Реферат на тему галактики вселенной

Обновлено: 28.06.2024

Вселенная, весь мир, безграничный во времени и пространстве и бесконечно разнообразный по тем формам, которые принимает материя в процессе своего развития. Вселенная существует объективно, независимо от сознания человека, её познающего. Вселенная содержит гигантское множество небесных тел, многие из которых по размерам превосходят Землю иногда во много миллионов раз. Всякое подлинно научное исследование признаёт объективное существование, материальность Вселенной.

Содержание

Введение 3
I.Вселенная. 4
1.Что такое Вселенная? 4
2.Структура Вселенной 5
II.Метагалактики 8
III.Галактики 12
Заключение 29
Литература 30

Вложенные файлы: 1 файл

реферат по енкм.doc

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ

ИНСТИТУТ ФИЛОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ И МЕЖКУЛЬТУРНЫХ КОММУНИКАЦИЙ

Кафедра программирования и ВМ

Направление: педагогическое образование

ВСЕЛЕННАЯ. МЕТАГАЛАКТИКИ. ГАЛАКТИКИ.

1.Что такое Вселенная?

Введение

Вселенная, весь мир, безграничный во времени и пространстве и бесконечно разнообразный по тем формам, которые принимает материя в процессе своего развития. Вселенная существует объективно, независимо от сознания человека, её познающего. Вселенная содержит гигантское множество небесных тел, многие из которых по размерам превосходят Землю иногда во много миллионов раз. Всякое подлинно научное исследование признаёт объективное существование, материальность Вселенной.

Материализм считает, что различные явления, происходящие в мире, взаимосвязаны и обусловлены. Они развиваются в пространстве и времени. Изучение закономерностей, которым подчиняются эти связи, является основной задачей естествознания. В противоположность философскому идеализму, утверждающему, что пространство и время являются не объективной реальностью, а формами человеческого созерцания, материализм признаёт объективную реальность пространства и времени. Поэтому пространство и время также подвергаются изучению со стороны естествознания.

I.Вселенная.

1.Что такое Вселенная?

Земля – 12 756 км в поперечнике

Солнце – 1 392 000 км в поперечнике

Орбита Земли – около 300 миллионов км в поперечнике

Орбита Плутона – около 12 миллиардов км в поперечнике

Галактика Млечный Путь – 100 000 световых лет в поперечнике

Местная группа звезд – 6 млн. световых лет в поперечнике

Местное сверхскопление – 80 млн. световых лет в поперечнике

Обозримая вселенная – от 26 до 30 миллиардов световых лет в поперечнике.

Существует также гипотеза о том, что Вселенная может быть частью мульти вселенной — системы, содержащей множество других вселенных.

2.Структура Вселенной

Расстояния, доступные современным телескопам, составляют миллиарды световых лет. Вселенную на таких масштабах изучает астрономия и космология. Теоретической базой для космологии является общая теория относительности. В самом крупном масштабе Вселенная представляет собой расширяющееся пространство, заполненное губкообразной клочковатой структурой. Стенки этой губчатой структуры представляют собой скопления миллиардов галактик. Расстояния между ближайшими друг к другу галактиками составляют около миллиона световых лет. Каждая галактика составлена из сотен миллиардов звёзд, которые обращаются вокруг центрального ядра. Размеры галактик составляют до сотен тысяч световых лет. Считается, что большинство звёзд являются кратными и представляют собой центры планетарных систем из нескольких планет. Расстояния между компаньонами кратных систем или планетами и их звёздами составляют десятки и сотни астрономических единиц (миллиарды и десятки миллиардов километров). Наиболее важный результат космологии — открытие расширения Вселенной — был получен путём наблюдений красного смещения и количественно оценен законом Хаббла. Экстраполяция этого расширения назад во времени приводит к гравитационной сингулярности, абстрактному математическому понятию, которое может соответствовать или не соответствовать реальности. Это дает основание теории Большого взрыва, доминирующей на сегодня модели в космологии. Согласно данным НАСА, полученным с помощью WMAP, возраст Вселенной от момента Большого взрыва был оценен в 13,7 миллиарда лет с погрешностью в один процент. Данная оценка основывается на предположении, что лежащая в основе модель для анализа данных корректна. Другие методы оценки возраста Вселенной дают другие результаты. Фундаментальным доводом в пользу Большого взрыва является тот факт, что чем дальше галактика находится от нас, тем быстрее она удаляется от нас. Подтверждением также служит космическое микроволновое фоновое излучение (реликтовое излучение), которое возникло вскоре после Большого взрыва. Это реликтовое излучение однородно во всех направлениях. Этот факт космологи пытались объяснить ранним периодом инфляционного расширения, последовавшего за Большим взрывом. Единой точки зрения, является ли Вселенная действительно бесконечной или конечной в пространстве и объёме, не существует. Тем не менее, наблюдаемая Вселенная, включающая все местоположения, которые могут воздействовать на нас с момента Большого взрыва, конечна, поскольку конечна скорость света. Границей космического светового горизонта является расстояние 4,19 гигапарсека. Действительное расстояние до границы наблюдаемой Вселенной больше благодаря всё увеличивающейся скорости расширения Вселенной и оценивается в 78 миллиардов световых лет. Вопрос о форме

II.Метагалактики

Так называют весь обозримый мир, изучаемый как единое целое. До 1924 года существование других галактик не било доказано, его лишь предполагали. После того, как Эдвин Хаббл при помощи самого большого в то время телескопа с диаметром зеркала 2,5 м обнаружил в галактике М31 (так обозначают туманность Андромеды), переменные звезды - цефеиды,сомнения в звездной природе объекта М31 отпали. К настоящему времени установлено, что число доступных наблюдению галактик, во всяком случае, не меньше миллиарда. Самые далекие из них находится на расстояниях около 12 млрд. световых лет. Их наблюдаемый теперь свет был испущен задолго до появления Земли.

В состав Метагалактики входят галактики и квазары, образующие группы и скопления. Всё пространство Метагалактики (часто называемой Вселенной) пронизано излучениями. Это, во-первых, инфракрасное, видимое, ультрафиолетовое и рентгеновское излучение галактик и квазаров, а также потоки нейтрино, и, во-вторых, реликтовое микроволновое и нейтринное излучения, возникновение которых связывают с Большим взрывом, положившим начало Метагалактики.

Одно время полагали, что пространственное распределение галактик имеет ячеистый вид (первоначально сгущения галактик в стенках “ячеек” называли сверхскоплениями). Однако, скорее всего, клочковатая структура наблюдаемой Метагалактики - результат совместного действия двух факторов: 1 - случайных флуктуаций (колебаний) в распределении чисел групп и скоплений галактик в равных объёмах пространства и 2 - клочковатой структуры межзвёздного поглощающего вещества нашей Галактики. В отличие от звезд, изображения галактик на фотопластинках имеют низкую поверхностную яркость. Поэтому даже незначительное межзвёздное ослабление света (в газопылевых облаках) приводит к существенному искажению картины видимого распределения галактик даже вдали от Млечного Пути.

Если в Метагалактике выделять равные кубические объёмы с длиной ребра куба порядка 300 млн. световых лет, то число галактик внутри таких объемов окажется одинаковым в пределах случайных колебаний. Это свойство Метагалактики называют ее однородностью, предполагая дополнительно, что все характеристики вещества и излучения в этих объемах тоже одинаковы. В основе построения теоретических моделей Метагалактики лежит космологический принцип - предположение, что Вселенная однородна и изотропна. (Изотропность означает одинаковость свойств материи по всем направлениям).

Свойства галактик частично рассматривались выше на примере Галактики. Следует добавить, что кроме спиральных галактик существуют еще эллиптические (названные так по их виду в проекции на фотопластинку), в которых нет спиралей и, как правило, отсутствует пыль. Наконец, существует класс многочисленных неправильных галактик - относительно небольших размеров и неправильной формы (пример - Малое Магелланово Облако).

Квазары, упомянутые выше при перечислении известных видов объектов Метагалактики, вероятно являются ядрами зарождающихся галактик. Бурные процессы в этих ядрах сопровождаются излучением электромагнитной энергии в десятки и сотни раз более мощным, чем от самых больших “зрелых” галактик. Первоначально квазары были обнаружены как радиоисточники ничтожно малых угловых размеров. В оптической области спектра квазар выглядит белой звездочкой. Ни один квазар нельзя увидеть невооружённым глазом. Ещё одно свойство квазаров - все они удаляются от нас (в каком бы направлении не наблюдались) со скоростями в десятки и сотни тысяч километров в секунду.

Скопления галактик содержат сотни членов, группа - несколько десятков. Наша Галактика вместе с галактикой М31 (на расстоянии в два миллиона световых лет) входит в Местную группу галактик, включающую ещё три десятка сравнительно небольших галактик.

В 1929 году был опубликован закон Хаббла, согласно которому все галактики (за исключением нескольких самых близких) удаляются от нас: V=Hr . Здесь  - лучевая скорость в км/с, расстояние, выраженное в мегапарсеках (мегапарсек равен 3,1x1019 км) и H=75 - постоянная, называемая постоянной Хаббла.

Судьба расширения Метагалактики зависит от средней плотности материи. Если она меньше некоторого критического значения, то гравитационное взаимодействие между скоплениями галактик не остановит расширение и оно не сменится сжатием. При плотности, большей критического значения, Метагалактика то сжимается, то снова расширяется. Данные наблюдений пока не позволяют сделать уверенный выбор между этими вариантами. Однако при исследовании скоростей галактик в скоплениях выясняется, что значения скоростей превосходят тот предел, при котором скоплению уже грозит быстрый распад. Следовательно, либо скопления галактик действительно распадаются (но тогда неясно, почему они не успели уже это сделать), либо там присутствуют какие-то скрытые, не наблюдаемые в оптической области спектра, массы. Допустив наличие таких масс, можно получить значение средней плотности Метагалактики примерно равное критическому. Однако существует ещё и третья возможность: члены скопления с наибольшими скоростями относительно его центра на самом деле скоплению не принадлежат и лишь случайно проецируются на него. Исключить такую возможность непросто, так как расстояния до галактик определяются с большими ошибками.

Самые далекие скопления движутся со скоростями, близкими к скорости света. Следствием этого (и эффекта Доплера) является наблюдаемое увеличение длины волны излучения. Далёкие галактики краснеют и тускнеют. Более того, с точки зрения земного наблюдателя замедляются все происходящие там физические процессы. Но точно так же выглядит и наша звёздная система (Галактика) с точки зрения жителей тех далеких галактик. Наконец, на еще больших взаимных расстояниях, определяющих так называемый “горизонт событий”, объекты оказываются недоступными для их взаимных наблюдений. Виною тому является скорость взаимного удаления, близкая к скорости света.

Время начала расширения можно грубо оценить, используя закон Хаббла. Любая галактика, удаляющаяся от нашей со скоростью преодолеет расстояние за время, равное r/Vr. Заменив величину Vr произведением Hr, после сокращения найдем, что искомое время равно 1/H. Ввиду того, что ответ не зависит от расстояния r, можно сделать вывод, что вещество, из которого сформировались скопления галактик, было выброшено из одного и того же места одновременно. Это произошло около 15-20 млрд. лет назад.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Строение и эволюция Вселенной

Изучение Вселенной, даже только известной нам её части, является грандиозной задачей. В прошлом люди наблюдали за происхождение звёзд ,придумывали им названия , старались изучить их, и понять как они устроены . Чтобы получить те сведения, которыми располагают современные ученые, понадобилось много труда. Предки помогли нам хоть чуть-чуть узнать о космосе, но в современно время мы узнали чуть больше ,чем предки, но каждый день появляются новые гипотезы и сведенья о появление новой звезды, новой черной дыры и о другом.

Процесс эволюции Вселенной происходит очень медленно. Ведь Вселенная во много раз старше астрономии и вообще человеческой культуры. Зарождение и эволюция жизни на земле является лишь маленьким звеном в эволюции Вселенной. И всё же исследования, проведенные в нашем веке, приоткрыли нам занавес далекого прошлого.

Вселенная эволюционирует, бурные процессы происходили в прошлом, происходят сейчас и будут происходить в будущем.

Ø Узнать как эволюционировала Вселенная

ü Рассмотреть теории и гипотезы о возникновения Вселенной

ü Изучить строение Вселенной

1. Как появилась вселенная

Вселе́нная — не имеет строгого определенного понятия в астрономии и философии. Оно делится на две сущности: умозрительную (философскую) и материальную

Она представляет собой все существующее пространство. Галактики, звезды, планеты – все это часть необъятной Вселенной. (приложение 1 рис.1)

Среди всех теорий о происхождении Вселенной эта появилась самой первой. Очень хорошая и удобная версия, которая, пожалуй, будет иметь актуальность всегда. Кстати, многие ученые физики, несмотря на то что наука и религия часто представляются понятиями противоположными, верили в Бога.

Пожалуй, самая распространенная и наиболее признанная модель происхождения нашей Вселенной - это теория Большого взрыва.

На данный момент теория Большого взрыва является наиболее логичным предположением о том, как возникла Вселенная. Она объясняет появление объектов, физических законов, материй и всего того, что находится в космосе.

Предположительно, все началось с небольшой сингулярности огромной плотности, для которой не существовало времени. В определенный момент она начала расти с огромной скоростью, порождая пространство, физические законы, гравитацию и т.д. Долгое время температура внутри была настолько высокой, что образование каких-либо частиц было невозможным. Через 380 тыс. лет она снизилась до 3000К, и тогда начали формироваться субатомные частицы, которым на смену вскоре пришли полноценные атомы. А через миллиарды лет из пылевых облаков они превратились в звезды, планеты, астероиды.

Взрыв звезды

Но сверхновые – не просто удивительное природное явления. Это самые важные явления, необходимый для развития сложной материи и в том числе, жизни.

Судьба одиночного светила зависит от его начальной массы. Звезды образуются в результате гравитационного коллапса газовых облаков, состоящих в основном из молекулярного водорода и гелия (один атом He на 12 атомов Н2), следовых количеств более тяжелых элементов и твердых пылевых частиц. Коллапс завершается рождением протозвезды, которая имеет шанс превратиться в полноправное светило. Для этого в ее ядре должно начаться устойчивое термоядерное горение водорода, способное полностью компенсировать потери энергии, уносимой в космос излучением звезды (гелий в этом процессе не участвует, поскольку для его поджога требуются куда большие температуры). Минимальная температура, необходимая для воспламенения водорода, составляет около 3 млн К. Согласно модельным вычислениям, для достижения этого порога масса протозвезды должна превысить 0,075 массы Солнца.(приложение2.рис.1)

Сверхновые могут появиться и другими путями. К примеру, хотя большинство белых карликов медленно набирают массу, некоторые звёзды могут получить быстрый прирост массы (например, от столкновения с другой звездой) и быстро преодолеть предел Чандрасекара – так быстро, что они не успеют начать коллапсировать.

2. Строение вселенной

Вселенная — это весь материальный мир, разнообразный по формам, которые приобретает материя и энергия. (приложенние1.рис.3)

Вселенная состоит из пустот и галактических нитей, которые можно разбить на сверхскопления, скопления, группы галактик, а затем и на галактики.

Войды ( пустота) — участки космического пространства, в которых концентрация галактик в десятки раз меньше средней. Они окаймлены скоплениями и сверхскоплениями галактик. Размеры войдов составляют около 10-30 мегапарсек. Большие войды могут достигать в размерах 150 мегапарсек и вероятно охватывают около 50% объема Вселенной.

Галактики

Что такое галактика? – Основная структурная единица во Вселенной, галактика содержит — 150 — 200 миллиардов звезд; звездные системы разного вида, которые состоят из звезд, газовых и пылевых туманностей и межзвездного рассеянного вещества.

Есть одиночные галактики, но обычно они предпочитают располагаться группами. Как правило это 50 галактик, которые занимают в диаметре 6 миллионов световых лет. Группа Млечного Пути насчитывает больше 40 галактик.

Скопления – это область с 50-1000 галактиками, которые могут достигать размеров в 2-10 мегапарсек (диаметр). Интересно заметить, что их скорости невероятно большие, а значит, должны преодолевать гравитацию. Однако они все же держатся вместе.

Обсуждения темной материи появляется на этапе рассмотрения именно галактических скоплений. Считается, что тмено она создает ту силу, которая не дает возможности галактикам разлететься в разные стороны.

Порой группы объединяются, тем самым формируя сверхскопление. Это одни из крупнейших вселенских структур. Наибольший представитель – Великая Стена Слоуна, которая растянулась на 500 миллионов световых лет в длину, 200 миллионов световых лет в ширину и 15 миллионов световых лет в толщину.

Млечный Путь состоит примерно из 10 миллиардов звезд. Свету, чтобы добраться из одного конца галактики в другой, требуется 100 тысяч лет.(приложение1.рис.4.)

Звезды распределены в галактиках неравномерно, в разных частях имеются плотные скопления, напоминающие шар. Также есть пространства, где на протяжении многих световых лет нет ни одного светила.

Вокруг большинства звезд находятся планеты, обладающие уникальным внешним видом, атмосферой и другими особенностями. Также вокруг некоторых имеются спутники – небольшие космические объекты, удерживаемые за счет притяжения.

3. Солнечная система

Со́лнечная систе́ма — планетная система, включает в себя центральную звезду — Солнце — и все естественные космические объекты, вращающиеся вокруг Солнца. Она сформировалась путём гравитационного сжатия газопылевого облака примерно 4,57 млрд лет назад. (приложение1.рис.5)

В центре системы располагается Солнце, состоящее из гелия и водорода. Температура на его поверхности составляет примерно 6000 градусов Цельсия, а размеры сферы во много раз больше, чем у других объектов, находящихся в области его притяжения. Звезда относится к желтым карликовым.

Интересный факт: Солнце притягивает объекты на дистанции в два световых года. Это примерно 18,9 триллионов километров.

Вокруг светила на разном расстоянии расположены планеты, которые делятся учеными на две группы: земная и газовая.

Поскольку Солнечной системе миллиарды лет, люди могут лишь строить гипотезы о способах ее появления. Наиболее популярной является небулярная теория, выдвинутая учеными Лапласом, Кантом и Сведенборгом в XVIII веке. Она строится на том, что система образовалась за счет гравитационного коллапса одной из частей огромного облака, состоящего из газа и пыли. В будущем гипотеза дополнялась за счет данных, полученных при исследовании космоса.

Сейчас процесс возникновения Солнечной системы описывается следующими шагами:

1. Изначально в этой области вселенной находилось облако, состоящее из гелия, водорода и других веществ, полученных при взрывах старых звезд. В небольшой его части началось уплотнение, ставшее центром гравитационного коллапса. Он постепенно начал притягивать к себе окружающие вещества.

2. Из-за притяжения веществ размеры облака начали уменьшаться, при этом росла скорость вращения. Постепенно его форма превратилась в диск.

3. По мере сжатия увеличивалась плотность частиц на единицу объема, что приводило к постепенному нагреву вещества за счет частых столкновений молекул.

4. Когда центр гравитационного коллапса разогрелся до нескольких тысяч кельвинов, он начал светиться, что означало образование протозвезды. Параллельно с этим, в разных областях диска начали появляться другие уплотнения, которые в будущем послужат гравитационными центрами для образования планет.

5. Финальный этап формирования солнечной системы начался в период, когда температура центра протозвезды превысила несколько миллионов кельвинов. Тогда гелий и водород вступили в реакцию термоядерного синтеза, что привело к появлению полноценной звезды. Остальные уплотнения диска постепенно сформировались в планеты, которые начали вращаться в одном направлении вокруг Солнца, находясь на одной плоскости.

Данный процесс длился очень долгое время, и ученые могут лишь догадываться, сколько лет ушло на формирование Солнечной системы.

4. Происхождение звезд

Как и все тела в природе, звёзды не остаются неизменными, они рождаются, эволюционируют, и, наконец "умирают". Чтобы проследить жизненный путь звёзд и понять, как они стареют, необходимо знать, как они возникают. В прошлом это представлялось большой загадкой; современные астрономы уже могут с большой уверенностью подробно описать пути, ведущие к появлению ярких звёзд на нашем ночном небосводе(прилодение1.рис.6)

В середине XIX века теории о появлении звезд высказывали многие люди, но самую серьезную гипотезу того времени традиционно связывают с именами Кельвина и Гельмгольца. Изначально предполагалось, что причина свечения Солнца и других звезд очень проста: на них падает какое-то вещество, при ударе оно нагревается и начинает светиться. Более научными словами, кинетическая энергия превращается в тепловую, а та — в энергию излучения. Дальше эта мысль развивалась: чтобы обеспечить наблюдаемую светимость Солнца, на него должно падать много вещества, и нам должно быть видно, как оно пролетает мимо Земли, но его не обнаружили. Тогда исследователи предположили, что этап падения вещества на Солнце был в прошлом, но в процессе падения накопилась энергия и благодаря ей Солнце до сих пор светится.

В рамках физики того времени это было очень удачное предположение: оно было довольно простым и логичным (упало — ударилось — разогрелось — засветилось) и хорошо согласовывалось с данными о светимостях и температурах звезд, которые в то время впервые стали доступными для измерений. Оказалось, что температура и светимость не произвольные величины, а зависят друг от друга. Для большинства звезд большая яркость означает высокую температуру, и, наоборот, чем холоднее звезда, тем она тусклее. В рамках сценария с падением это тоже казалось очень ясным и логичным: яркие и горячие звезды — это те, на которые вещество только-только перестало падать, и они переживают максимум своей светимости, а затем потихоньку станут гаснуть и остывать, превращаясь в тусклые холодные светила.

Не так давно астрономы считали, что на образование звезды из межзвёздного газа и пыли требуются миллионы лет. Но в последние годы были получены поразительные фотографии области неба, входящей в состав Большой Туманности Ориона, где в течение нескольких лет появилось небольшое скопление звёзд. На снимках 1947г. в этом месте была видна группа из трёх звездоподобных объектов. К 1954г. некоторые из них стали продолговатыми, а к 1959г. эти продолговатые образования распались на отдельные звёзды - впервые в истории человечества люди наблюдали, рождение звёзд буквально на глазах этот случай показал астрономам, что звёзды могут рождаться за короткий интервал времени, и казавшиеся ранее странными рассуждения о том, что звёзды обычно возникают в группах, или звёздных скоплениях, оказались справедливыми. (приложение1.рис.7)

5. Эволюция Вселенной

Спустя миллиарды лет, когда в пространстве появились атомы и молекулы, под действием гравитации они начали перемещаться относительно друг друга. Этот период ученые назвали Структурной Эпохой.

Уже в первые мгновения после расширения, в пространстве появились простейшие частицы, имеющие световую природу. Примерно через год начинает появляться темная материя. А еще через 380 тыс. лет после снижения температур появляются молекулы, способные образовывать разные вещества.(приложение2.рис.2)

Постепенно частицы сбились в газовые облака огромных масштабов, а еще через некоторое время начали формироваться звезды и планеты, которые обладают взаимным притяжением. Первые галактики образовались спустя 300 млн. лет с момента Большого взрыва. Однако современный вид они приобрели лишь через 10 млрд. лет.(приложение2.рис.2)

На данный момент Вселенной примерно 13,82 млрд. лет, и ее эволюция далека от завершения. Ученые не сомневаются, что галактики и общая карта пространства еще не раз поменяются, пока не придут к своей конечной форме.

Существует предположение, что финальным этапом формирования Вселенной будет ее повторное сжатие в единую точку сингулярности, которая снова расширится благодаря Большому взрыву.

Доказательством того, что эволюция Вселенной еще далека от завершения, является реликтовое излучение. Если оно заметно на границах пространства, значит, еще не иссякла энергия, выделенная в момент Большого взрыва. Соответственно, космос продолжает расширяться.

Что такое реликтовое излучение?

Диапазон его частот – от 500 МГц до 500 Ггц. Длина наибольшей волны – 60 сантиметров, а наименьшей – 0,6 миллиметров. Имея такие параметры, реликтовое излучение – оно же микроволновый внегалактический фон – несет в себе огромное количество информации о том, как проходила эволюция Вселенной до того, как начали образовываться галактики и квазары, а также многие другие объекты.

Есть несколько основных сценариев, по которым будет происходить дальнейшая эволюция Вселенной. Естественно, процесс расширения будет происходить и дальше, поэтому если он будет достаточно равномерен, то энергия рано или поздно будет исчерпана, что, согласно предсказаниям ученых, приведет к тепловой смерти.+

Другой вариант – Большой Разрыв, то есть распад всего, что уже было создано в результате Большого Взрыва. Это произойдет при ускорении расширения Вселенной.
Также есть сценарий, предполагающий так называемое Большое Сжатие, которое произойдет, если расширение замедлится, а затем и вовсе сойдет на нет.

Как именно все произойдет, не знает никто. Есть лишь некоторые догадки, гипотезы и теории, а известным остается только одно: время определенно покажет, как дальше будет развиваться наша Вселенная.

Приложение1












Рис.7.Происхождение звезд. Туманность Ориона



http://galspace.spb.ru/indvop.file/18.file/sverhnovaya.jpg

Приложение2:

Изучение основных теорий зарождения и эволюции галактик как гигантских, гравитационно-связанных систем, состоящих из звезд, межзвездного газа, пыли и темной материи. Механизм движения галактик относительно центра масс. Спиральное строение Млечного пути.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 21.03.2013
Размер файла 29,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Негосударственное образовательное учреждение

высшего профессионального образования

по концепции современного естествознания

1. Эволюция галактик

2. Строение галактик

3. Строение нашей галактики (Млечный путь)

Список используемой литературы

1. Эволюция галактик

Образование галактик рассматривают как естественный этап эволюции Вселенной, происходящий под действием гравитационных сил. По-видимому, около 14 млрд. лет назад в первичном веществе началось обособление протоскоплений (прото от греческого - первый). В протоскоплениях в ходе разнообразных динамических процессов происходило выделение групп галактик. Многообразие форм галактик связано с разнообразием начальных условий образования галактик. Сжатие галактики длится около 3 млрд лет. За это время происходит превращение газового облака в звездную систему. Звезды образуются путем гравитационного сжатия облаков газа. Когда в центре сжатого облака достигаются плотности и температуры, достаточные для эффективного протекания термоядерных реакций, рождается звезда. В недрах массивных звезд происходит термоядерный синтез химических элементов тяжелее гелия. Эти элементы попадают в первичную водородно-гелиевую среду при взрывах звезд или при спокойном истечении вещества со звездами. Элементы тяжелее железа образуются при грандиозных взрывах сверхновых звезд. Таким образом, звезды первого поколения обогащают первичный газ химическими элементами, тяжелее гелия. Эти звезды наиболее старые и состоят из водорода, гелия и очень малой примеси тяжелых элементов. В звездах второго поколения примесь тяжелых элементов более заметная, так как они образуются из уже обогащенного тяжелыми элементами первичного газа. Процесс рождения звезд идет при продолжающемся сжатии галактики, поэтому формирование звезд происходит все ближе к центру системы, и чем ближе к центру, тем больше должно быть в звездах тяжелых элементов. Этот вывод хорошо согласуется с данными о содержании химических элементов в звездах гало нашей Галактики и эллиптических галактик. Во вращающейся галактике звезды будущего гало образуются на более ранней стадии сжатия, когда вращение еще не повлияло на общую форму галактики.

К проблеме эволюции галактик ученые начали серьезно подходить в середине 40-х годов ХХ века. Эти годы ознаменовались рядом важных открытий в звездной астрономии. Удалось выяснить, что среди звездных скоплений, рассеянных и шаровых, имеются молодые и старые, и ученые даже смогли оценить их возраст. Нужно было произвести своеобразную перепись населения в галактиках разных типов и сравнить результаты. В каких галактиках (эллиптических или спиральных), в каких классах галактик преобладают более молодые или более старые звезды. Такое исследование дало бы ясное указание на направление эволюции галактик, позволило бы выяснить эволюционный смысл классификации галактик Хаббла. Но прежде астрономам надо было выяснить численное соотношение между разными типами галактик. Непосредственное изучение фотографий, полученных в обсерватории Маунт Вилсон, позволило Хабблу получить следующие результаты: эллиптических галактик - 23%, спиральных - 59%, спиральных с перемычкой (баром) - 15%, неправильных - 3%.

Астрофизик Эдвин Пауэлл Хаббл предложил в 1926 г. интересную классификацию галактик и усовершенствовал ее в 1936 г. Эта классификация называется "Камертон Хаббла". До самой смерти в 1953г. Хаббл улучшал свою систему, а после его смерти это делал американский астроном Aллан Рекс Сэмндидж, который в 1961 г. внес существенные новшества в систему Хаббла. звезда темная материя галактика млечный путь

Однако в 1948 г. астроном Юрий Николаевич Ефремов обработал данные каталога галактик американского астронома Харлоу Шепли и исследовательского центра НАСА им. Эймса и пришел к следующим выводам: эллиптические галактики в среднем на 4 звездные величины слабее спиральных по абсолютной величине. Среди них много галактик карликов. Если учесть это обстоятельство и сделать пересчет количества галактик в единице объема, то окажется, что эллиптических галактик примерно в 100 раз больше чем спиральных. Большая часть спиральных галактик - это галактики гиганты, большинство эллиптических галактик - галактики карлики. Конечно, среди тех и других существует некий разброс в размерах, имеются эллиптические галактики гиганты и спиральные карлики, но тех и других очень мало. В 1947 году Х. Шепли обратил внимание на то, что количество ярких сверхгигантов постепенно убывает по мере перехода от неправильных галактик к спиральным, а затем к эллиптическим. Получалось, что молодыми являлись именно неправильные галактики и галактики с сильно разветвленными ветвями. Х. Шепли тогда же высказал мысль, что переход галактик из одного класса в другой происходит необязательно. Возможно, что галактики образовались все такими, какими мы их наблюдаем, а потом лишь медленно эволюционировали в направлении сглаживания и округления их форм. Однонаправленного изменения галактик, вероятно, не происходит. Х. Шепли обратил внимание еще на одно важное обстоятельство. Двойные галактики - это не результат столкновения и захвата одной галактики другой. Нередко в таких парах сосуществуют спиральные галактики с эллиптическими. Такие галактические пары, по всей вероятности, вместе и возникли. В этом случае допустить, что они прошли существенно разный путь развития, нельзя. В 1949 году советский астроном Борис Васильевич Кукаркин обратил внимание на существования не только парных галактик, но и скоплений галактик. Между тем, возраст скопления галактик, судя по данным небесной механики, не может превышать 10-12 млрд. лет. Таким образом, получалось, что в Метагалактике практически одновременно образовались галактики разных форм. Значит, переход каждой галактики за время ее существования из одного типа в другой совсем необязателен.

2. Строение галактик

Галактика состоит из диска, гало и короны.

1. Гало (сферическая составляющая Галактики). Ее звезды концентрируются к центру галактики, а плотность вещества, высокая в центре галактики, довольно быстро падает с удалением от него.

2. Балдж - центральная, наиболее плотная часть гало в пределах нескольких тысяч световых лет от центра Галактики.

3. Звездный диск (плоская составляющая Галактики). Он представляет собой как бы две сложенные краями тарелки. В диске концентрация звезд значительно больше, чем в гало. Звезды внутри диска движутся по круговым траекториям вокруг центра Галактики. В звездном диске между спиральными рукавами расположено Солнце.

Галактики бывают трех типов: спиралевидные, эллиптические и неправильной формы. У спиралевидных галактик хорошо выражен диск, рукава и гало. В центре находится плотное скопление звезд и межзвездного вещества, а в самом центре - чёрная дыра. Рукава в спиралевидных галактиках отходят от их центра и закручены вправо или влево в зависимости от вращения ядра и чёрной дыры (точнее, сверхплотного тела) в его центре. В центре галактического диска находится сферическое уплотнение, называемое балджем. Число ветвей (рукавов) может быть различно: 1, 2, 3,… но чаще всего встречаются галактики только с двумя ветвями. В галактиках в гало входят звезды и очень разреженное газообразное вещество, не входящее в спирали и в диск. Мы живем в спиральной галактике, которая называется Млечный Путь, и в ясную погоду наша Галактика хорошо видна на ночном небе в виде широкой беловатой полосы, пересекающей небосвод. Нам наша Галактика видна в профиль. Шаровые скопления в центре галактик практически не зависят от положения диска галактики. Рукава галактик содержат сравнительно малую часть всех звезд, но зато в них сосредоточены почти все горячие звезды высокой светимости. Звезды этого типа астрономы считают молодыми, поэтому спиральные ветви галактик можно считать местом образования звезд. Эллиптические галактики часто встречаются в плотных скоплениях спиралевидных галактик. Они имеют форму эллипсоида или шара, причем шаровидные, обычно бывают больше эллипсоидных. Скорость вращения эллипсоидных галактик меньше, чем у спиралевидных, потому диск у них не сформирован. Такие галактики обычно насыщены шаровидными скоплениями звезд. Эллиптические галактики, как считают астрономы, состоят из старых звёзд и практически полностью лишены газа. Галактики неправильной формы обычно имеют небольшую массу и объем, в них входит немного звезд. Как правило, они являются спутниками спиралевидных галактик. В них обычно очень мало шаровых скоплений звезд. Примерами таких галактик являются спутники Млечного Пути - Большое и Малое Магеллановы облака. Но среди неправильных галактик встречаются и малые эллиптические галактики.

3. Строение нашей галактики (Млечный путь)

Наша галактика относится к классу спиральных галактик, что означает, что у Галактики есть спиральные рукава, расположенные в плоскости диска. Диск погружён в гало сферической формы, а вокруг него располагается сферическая корона. Солнечная система находится на расстоянии 8,5 тысяч парсек от галактического центра, вблизи плоскости Галактики (смещение к Северному полюсу Галактики составляет всего 10 парсек), на внутреннем крае рукава, носящего название рукав Ориона. Такое расположение не даёт возможности наблюдать форму рукавов визуально. Новые данные по наблюдениям молекулярного газа (СО) говорят о том, что у нашей Галактики есть два рукава, начинающиеся у бара во внутренней части Галактики. Кроме того, во внутренней части есть ещё пара рукавов. Затем эти рукава переходят в четырёхрукавную структуру, наблюдающуюся в линии нейтрального водорода во внешних частях Галактики. Большинство небесных тел объединяются в различные вращающиеся системы. Так, Луна обращается вокруг Земли, спутники планет-гигантов образуют свои, богатые телами, системы. На более высоком уровне, Земля и остальные планеты обращаются вокруг Солнца. Возникал естественный вопрос: не входит ли и Солнце в систему ещё большего размера? Первое систематическое исследование этого вопроса выполнил в XVIII веке английский астроном Уильям Гершель. Он подсчитывал количество звёзд в разных областях неба и обнаружил, что на небе присутствует большой круг (впоследствии он был назван галактическим экватором), который делит небо на две равные части и на котором количество звёзд оказывается наибольшим. Кроме того, звёзд оказывается тем больше, чем ближе участок неба расположен к этому кругу. Наконец обнаружилось, что именно на этом круге располагается Млечный Путь. Благодаря этому Гершель догадался, что все наблюдаемые нами звёзды образуют гигантскую звёздную систему, которая сплюснута к галактическому экватору. Вначале предполагалось, что все объекты Вселенной являются частями нашей Галактики, хотя ещё Кант высказывал предположение, что некоторые туманности могут быть галактиками, подобными Млечному Пути. Ещё в 1920 году вопрос о существовании внегалактических объектов вызывал дебаты (например, известный Большой спор между Харлоу Шепли и Гебером Кёртисом; первый отстаивал единственность нашей Галактики). Гипотеза Канта была окончательно доказана лишь в 1920-х годах, когда Эдвину Хабблу удалось измерить расстояние до некоторых спиральных туманностей и показать, что по своему удалению они не могут входить в состав Галактики.

Во Вселенной существует круговорот материи, суть которого - в рассеянии материи сверхмассивными чёрными дырами, взрывами новых и сверхновых и затем в собирании рассеянной материи планетами, звездами и чёрными дырами с помощью своей гравитации. Никакого Большого Взрыва, в результате которого из сингулярности родилась наша Вселенная (Метагалактика), не было. Взрывы (и весьма мощные) случаются и случались в Метагалактике периодически то здесь, то там. Вселенная не пульсирует, она просто кипит, она бесконечна, и мы о ней очень мало знаем и еще меньше ее понимаем. Окончательной теории, объясняющей Вселенную и происходящие в ней процессы, нет и никогда не будет. Теории и гипотезы соответствуют уровню развития нашей техники, нашей науки, тому опыту, который накопило человечество на данный момент. Поэтому надо максимально бережно относиться к накопленному опыту и всегда ставить факт выше теории. Как только какая-то наука поступает наоборот, так сразу же она перестает быть открытой информационной системой и превращается в новую религию. В науке главное - сомнение, а в религии - вера.

Список используемой литературы:

2. Агекян Т.А. Звезды, Галактики, Метагалактика. - М.: Наука, 1981.

3. Вокулер Ж. Классификация и морфология галактик // Строение звездных систем. Пер. с нем. - М., 1962.

4. Зельдович Я.Б. Новиков И.Д. Строение и эволюция Вселенной, - М.: Наука, 1975.

6. Новиков И. Д., Фролов В. П. Чёрные дыры во Вселенной // Успехи физических наук. - 2001. - Т. 131. № 3.

Галактики

Галактикой называется большая система из звезд, межзвездного газа, пыли, темной материи и темной энергии, связанная силами гравитационного взаимодействия. Количество звезд и размеры галактик могут быть различными. Как правило, галактики содержат от нескольких миллионов до нескольких триллионов (1 000 000 000 000) звезд. Кроме обычных звезд и межзвездной среды галактики также содержат различные туманности. Размеры галактик от нескольких тысяч до нескольких сотен тысяч световых лет. А расстояние между галактиками достигает миллионов световых лет.

Около 90 % массы галактик приходится на долю темной материи и энергии. Природа этих невидимых компонентов пока не изучена. Существуют свидетельства того, что в центре многих галактик находятся сверхмассивные чёрные дыры. Пространство между галактиками практически не содержит вещества и имеет среднюю плотностью меньше одного атома на кубический метр. Предположительно, в видимой части вселенной находится около 100 млрд. галактик.

По классификации, предложенной астрономом Эдвином Хабблом, в 1925 году существуют несколько видов галактик:

  • эллиптические(E),
  • линзообразные(S0),
  • обычные спиральные(S),
  • пересеченные спиральные(SB),
  • неправильные (Ir).

Эллиптические галактики

Спиральные галактики

Эллиптические галактики — класс галактик с четко выраженной сферической структурой и уменьшающейся к краям яркостью. Они сравнительно медленно вращаются, заметное вращение наблюдается только у галактик со значительным сжатием. В таких галактиках нет пылевой материи, которая в тех галактиках, в которых она имеется, видна как тёмные полосы на непрерывном фоне звёзд галактики. Поэтому внешне эллиптические галактики отличаются друг от друга в основном одной чертой — большим или меньшим сжатием.

Доля эллиптических галактик в общем числе галактик в наблюдаемой части вселенной — около 25 %.

Спиральные галактики названы так, потому что имеют внутри диска яркие рукава звёздного происхождения, которые почти логарифмически простираются из балджа (почти сферического утолщения в центре галактики). Спиральные галактики имеют центральное сгущение и несколько спиральных ветвей, или рукавов, которые имеют голубоватый цвет, так как в них присутствует много молодых гигантских звезд. Эти звезды возбуждают свечение диффузных газовых туманностей, разбросанных вместе с пылевыми облаками вдоль спиральных ветвей. Диск спиральной галактики обычно окружён большим сфероидальным гало (светящееся кольцо вокруг объекта; оптический феномен), состоящим из старых звёзд второго поколения. Все спиральные галактики вращаются со значительными скоростями, поэтому звезды, пыль и газы сосредоточены у них в узком диске. Обилие газовых и пылевых облаков и присутствие ярких голубых гигантов говорит об активных процессах звездообразования, происходящих в спиральных рукавах этих галактик.

Линзообразные галактики

Неправильные галактики

Многие спиральные галактики имеют в центре перемычку (бар), от концов которой отходят спиральные рукава. Наша Галактика также относится к спиральным галактикам с перемычкой.

Линзообразные галактики — это промежуточный тип между спиральными и эллиптическими. У них есть балдж, гало и диск, но нет спиральных рукавов. Их примерно 20% среди всех звездных систем. В этих галактиках яркое основное тело – линза, окружено слабым ореолом. Иногда линза имеет вокруг себя кольцо.

Неправильные галактики — это галактики, которые не обнаруживают ни спиральной, ни эллиптической структуры. Чаще всего такие галактики имеют хаотичную форму без ярко выраженного ядра и спиральных ветвей. В процентном отношении составляют одну четверть от всех галактик. Большинство неправильных галактик в прошлом являлись спиральными или эллиптическими, но были деформированы гравитационными силами.

Эволюция галактик

Образование галактик рассматривают как естественный этап эволюции Вселенной, происходящий под действием гравитационных сил. Как предполагают ученые, около 14 млрд. лет назад произошел большой взрыв, после которого Вселенная везде была одинаковой. Затем частицы пыли и газа начали группироваться, объединяться, сталкиваться и таким образом появлялись сгустки, которые позднее превращались в галактики. Многообразие форм галактик связано с разнообразием начальных условий образования галактик. Скопление газообразного водорода в пределах таких сгустков стало первыми звездами.

С момента зарождении галактика начинает сжиматься. Сжатие галактики длится около 3 млрд лет. За это время происходит превращение газового облака в звездную систему. Звезды образуются путем гравитационного сжатия облаков газа. Когда в центре сжатого облака достигаются плотности и температуры, достаточные для эффективного протекания термоядерных реакций, рождается звезда. В недрах массивных звезд происходит термоядерный синтез химических элементов тяжелее гелия. Эти элементы попадают в первичную водородно-гелиевую среду при взрывах звезд или при спокойном истечении вещества со звездами. Элементы тяжелее железа образуются при грандиозных взрывах сверхновых звезд. Таким образом, звезды первого поколения обогащают первичный газ химическими элементами, тяжелее гелия. Эти звезды наиболее старые и состоят из водорода, гелия и очень малой примеси тяжелых элементов. В звездах второго поколения примесь тяжелых элементов более заметная, так как они образуются из уже обогащенного тяжелыми элементами первичного газа.

Процесс рождения звезд идет при продолжающемся сжатии галактики, поэтому формирование звезд происходит все ближе к центру системы, и чем ближе к центру, тем больше должно быть в звездах тяжелых элементов. Этот вывод хорошо согласуется с данными о содержании химических элементов в звездах гало нашей Галактики и эллиптических галактик. Во вращающейся галактике звезды будущего гало образуются на более ранней стадии сжатия, когда вращение еще не повлияло на общую форму галактики. Свидетельствами этой эпохи в нашей Галактике являются шаровые звездные скопления.

Когда прекращается сжатие протогалактики, кинетическая энергия образовавшихся звезд диска равна энергии коллективного гравитационного взаимодействия. В это время, создаются условия для образования спиральной структуры, а рождение звезд происходит уже в спиральных ветвях, в которых газ достаточно плотный. Это звезды третьего поколения. К ним относится наше Солнце.

Галактики

Запасы межзвездного газа постепенно истощаются, рождение звезд становится менее интенсивным. Через несколько миллиардов лет, когда будут исчерпаны все запасы газа, спиральная галактика превратится в линзообразную, состоящую из слабых красных звезд. Эллиптические галактики уже находятся на этой стадии: весь газ в них израсходован 10-15 млрд. лет назад.

В 1963 году были обнаружены объекты нового типа, находящиеся за приделами нашей галактики. Эти объекты имеют звездообразный вид. Со временем выяснили, что их светимость во много десятков раз превосходит светимость галактик! Самое удивительное то, что их яркость меняется. Мощность их излучения в тысячи раз превосходит мощность излучения активных ядер. Эти объекты назвали квазарами. Сейчас считается, что ядра некоторых галактик представляют собой квазары.

Галактики

Автор статьи: Михаил Карневский, 15.01.2013
Обновлено: Татьяна Сидорова, 14.02.2018
Перепечатка без активной ссылки запрещена!

Читайте также: