абстрагирования. Ранним пифагорейцам такая абстракция была чужда. Для них числа были точками или частицами, расположенными на плоскости (поверхности Земли). Рассматривая треугольные, квадратные и т.д. числа, называемые фигурными, пифагорейцы имели в виду наборы точек, камешков или других мелких предметов, расположенных в форме треугольников, квадратов и других фигур (рис.1, 2).

Рисунок 1. Треугольные числа: 1, 3, 6.

Рисунок 2. Квадратные числа: 1, 4, 9.

Однако примерно в V веке до н.э. были открыты так называемые “несоизмеримые отрезки” - такие отрезки, у которых отношение длин не выражается никаким отношением целых чисел (рациональным числом). Примером является диагональ квадрата единичной стороны (в те времена не было иррациональных чисел, и придуманы они будут гораздо позднее).

Это открытие потрясло основы пифагорейской философии. Получалось, что число не всемогуще, так как существуют отрезки, отношение которых не выражается отношением целых чисел (а других чисел пифагорейцы не знали).

Пифагорейцы предприняли интенсивные попытки выхода из этого тупика, и здесь, естественно, просматривалось два пути:

  • расширить понятие числа так, чтобы новыми числами стало возможным характеризовать отношение любых двух геометрических отрезков;
  • строить математику не на основе арифметики целых чисел и их отношений, а на основе геометрии, определив для геометрических величин все алгебраические операции.

Первый путь на столь ранней ступени развития математики представлял огромные трудности, которые, были окончательно преодолены лишь в конце XIX в. И пифагорейцы пошли по второму пути — по пути построения алгебры на основе геометрии. Не решаясь изменить свою трактовку числа, пифагорейцы перешли из области чисел в область геометрических величин, построив соответствующее исчисление. Для построения такого исчисления пифагорейская математика располагала всем необходимым. Нужно было только изменить взгляд на роль чертежей, превратив их из средства наглядности в основной элемент алгебры, и логически расположить весь имеющийся материал. Такой подход и зародил так называемую “Геометрическую алгебру”.

Итак, пифагорейцы пришли к мысли, что поскольку геометрические величины имеют более общую природу, чем числа, то в основу математики надо положить не арифметику, а геометрию. Переход к геометрической алгебре был настоящей революцией , которая на первых порах принесла богатые плоды.

1). Сумма a + b представлялась как отрезок длины (a + b).

2). Разность a – b – отрезок длины (a – b).

3). Произведение двух величин a ∙ b – прямоугольник со сторонами a и b, площадь которого равна a ∙ b .

4). Произведение прямоугольника и отрезка – прямоугольный параллелепипед, объем которого V=abc.

Операция деления при таком подходе оказывалась возможной только, если размерность делимого была выше размерности делителя: прямоугольник можно делить на отрезок, но отрезок на отрезок – нельзя.

2.3 Основные положения геометрической алгебры

Основные положения геометрической алгебры сводятся к следующему:
1) алгебраические переменные, как и произвольные числа, представляются отрезкам;
2) сумма чисел или алгебраических переменных представляется в виде отрезка, составленного из слагаемых (рис. 3);
3) произведение двух чисел или алгебраических переменных представляется в виде прямоугольника со сторонами, которые представляют собой отрезки, соответствующие сомножителям (рис. 4). Произведение трёх переменных a, b и c есть прямоугольный параллелепипед со сторонами, соответствующими сомножителям a, b и c (рис.5).

Рисунок 3. Сложение а и b.

Поскольку, греческая геометрия, как и в целом представления греков о природе и мироздании ограничивались тремя измерениями, произведение более чем трёх переменных в геометрической алгебре не рассматривались, как лишённые смысла.

Рисунок 4. Произведение чисел а и b есть площадь прямоугольника со сторонами а и b.

Рисунок 5. Произведение трёх чисел a, b и c есть объём параллелепипеда со сторонами a, b и c .

Вычисления, производимые в геометрической алгебре, носили пошаговый характер. Не рассматривались произведения прямоугольников или сложение прямоугольников с отрезками или параллелепипедами.

Геометрическая алгебра основывалась на античной планиметрии, представляя собой геометрию циркуля и линейки. Поэтому она была максимально приспособлена для исследования тождеств, обе части которых являлись квадратичными формами, и для решения квадратных уравнений. Геометрическая наглядность позволила легко обосновать свойства основных операций над числами: сложения и умножения. Например, переместительное свойство сложения легко следует из того факта, что длина составного отрезка, одна и та же с какой стороны на него не посмотри, то есть a + b = b + a.

Переместительное свойство умножения обосновывается так же наглядно, поворотом соответствующего прямоугольника, то есть a · b = b · a.

Сочетательное свойство сложения наглядно следует из того факта, что в каком порядке не прикладывай отрезки друг к другу, длина составного отрезка будет одинаковой, то есть ( a + b ) + с = a + ( b + c ).

Сочетательное свойство умножения наглядно следует из поворота прямоугольного параллелепипеда, то есть ( a · b ) · с = a · ( b · c ).

Распределительное свойство умножения относительно сложения также легко увидеть на чертеже:

Как видно из этих примеров, наглядность является серьёзным преимуществом геометрической алгебры. Но гораздо более важным преимуществом использования геометрических методов в алгебре явилось то, что обоснования и доказательства тождеств не зависят от того, являются ли используемые величины соизмеримыми или несоизмеримыми и независимы от конкретных величин. Методы геометрической алгебры позволили доказать многие алгебраические тождества. При этом общее доказательство было сделано впервые в истории.

1. (a + b)(a – b) = a 2 – b 2

AE = AD = a; BE = MD = b

AB = a + b; AM = a – b

S ABNM = AB·AM= (a + b)(a –b)

S ABNM = S AEGM + S EBNG

S AEGM =S AEFD – S MGFD = a 2 –ab

S EBNG =S EBCF –S GNCF = ab –b 2

S ABNM =a 2 –ab+ab–b 2 = a 2 –b 2

2. ( a + b ) 2 = a 2 + b 2 + 2 · a · b.

S=S 1 +S 2 +2S 3 => S=a 2 +2ab+b 2 =>

( a + b ) 2 = a 2 + b 2 + 2 · a · b.

Чтобы решить уравнение х 2 = а древние математики поступали так:

Пример1. Решить квадратное уравнение х 2 + 10х =39.

S= (x+5) 2 , S 1 = x 2 , S 2 =5x, S 3 =25

S 1 + 2S 2 = 39 (данное уравнение)

S 1 + 2S 2 = S-S 3 (по свойству площадей)

х 2 + 10х = (х+ 5) 2 – 25 = 39;

Современное решение такого уравнения дало бы нам ещё один корень х = -13.

Пример 2. Решить квадратное уравнение x 2 +8x-48=0

S= (x+4) 2 , S 1 = x 2 , S 2 =4x, S 3 =16

S 1 + 2S 2 = 48 (данное уравнение)

S 1 + 2S 2 = S-S 3 (по свойству площадей)

x 2 +8x=(x+4) 2 -16=48;

Современное решение такого уравнения дало бы нам ещё один корень х = -12.

– Наглядно и доступно иллюстрирует доказательство тождеств и решение уравнений

– Упрощает решение задач и делает его более простым для понимания

– Показывает связь между алгеброй и геометрией

– Все преобразования выполняются на множестве положительных чисел

– Невозможно решать уравнения 3-й и выше степени

– Отрицательные корни и ноль будут потеряны

Таким образом, гипотеза о том, что геометрическая алгебра древних греков применима на уроках математики в современной школе и её можно использовать для доказательства теорем и решения задач подтвердилась частично.

Работа над данным проектом была для нас интересна и полезна, так как во время написания проекта мы расширили свой кругозор, научились собирать нужную информацию, анализировать её, делать выводы, составлять и решать квадратные уравнения таким необычным способом.

Таким образом, мы реализовала все поставленные задачи и достигли цели проекта.

Нажмите, чтобы узнать подробности

Цель – показать необходимость изучения этой науки (геометрии), которая дает возможность понять, а также рассмотреть значение геометрических законов и закономерностей, их практическое применение при проектировании и постройке сооружений.

Фигура – это произвольное множество точек на плоскости. Точка, прямая, отрезок, луч, треугольник, круг, квадрат и так далее – всё это примеры геометрических фигур.
Основными геометрическими фигурами на плоскости являются точка и прямая. Этим фигурам в геометрии не даётся определений. Неопределяемыми геометрическими фигурами на плоскости являются точка и прямая. Точки принято обозначать прописными латинскими буквами: А, В, С, D …. Прямые обозначаются строчными латинскими буквами: а, b, с, d ….

1.Основные геометрические понятия.

Основные геометрические понятия возникли еще в доисторические времена. Наблюдая за формами растений и животных, гор и извилинами рек, за особенностями ландшафта и далекими планетами, человек заимствовал у природы ее правильные формы, размеры и свойства. Материальные потребности побуждали человека строить жилища, изготавливать орудия труда и охоты, лепить из глины посуду и прочее. Все это постепенно способствовало тому, что человек пришел к осознанию основных геометрических понятий. Одним из первых достижений абстрактного мышления древнего человека стало понимание прямой линии.

Прямая не проходит через точку, если точка не принадлежит ей.

Пряма́я — одно из фундаментальных понятий геометрии.
При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии (евклидовой).Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то прямую линию можно определить как линию, путь вдоль которой равен расстоянию между двумя точками. Аналитически прямая задаётся уравнением (в трёхмерном пространстве — системой уравнений) первой степени.

К основным свойствам прямой относятся:

Черед две различные точки проходит одна единственная прямая. Следовательно две прямые не могут иметь более одной общей точки.

Две разные прямые, имеющие общую точку, пересекаются в ней. В связи с тем, что две точки определяют прямую, проходящую через них, прямую обозначают сочетанием букв, к примеру, прямая АВ, прямая PQ.

Точка М, лежащая на прямой а, разбивает её на две части. Каждая из которых называется полупрямой или лучом. Точка М служит началом каждого их этих лучей. Две точки М и N разбивают прямую на три части: два луча МР и NQ и отрезок MN.

Прямая разбивает плоскость на 2 части. Часть плоскости лежащая по одну сторону от этой прямой, называется полуплоскостью.

Если прямые не имеют общих точек, говорят, что они параллельны.

Если две прямые имеют одну общую точку, говорят, что они пересекаются в этой точке.

Две прямые в трёхмерном евклидовом пространстве скрещиваются, если не существует плоскости, их содержащей. Иначе говоря, две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными.

2. Параллелограмм.

Параллелограмм (др.-греч. παραλληλόγραμμον от παράλληλος — параллельный и γραμμή — черта, линия) — это четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых.

Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.

Признаки параллелограмма:
Четырёхугольник является параллелограммом, если выполняется одно из следующих условий:
1. Если в четырёхугольнике противоположные стороны попарно равны, то четырёхугольник - параллелограмм
2. Если в четырёхугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырёхугольник - параллелограмм
3. Если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник - параллелограмм

Параллелограмм, у которого все углы прямые, называется прямоугольником.
Теорема. Если в параллелограмме диагонали равны, то он является прямоугольником.
Параллелограмм, у которого все стороны равны, называется ромбом.
Теорема. Если в параллелограмме диагонали перпендикулярны, то он является ромбом.

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции. Расстояние между основаниями называется высотой трапеции.

Средняя линия трапеции параллельна основаниям и равна их полусумме.

Отрезок, соединяющий середины диагоналей, равен полуразности оснований.

В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Трапеция, у которой боковые стороны равны, называется равнобокой или равнобедренной.
Свойства равнобедренной трапеции.

Прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции.

В равнобедренной трапеции углы при любом основании равны.

В равнобедренной трапеции длины диагоналей равны.

Если трапецию можно вписать в окружность, то она равнобедренная.

Около равнобедренной трапеции можно описать окружность.

Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Трапеция, имеющая прямые углы при боковой стороне, называется прямоугольной.

4.Окружность.

Окружность – это плоская замкнутая линия, все точки которой находятся на одинаковом расстоянии от некоторой точки (точки О), которая называется центром окружности.
(Окружность — геометрическая фигура, состоящая из всех точек, расположенных на заданном расстоянии от данной точки.)
Круг – это часть плоскости, ограниченная окружностью. Точка О также называется центром круга. Расстояние от точки окружности до её центра, а также отрезок, соединяющий центр окружности с её точкой, называется радиусом окружности/круга.

Хорда - греческое - струна, стягивающая что-то
Диаметр - "измерение через"
Углы могут встречаться во все более возрастающем количестве, приобретать, соответственно, все больший разворот – пока не исчезнут окончательно и плоскость не станет кругом. Это очень простой и одновременно очень сложный случай, о котором мне хотелось бы поговорить подробно. Здесь необходимо отметить, что как простота, так и сложность обусловлены отсутствием углов. Круг прост, поскольку давление его границ, в сравнении с прямоугольными формами, нивелировано – различия здесь не так велики. Он сложен, поскольку верх неощутимо перетекает в левое и правое, а левое и правое – в низ.

В Древней Греции круг и окружность считались венцом совершенства. Действительно, в каждой своей точке окружность устроена одинаковым образом, что позволяет ей двигаться самой по себе. Это свойство окружности сделало возможным возникновение колеса, поскольку ось и втулка колеса должны все время быть в соприкосновении. В школе изучается много полезных свойств окружности. Одной из самых красивых теорем является следующая: проведем через заданную точку прямую, пересекающую заданную окружность, тогда произведение расстояний от этой точки до точек пересечения окружности с прямой не зависит от того, как именно была проведена прямая. Этой теореме около двух тысяч лет. Эта фигура получается, если провести дуги окружностей с центрами в вершинах равностороннего треугольника, соединяющие две другие вершины. Если провести к этой фигуре две параллельные касательные, то расстояние между ними будет равно длине стороны исходного равностороннего треугольника, так что такие катки ничем не хуже круглых. В дальнейшем были придуманы и другие фигуры, способные выполнять роль катков.

У каждого треугольника имеется, и притом единственная, окружность девяти точек. Это окружность, проходящая через следующие три тройки точек, положение которых определено для треугольника : основания его высот D1 D2 и D3, основания его медиан D4, D5 и D6 середины D7, D8 и D9 отрезков прямых от точки пересечения его высот Н до его вершин. Эта окружность, найденная в XVIII в. великим ученым Л. Эйлером (поэтому ее часто также называют окружностью Эйлера), была заново открыта в следующем столетии учителем провинциальной гимназии в Германии. Звали этого учителя Карл Фейербах (он был родным братом известного философа Людвига Фейербаха). Дополнительно К. Фейербах выяснил, что окружность девяти точек имеет еще четыре точки, тесно связанные с геометрией любого данного треугольника. Это -точки ее касания с четырьмя окружностями специального вида. Одна из этих окружностей вписанная, остальные три - вневписанные. Они вписаны в углы треугольника и касаются внешним образом его сторон. Точки касания этих окружностей с окружностью девяти точек D10, D11, D12 и D13 называются точками Фейербаха. Таким образом, окружность девяти точек является в действительности окружностью тринадцати точек. Окружность эту очень легко построить, если знать два ее свойства. Во-первых, центр окружности девяти точек лежит в середине отрезка, соединяющего центр описанной около треугольника окружности с точкой Н- его ортоцентром (точка пересечения его высот). Во-вторых, ее радиус для данного треугольника равен половине радиуса описанной около него окружности.

5.Треугольник.

Треуго́льник (в евклидовом пространстве) — это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки, образующие треугольник, называются вершинами треугольника, а отрезки — сторонами треугольника.
Стороны треугольника образуют в вершинах треугольника три угла. Другими словами, треугольник — это многоугольник, у которого имеется ровно три угла.

Вершины — три точки А, В и С. Стороны — отрезки АВ, ВС и СА.
Углы — ∟ ВАС, ∟ СВА и ∟ АСВ.
Периметр треугольника — сумма длин трех сторон треугольника.

Медиана треугольника (m)— отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Биссектриса треугольника (b) — отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны. Высота треугольника (h)— перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

В любом треугольнике медианы пересекаются в одной точке, биссектрисы пересекаются в одной точке, высоты или их продолжения также пересекаются в одной точке.

Теорема. Сумма углов треугольника 180°. Каждая сторона треугольника меньше суммы двух других сторон.

1) против большей стороны лежит больший угол.

2) против большего угла лежит большая сторона.

В прямоугольном треугольнике гипотенуза больше катета

Классификация треугольников по углам. В треугольнике может быть только один тупой угол. В треугольнике может быть только один прямой угол. По сторонам.
Треугольник называется равнобедренным, если две его стороны равны.
Равные стороны называются боковыми сторонами, а третья сторона — основанием равнобедренного треугольника.

5.1. Теоремы треугольника.

В равнобедренном треугольнике углы при основании равны.
Теорема

В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Равносторонний треугольник — все стороны и углы равны.

Если два треугольника равны, то элементы (т. е. стороны и углы) одного треугольника соответственно равны элементам другого треугольника.
В равных треугольниках против соответственно равных сторон лежат равные углы.

5.2.Признаки треугольника.

ПЕРВЫЙ ПРИЗНАК РАВЕНСТВА ТРЕУГОЛЬНИКОВ
Теорема:
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

ВТОРОЙ ПРИЗНАК РАВЕНСТВА ТРЕУГОЛЬНИКОВ
Теорема. Если сторона и два прилежащих угла одного треугольника соответственно равны стороне и двум прилежащим углам другого треугольника, то такие треугольники равны.

ТРЕТИЙ ПРИЗНАК РАВЕНСТВА ТРЕУГОЛЬНИКОВ
Теорема. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

5.3.Прямоугольный треугольник.

СВОЙСТВА ПРЯМОУГОЛЬНЫХ ТРЕУГОЛЬНИКОВ

• Сумма двух острых углов прямоугольного треугольника равна 90°.
• Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.
• Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.

ПРИЗНАКИ РАВЕНСТВА ПРЯМОУГОЛЬНЫХ ТРЕУГОЛЬНИКОВ
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны.

Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.

Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету.

5.4. История изучения треугольника.

6.Многоугольник.

Многоугольник — фигура, составленная из отрезков так, что смежные отрезки не лежат на одной прямой, а несмежные отрезки не имеют общих точек.
Точки А, В, С, D, Е… — вершины многоугольника. Отрезки АВ, ВС, CD, DE, ЕА,… - стороны многоугольника.
Периметр многоугольника (гречечкое пери - вокруг, около) — сумма длин всех сторон.
Многоугольник с n вершинами называется n-угольником; он имеет n сторон.
Две вершины многоугольника, принадлежащие одной стороне, называются соседними.
Диагональ многоугольника (греческое dia - через, gonia - угол, т.е. проходящая через углы) — отрезок, соединяющий любые две несоседние вершины.
Любой многоугольник разделяет плоскость на две части, одна из которых называется внутренней, а другая — внешней областью многоугольника. Фигуру, состоящую из сторон многоугольника и его внутренней области, также называют многоугольником.

Многоугольник называется выпуклым:

1) если он лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины

2) если вместе с любыми своими 2 точками он содержит и соединяющий их отрезок.

Сумма углов выпуклого п-угольника равна (n- 2) 180°.

Многоугольником может называться замкнутая ломаная с самопресечениями и правильные звёздчатые многоугольники.

Площадь многоугольника — это величина той части плоскости, которую занимает многоугольник.

1) равные многоугольники имеют равные площади;

2) если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников;
3) площадь квадрата равна квадрату его стороны.

7. Многранники. Виды многранников

В современном мире нас окружает множество построек состоящих из сложных геометрических фигур, большинство из которых являются многогранниками. Примеров тому очень много, достаточно посмотреть по сторонам и мы заметим что здания, в которых мы живём, магазины, в которые ходим, школы и детские сады и т.д. представлены в виде многогранников.

Призма – это многогранник, две грани которой ABCDE и abcde ( основания призмы ) – равные многоугольники с соответственно параллельными сторонами, а остальные грани ( AabB, BbcC и т.д. ) - параллелограммы, плоскости которых параллельны прямой ( Aa, или Bb, или Cc и т.д. По основанию:

-Небоскрёб Flat Iron (Утюг) на пересечении Бродвея и Пятого Авеню. Построен в 1902 году. 21 этаж, 87 метров

-Пентагон — здание Министерства обороны США в форме пятиугольника. Находится в штате Вирджиния недалеко от Вашингтона.

-Наклонная призма – боковое ребро наклонено к основанию под углом отличны от 90є.

Прямая призма – боковое ребро расположено перпендикулярно к основанию.

7.2. Параллелепипед

Параллелепипед - призма, в основании которой находится параллелограмм.

Наклонный, Прямой, Прямоугольный – это прямой параллелепипед,

в основании которого прямоугольник.

Куб – это прямой параллелепипед,

все грани которого квадраты

7.3. Пирамида

Пирамида – это многогранник, одна из граней которого – произвольный n-угольник, а остальные “n” граней – треугольники, имеющие общую вершину.

-Университетский волейбольно-баскетбольный стадион в Калифорнии

В основании - Квадрат

-Торговый центр в Турции

Цилиндр – это тело, ограниченное частью замкнутой цилиндрической поверхности и частью двух плоскостей, параллельных между собой

Водонапорная башня в Минске, Нефтехранилища, Небоскреб в США

Конус - это геометрическое тело, ограниченное частью конической поверхности, расположенной по одну сторону от вершины и частью пересекающей её плоскости.

Как самостоятельные сооружения конусы в строительстве не используются. Практически всегда они составляют какую-то часть здания, например крыши и архитектурные украшающие детали.

Также в строительстве используют конические сваи.

7.6. Сфера и шар.

Сфера – это множество всех точек пространства, находящихся на положительном расстоянии R от данной точки О, называемой центром сферы.

Шар – это множество всех точек пространства, расстояние которых от данной точки не превосходит заданного положительного числа R. Шар получается при вращении полукруга относительно диаметра.

Шаровой слой – это часть шара, заключенная между двумя параллельными плоскостями.

Шаровой сегмент – это часть шара, отсекаемая от него плоскостью.

ТРК Вояж, г. Санкт-Петербург, Здание в Париже (Франция)

Здание Национального Конгресса в США

Итак, при постройке, как современных зданий, так и зданий прошлых веков необходимы знания геометрии. Архитектурное формообразование с помощью геометрических построений сохраняется во всех случаях. Эта проблема стояла перед архитекторами прошлых веков, не исчезла она и сегодня.

7.7. Двойной квадрат

Два квадрата, сложенные вместе, образуют двойной квадрат. Сложив два двойных квадрата, получим квадрат, повторяющий своими очертаниями исходный квадрат. Это простое аддитивное свойство квадрата широко использовалось в архитектуре эпохи Возрождения.

7.8. Восьмиугольные звезды.

Использование восьмиугольных звезд в архитектурных конструкциях не вызывает никаких сомнений. Автором этого проекта является Леонардо да Винчи.

Золото́е сече́ние (золотая пропорция, деление в крайнем и среднем отношении) — деление непрерывной величины на две части в таком отношении, при котором меньшая часть так относится к большей, как большая ко всей величине.

Читайте также: