Реферат на тему геометрическая оптика

Обновлено: 05.07.2024

Оптика – один из разделов физики, который изучает свойства и физическую природу света, а также его взаимодействия с веществами.

Данный раздел делят на три, приведенные ниже, части:

  • геометрическая или, как ее еще называют, лучевая оптика, которая базируется на понятии о световых лучах, откуда и исходит ее название;
  • волновая оптика, исследует явления, в которых проявляются волновые свойства света;
  • квантовая оптика, рассматривает такие взаимодействия света с веществами, при которых о себе дают знать корпускулярные свойства света.

В текущей главе нами будут рассмотрены два подраздела оптики. Корпускулярные свойства света будут рассматриваться в пятой главе.

Геометрическая оптика. Основные законы геометрической оптики

Задолго до возникновения понимания истинной физической природы света человечеству уже были известны основные законы геометрической оптики.

Закон прямолинейного распространения света

Закон прямолинейного распространения света гласит, что в оптически однородной среде свет распространяется прямолинейно.

Иное доказательство заключается в достаточно известном эксперименте по прохождению света далекого источника сквозь малое отверстие, с образующимся в результате узким световым пучком. Данный опыт подводит нас к представлению светового луча в виде геометрической линии, вдоль которой распространяется свет.

Стоит отметить тот факт, что само понятие светового луча вместе с законом прямолинейного распространения света утрачивают весь свой смысл, в случае если свет проходит через отверстия, размеры которых аналогичны с длиной волны.

Исходя из этого, геометрическая оптика, которая опирается на определение световых лучей – это предельный случай волновой оптики при λ → 0 , рамки применения которой рассмотрим в разделе, посвященном дифракции света.

На грани раздела двух прозрачных сред свет может частично отразиться таким образом, что некоторая часть световой энергии будет рассеиваться после отражения по уже новому направлению, а другая пересечет границу и продолжит свое распространение во второй среде.

Закон отражения света

Закон отражения света, основывается на том, что падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, находятся в одной плоскости (плоскость падения). При этом углы отражения и падения, γ и α – соответственно, являются равными величинами.

Закон преломления света

Закон преломления света, базируется на том, что падающий и преломленный лучи, также как перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение sin угла падения α к sin угла преломления β является величиной, неизменной для двух приведенных сред:

Ученый В. Снеллиус экспериментально установил закон преломления в 1621 году.

Постоянная величина n – является относительным показателем преломления второй среды относительно первой.

Показатель преломления среды относительно вакуума имеет название – абсолютный показатель преломления.

Относительный показатель преломления двух сред – это отношение абсолютных показателей преломления данных сред, т.е.:

Свое значение законы преломления и отражения находят в волновой физике. Исходя из ее определений, преломление является результатом преобразования скорости распространения волн в процессе перехода между двумя средами.

Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости во второй υ 2 :

Абсолютный показатель преломления эквивалентен отношению скорости света в вакууме c к скорости света υ в среде:

На рисунке 3 . 1 . 1 проиллюстрированы законы отражения и преломления света.

Геометрическая оптика. Основные законы геометрической оптики

Рисунок 3 . 1 . 1 . Законы отражения υ преломления: γ = α ; n 1 sin α = n 2 sin β .

Среда, абсолютный показатель преломления которой является меньшим, является оптически менее плотной.

В условиях перехода света из одной среды, уступающей в оптической плотности другой ( n 2 n 1 ) мы получаем возможность наблюдать явление исчезновения преломленного луча.

Данное явление можно наблюдать при углах падения, которые превышают некий критический угол α п р . Этот угол носит название предельного угла полного внутреннего отражения (см. рис. 3 . 1 . 2 ).

Для угла падения α = α п р sin β = 1 ; значение sin α п р = n 2 n 1 1 .

При условии, что второй средой будет воздух ( n 2 ≈ 1 ) , то равенство будет допустимо переписать в вид: sin α п р = 1 n , где n = n 1 > 1 – абсолютный показатель преломления первой среды.

Геометрическая оптика. Основные законы геометрической оптики

Рисунок 3 . 1 . 2 . Полное внутреннее отражение света на границе вода–воздух; S – точечный источник света.

Практическое применение явления полного отражения

Феномен полного внутреннего отражения широко используется во многих оптических устройствах. Одним из таких устройств является волоконный световод – тонкие, изогнутые случайным образом, нити из оптически прозрачного материала, внутри которых свет, попавший на торец, может распространяться на огромные расстояния. Данное изобретение стало возможным только благодаря правильному применению феномена полного внутреннего отражения от боковых поверхностей (рис 3 . 1 . 3 ).

Волоконная оптика – это научно-техническое направление, основывающееся на разработке и использовании оптических световодов.

Практическое применение явления полного отражения

Рисунок 3 . 1 . 3 . Распространение света в волоконном световоде. При сильном изгибе волокна закон полного внутреннего отражения нарушается, и свет частично выходит из волокна через боковую поверхность.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Что такое оптика? Оптика - это раздел физики, который изучает природу света, его свойства, закономерности распространения в различных средах, а также взаимодействие света с веществами. Оптическое излучение представляет собой электромагнитные волны, и поэтому оптика - часть общего учения об электромагнитном поле.

Изучая природу света и закономерности его распространения, человек использует полученные знания себе на пользу.

По традиции оптику принято подразделять на геометрическую, физическую и физиологическую. Геометрическая оптика оставляет вопрос о природе света, исходит из эмпирических законов его распространения и использует представление о световых лучах, преломляющихся и отражающихся на границах сред с разными оптическими свойствами и прямолинейных в оптически однородной среде.

Физическая оптика рассматривает проблемы, связанные с природой света и световых явлений.

Физиологическая оптика — междисциплинарная наука о зрительном восприятии света. Она объединяет сведения по биофизике, биохимии и психологии зрительного восприятия[2].

Нельзя недооценивать практическое значение оптики, а также ее влияния на иные отрасли знания. Удивительный и богатый мир явлений, что происходят во Вселенной, открылся человеческому взору благодаря изобретению спектроскопа и телескопа. Революцию в биологии произвело изобретение микроскопа. Почти всем отраслям науки помогала и продолжает помогать фотография, также изобретение на основе оптики. Конечно же, в основе большинства научных приборов с оптическим наполнением является линза, без которой не было бы ни телескопа, ни микроскопа, фотоаппарата, очков, телевидения и многого другого[7].

Цель работы: рассмотреть законы оптических явлений.

-изучить законы геометрической оптики;

- рассмотреть явления физической оптики;

- построения изображений в линзах.

Одна из первых теорий света – теория зрительных лучей – была выдвинута греческим философом Платоном около 400 г. до н. э. Данная теория предполагала, что из глаза исходят лучи, которые, встречаясь с предметами, освещают их и создают видимость окружающего мира. Взгляды Платона поддерживали многие ученые древности и, в частности, Евклид (3 в до н. э.), исходя из теории зрительных лучей, основал учение о прямолинейности распространения света, установил закон отражения.

Уже в первые периоды оптических исследований были на опыте установлены следующие четыре основных закона оптических явлений:

1. Закон прямолинейного распространения света.

2. Закон независимости световых пучков.

3. Закон отражения от зеркальной поверхности.

4. Закон преломления света на границе двух прозрачных сред.

Дальнейшее изучение этих законов показало, во-первых, что они имеют гораздо более глубокий смысл, чем может казаться с первого взгляда, и во-вторых, что их применение ограничено, и они являются лишь приближёнными законами. Установление условий и границ применимости основных оптических законов означало важный прогресс в исследовании природы света.

Сущность этих законов сводится к следующему.

Закон прямолинейного распространения света

В однородной среде свет распространяется по прямым линиям.

Закон этот встречается в сочинениях по оптике, приписываемых Евклиду и, вероятно, был известен и применялся гораздо раньше.

Опытным доказательством этого закона могут служить наблюдения над резкими тенями, даваемыми точечными источниками света, или получение изображений при помощи малых отверстий. Рис. 1 иллюстрирует получение изображения при помощи малого отверстия, причем форма и размер изображения показывают, что проектирование происходит при помощи прямолинейных лучей[1].

Закон прямолинейного распространения может считаться прочно установленном на опыте. Он имеет весьма глубокий смысл, ибо само понятие о прямой линии, по-видимому возникло из оптических наблюдений. Геометрическое понятие прямой как линии, представляющей кратчайшее расстояние между двумя точками, есть понятие о линии, по которой распространяется свет в однородной среде.

Более детальное исследование описываемых явлений показывает, что закон прямолинейного распространения света теряет силу, если мы переходим к очень малым отверстиям.

Так, в опыте, изображенном на рис. 1, мы получим хорошее изображение при размере отверстия около 0,5 мм. При последующем уменьшении отверстия - изображение будет несовершенным, а при отверстии около 0,5-0,1 мкм изображение совсем не получится и экран будет освещён практически равномерно[3].

Закон независимости световых пучков

Световой поток можно разбить на отдельные световые пучки, выделяя их, например, при помощи диафрагм. Действие этих выделенных световых пучков оказывается независимым, т.е. эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно другие пучки или они устранены[5].

Закон отражения света

Луч падающий, нормаль к отражающей поверхности и луч отраженный лежат в одной плоскости (рис. 2), причем углы между лучами и нормалью равны между собой: угол падения равен углу отражения. Этот закон также упоминается в сочинениях Евклида. Установление его связано с употреблением полированных металлических поверхностей (зеркал), известных уже в очень отдаленную эпоху[4].

1.4. Закон преломления света

Преломление света – изменение направления распространения оптического излучения (света) при его прохождении через границу раздела однородных изотропных прозрачных (не поглощающих) сред. Преломление света сопровождается также отражением света (рис.3).

Явление преломления света было известно уже Аристотелю. Попытка установить количественный закон принадлежит знаменитому астроному Птолемею (120 г. н.э.), который предпринял измерение углов падения и преломления[6].

Закон отражения и закон преломления также справедливы лишь при соблюдении известных условий. В том случае, когда размер отражающего зеркала или поверхности, разделяющей две среды, мал, мы наблюдаем заметные отступления от указанных выше законов. Однако для обширной области явлений, наблюдаемые в обычных оптических приборах, все перечисленные законы соблюдаются достаточно строго[1].

На базе многочисленных опытных фактов в середине XVII века возникают две гипотезы о природе световых явлений:

– корпускулярная, предполагавшая, что свет есть поток частиц, выбрасываемых с большой скоростью светящимися телами;

– волновая, утверждавшая, что свет представляется собой продольные колебательные движения особой светоносной среды – эфира – возбуждаемой колебаниями частиц светящегося тела.

Свет – диалектическое единство противоположных свойств: он одновременно обладает свойствами непрерывных электромагнитных волн и дискретных фотонов.

Свет переносит энергию. При распространении световых волн возникает поток электромагнитной энергии.

Световые волны испускаются в виде отдельных квантов электромагнитного излучения (фотонов) атомами или молекулами[3].

Интерференция – одно из ярких проявлений волновой природы света. Оно связано с перераспределением световой энергии в пространстве при наложении так называемых когерентных волн, то есть волн, имеющих одинаковые частоты и постоянную разность фаз. Интенсивность света в области перекрытия пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, а в минимумах меньше суммы интенсивностей пучков. При использовании белого света интерференционные полосы оказываются окрашенными в различные цвета спектра.

Для расчета интерференции используется понятие оптической длины пути. Пусть свет прошел расстояние L в среде с показанием преломления n. Тогда его оптическая длина пути рассчитывается по формуле:

Для интерференции необходимо наложение хотя бы двух лучей. Для них вычисляется оптическая разность хода (разность оптических длин) по следующей формуле:

Именно эта величина и определяет, что получится при интерференции: минимум или максимум. Запомните следующее: интерференционный максимум (светлая полоса) наблюдается в тех точках пространства, в которых выполняется следующее условие:

hello_html_m7a6846c0.jpg

Разность фаз колебаний при этом составляет:

hello_html_m3c21e503.jpg

При m = 0 наблюдается максимум нулевого порядка, при m = ±1 максимум первого порядка и так далее. Интерференционный минимум (темная полоса) наблюдается при выполнении следующего условия:

Разность фаз колебаний при этом составляет:

hello_html_m3e642c58.jpg

При первом нечетном числе (единица) будет минимум первого порядка, при втором (тройка) минимум второго порядка и т.д. Минимума нулевого порядка не бывает[6].

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий, размеры которых сопоставимы с длиной волны света (огибание светом препятствий). Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени (то есть быть там, где его быть не должно). Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос[4].

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой.

Линзы бывают собирающими и рассеивающими. Если показатель преломления линзы больше, чем окружающей среды, то собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше. Если показатель преломления линзы меньше, чем окружающей среды, то всё наоборот.

Прямая, проходящая через центры кривизны сферических поверхностей, называется главной оптической осью линзы. В случае тонких линз можно приближенно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы. Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. Все прямые, проходящие через оптический центр, называются побочными оптическими осями.

Рисунок 1 Правила построения хода луча в линзах

4.1. Формула линзы

Основное свойство линз – способность давать изображения предметов. Изображение – это точка пространства, где пересекаются лучи (или их продолжения), испущенные источником после преломления в линзе. Изображения бывают прямыми и перевернутыми, действительными (пересекаются сами лучи) и мнимыми (пересекаются продолжения лучей), увеличенными и уменьшенными.

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей.

Для простоты можно запомнить, что изображение точки будет точкой. Изображение точки, лежащей на главной оптической оси, лежит на главной оптической оси. Изображение отрезка – отрезок. Если отрезок перпендикулярен главной оптической оси, то его изображение перпендикулярно главной оптической оси. А вот если отрезок наклонен к главной оптической оси под некоторым углом, то его изображение будет наклонено уже под некоторым другим углом.

Изображения можно также рассчитать с помощью формулы тонкой линзы. Если кратчайшее расстояние от предмета до линзы обозначить через d, а кратчайшее расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:

Величину D, обратную фокусному расстоянию. называют оптической силой линзы. Единица измерения оптической силы является 1 диоптрия (дптр). Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м.

Первые представления древних ученых о свете были весьма наивны. Считалось, что из глаз выходят особые тонкие щупальца и зрительные впечатления возникают при ощупывании ими предметов. Останавливаться подробно на подобных воззрениях сейчас, разумеется, нет нужды.

От источника света, например, лампочки, свет распространяется во все стороны и падает на окружающие предметы, вызывая, в частности, их нагревание. Попадая в глаз, свет вызывает зрительное ощущение – мы видим. Можно сказать, что при распространении света происходит передача воздействий от одного тела (источника) к другому (приемнику).

Свет представляет собой сложное явление: в одних случаях он ведет себя как электромагнитная волна, в других – как поток особых частиц (фотонов).

Длины воспринимаемых глазом световых волн очень малы (порядка м). Поэтому распространение видимого света можно в первом приближении рассматривать, отвлекаясь от его волновой природы и полагая, что свет распространяется вдоль некоторых линий, называемых лучами. В предельном случае, соответствующем l → 0, законы оптики можно сформулировать на языке геометрии. В соответствии с этим раздел оптики, в котором пренебрегают конечностью длин волн, называется геометрической оптикой. Другое название этого раздела – лучевая оптика.

Основу геометрической оптики образуют четыре закона: 1) закон прямолинейного распространения света; 2) закон независимости световых лучей; 3) закон отражения света; 4) закон преломления света.

В основу геометрической оптики может быть положен принцип, установленный французским математиком Ферма в середине XVII столетия. Из этого принципа вытекают законы прямолинейного распространения, отражения и преломления света. В формулировке самого Ферма принцип гласит, что свет распространяется по такому пути, для прохождения которого ему требуется минимальное время.

требуется время dt = ds / v, где v – скорость света в данной

точке среды. Заменив v через c/n (из n=c/v), получим, что

dt = (1/c) n ds. Следовательно, время τ, затрачиваемое

светом на прохождение пути от точки 1 до точки 2, равно

Имеющая размерность длины величина

называется оптической длиной пути. В однородной среде оптическая длина равна произведению геометрической длины пути s на показатель преломления среды n:

Пропорциональность времени прохождения τ оптической длине пути L дает возможность сформулировать принцип Ферма следующим образом: свет распространяется по такому пути, оптическая длина которого минимальна. Точнее, оптическая длина пути должна быть экстремальной, т. е. либо минимальной, либо максимальной, либо стационарной – одинаковой для всех возможных путей. В последнем случае все пути света между двумя точками оказываются таутохронными (требующими для своего прохождения одинакового времени).

Из принципа Ферма вытекает обратимость световых лучей. Действительно, оптический путь, который минимален в случае распространения света из точки 1 в точку 2, окажется минимальным и в случае распространения света в обратном направлении.

по тому же пути, но в обратном направлении.

Получим с помощью принципа Ферма законы отражения и преломления света. Пусть

свет попадает из точки А в точку В, отразившись

от поверхности MN (рис. 2; прямой путь из А в В

прегражден непрозрачным экраном Э). Среда, в

которой проходит луч, однородна. Поэтому ми-

нимальность оптической длины пути сводится к

минимальности его геометрической длины. Гео-

метрическая длина произвольно взятого пути

равна АО΄В = А΄О΄В (вспомогательная точка А΄

является зеркальным изображением точки А). Из

рисунка видно, что наименьшей длиной обладает

путь луча, отразившегося в точке О, для которой угол отражения равен углу падения. Заметим, что при удалении точки О΄ от точки О геометрическая длина пути неограниченно возрастает, так что в данном случае имеется только один экстремум – минимум.

Теперь найдем точку, в которой должен преломиться луч, распространяясь от А к В, чтобы оптическая длина пути была экстремальна (рис. 3). Для произвольного луча оптическая длина пути равна:

Чтобы найти экстремальное значение, продифференцируем L по x и приравняем производную к нулю

Множители при n и n равны соответственно sin υ и sin υ΄΄. Таким образом, получается соотношение:


Разработка большинства модификаций оптического оборудования основана на законах распространения света. В некоторых закономерностях учитывается двойственная природа света, а в других – нет. Геометрическая оптика – это наука, в которой рассматриваются особенности распространения света, не имеющие общих связей с его природой. Данная дисциплина представляет собой наиболее древнюю часть оптики, как области научных знаний.

Физика

Геометрическая оптика — что изучает предмет

Разработка большинства модификаций оптического оборудования основана на законах распространения света. В некоторых закономерностях учитывается двойственная природа света, а в других – нет. Геометрическая оптика – это наука, в которой рассматриваются особенности распространения света, не имеющие общих связей с его природой. Данная дисциплина представляет собой наиболее древнюю часть оптики, как области научных знаний.

Геометрическая оптика является разделом оптики, в котором изучают распространение света в условиях разнообразных оптических систем, включая линзы и призмы, не принимая во внимание вопрос о природе света.

Одним из ключевых терминов в оптике, включая направление геометрической оптики, является понятие луча.

Световой луч является линией, вдоль которой происходит распространение световой энергии.

Световой луч представляет собой пучок света с толщиной, которая намного меньше, чем расстояние его распространения. Подобное определение можно сравнить с объяснением материальной точки, характерным для кинематики.

Важные закономерности геометрической оптики известны с давних времен. В 430 г. до н.э. Платон вывел закон прямого распространения света. Трактаты Евклида содержат формулировку закона прямолинейного распространения света, а также закон равенства углов падения и отражения. Аристотель и Птолемей проводили исследования в области преломления света. Однако перечисленные научные труды не содержали точные формулировки законов геометрической оптики.

Геометрическая оптика представляет собой предельный случай волновой оптики, в котором длина световой волны приближается к нулевым значениям. Наиболее простые оптические явления такие, как тень и формирование изображений в оптических приборах, рассматривают в рамках геометрической оптики. Основой формального построения научны знаний являются четыре закона, справедливость которых была обоснована опытным путем:

  • закон прямолинейного распространения света;
  • закон независимости световых лучей;
  • закон отражения;
  • закон преломления света.

Анализ этих закономерностей выполнен Х. Гюйгенсом с помощью простого и наглядного метода, который в дальнейшем получил название принцип Гюйгенса.

Свет

Принцип Гюйгенса: любая точка, до которой доходит световое возбуждение, является, в свою очередь, центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

Гюйгенс Христиан (1629-1695), нидерландский ученый, который в период с 1665 по 1681 гг. работал в Париже. В 1657 году Гюйгенс изобрел маятниковые часы, дополненные спусковым механизмом, сформулировал закономерности колебаний физического маятника. В 1690 году ученый опубликовал волновую теорию света и представил объяснение двойного лучепреломления. Благодаря его научным исследованиям, был усовершенствован телескоп, сконструирован окуляр. Также Гюйгенс совершил открытие кольца у Сатурна и его спутника Титана. Ученый являлся автором одного из первых учений по теории вероятностей, отмеченного 1657 г.

Основные законы геометрической оптики

Исходя из собственных исследований, Гюйгенс представил объяснение прямолинейности распространения света. Ученый сформулировал закономерности для отражения и преломления света.

Закон прямолинейного распространения света

Данное утверждение является первым законом геометрической оптики. Закон о прямолинейном распространении света гласит, что в условиях однородной прозрачной среды свет распространяется прямолинейно. Согласно теореме Ферма, распространение света происходит в том направлении, время распространения по которому будет минимально.

Доказательством того, что свет в оптически однородной среде распространяется прямолинейно, является тень с резкими границами, которую отбрасывают непрозрачные предметы во время освещения их источниками с небольшими габаритами. Подробные экспериментальные опыты установили нарушение этого закона в случае прохождения света через отверстия очень малого диаметра. При этом степень отклонения от прямолинейности распространения возрастает при уменьшении отверстия.

Солнце

Тень, которую отбрасывает предмет, объясняется прямолинейностью распространения световых лучей в условиях оптически однородной среды. В качестве астрономической иллюстрации данного явления формирования тени и полутени служит затенение одних планет другими. К примеру, затмение Луны можно наблюдать, когда она находится в области тени, отбрасываемой Землей. По причине взаимного перемещения нашей планеты и ее спутника тень от Земли движется по Луне, и лунное затмение можно наблюдать через несколько частных фаз.

Луна

Закон отражения света

Во втором законе геометрической оптики рассматриваются законы отражения света. Основные положения закономерности:

  • отраженный, падающий лучи и перпендикуляр, установленный на границе раздела двух сред, находятся в одной плоскости;
  • углы падения и отражения равны.

Закон отражения

Закон независимости световых пучков заключается в том, что эффект, который производит отдельный пучок, не зависит от одновременного действия остальных пучков или их отсутствия. Если световые пучки разбить на отдельные компоненты, к примеру, используя диафрагму, можно продемонстрировать независимое действие выделенных световых пучков.

Объктив

Закон отражения можно схематично представить на рисунке.

Закон отражения схематично

Вывести закон отражения можно с помощью принципа Гюйгенса. Можно предположить, что плоская волна, то есть фронт волны АВ, распространяясь в вакуумной среде по направлению I со скоростью C, попадает на границу раздела двух сред.

Граница раздела двух сред

В том случае, когда фронт волны АВ достигает отражающую поверхность в точке А, эта точка излучает вторичную волну. Для того чтобы волна прошла расстояние ВС, потребуется затратить время, вычисляемое по формуле:

За такой же промежуток времени фронт вторичной волны достигнет точек полусферы. Ее радиус AD можно определить с помощью формулы:

Положение фронта, характерного для отраженной волны, в рассматриваемый момент времени, согласно принципу Гюйгенса, будет задано с помощью плоскости DC. Направление, в котором распространяется эта волна, определяется лучом II. Согласно равенству треугольников ABC и ADC , сформулирован закон отражения: угол падения α и угол отражения у равны друг другу.

Закон преломления света

Согласно третьему закону геометрической оптики объясняется характер преломления света. Закономерность заключается в следующем:

  • преломленный, падающий лучи и перпендикуляр, который восстановлен в точке падения, лежат в одной плоскости;
  • отношение синуса угла падения к синусу угла преломления является величиной, которая постоянна для данных двух сред и представляет собой показатель преломления(n).

Призма

Показатели интенсивности, которыми обладают отраженный и преломленный лучи, определяются средой и границей раздела.

Закон преломления

Физический смыл показателя преломления можно записать с помощью уравнения:

Показатель преломления представляет собой относительную величину. Это связано с особенностью измерений, которые выполняются относительно двух сред.

В том случае, когда одна из сред является вакуумом, применим принцип Ферма:

где с является скоростью света в вакууме;

n представляет собой абсолютный показатель преломления, который характеризует среду относительно вакуума.

В том случае, когда наблюдается переход света из среды, которая отличается меньшей оптической плотностью, в более плотную среду, скорость света будет снижаться. Оптически более плотной средой называют среду, характеризующуюся меньшей скоростью света. Оптически менее плотная среда представляет собой среду с большей скоростью света.

Применение явления полного отражения на практике

В геометрической оптике используют понятие предельного угла преломления. Данный термин обозначает наибольший угол падения луча, при котором наблюдают преломление в процессе перехода луча в среду с меньшей плотностью.

Преломление

Если углы падения больше, чем предельный угол, то можно рассматривать полное внутреннее отражение.

Закон полного внутреннего отражения

Границы применимости геометрической оптики состоят в необходимости учеты размеров, которыми характеризуются препятствия для света. Параметром света является длина волны, которая составляет примерно \(10^\) метра. В том случае, когда габариты препятствия превышают длину волны, используют размеры геометрической оптики. Явление полного отражения света применяют для конструирования призмы полного отражения.

Полное отражение

Величина преломления стекла составляет n>1.5. Исходя из этого, предельный угол для границы стекло – воздух составляет:

Если свет падает на границу стекло – воздух при угле α больше 42 градусов, можно наблюдать полное отражение. На рисунке изображены призмы полного отражения, благодаря которым можно выполнить следующие действия:

  • поворот луча на 90 градусов;
  • поворот изображения;
  • оборот лучей.

Призмы полного отражения применяют при конструировании оптического оборудования, например, биноклей и перископов. Также данное изобретение используют при сборке рефрактометров, предназначенных для определения показателей преломления тел. Принцип действия устройства таков: согласно закону преломления, измеряют угол α, определяют относительный показатель преломления двух сред, а также абсолютную величину преломления одной из сред при известной величине преломления второй среды.

Оптика

Полное отражение используют в производстве светодиодов. Световые элементы являются тонкими, произвольно изогнутые волокна, изготовленные из оптически прозрачного материала.

Светодиод

В волоконных устройствах используют стеклянные нити со световедущей жилой или сердцевиной, окруженной стеклом или оболочкой из другого стекла, характеризующейся меньшей величиной преломления. Свет, который падает на торец световода под углом, превышающим предельный, подвергается на поверхности раздела сердцевины и оболочки полному отражению и распространяется только вдоль световедущей жилы.

Световоды являются неотъемлемым компонентом при изготовлении телеграфно-телефонных кабелей с большой емкостью. Конструкция включает сотни и тысячи тонких волокон, диаметр которых сравним с толщиной человеческого волоса. Провода служат для передачи до восьмидесяти тысяч телефонных разговоров одновременно. Также световоды активно применяют в производстве электронно-лучевых трубок, электронно-счетных машин, для кодирования данных, в медицинской отрасли в сфере интегральной оптики.

Волокно

Законы геометрической оптики послужили основой для великих изобретений, которые применяются по сей день. Закономерности данной области научных знаний являются неотъемлемой частью образовательных программ многих современных вузов. Если в процессе освоения дисциплин возникают сложности, то студенты всегда могут обратиться за помощью к ресурсу Феникс.Хелп.

Читайте также: