Реферат на тему фоторезисторы

Обновлено: 02.07.2024

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

1. Введение Фотоэлектрические приемники лучистой энергии - приборы для обнаружения и измерения электромагнитного излучения, основанные на фотоэффекте, находят все более широкое применение в различных областях техники и для научных исследований. Наряду с другими типами фотоприемников, к числу фотоэлектрических приемников лучистой энергии относятся и фоторезисторы, т.е. приборы, основанные на явлении фотопроводимости.

Явление фотопроводимости (уменьшение электрического сопротивления материала при поглощении им излучения) было открыто в 1873 г. У. Смитом. Практическое начало создания фоторезисторов как приемников излучения относится к 1917 г., когда были созданы сернисто-таллиевые фоторезисторы (таллофиды). Дальнейшему развитию фоторезисторов способствовала возможность использования невидимого человеческим глазом инфракрасного излучения многих объектов в военных целях. В 1940 г. были получены первые сведения о фотопроводимости в PbS и PbSe. Последующие исследования привели к созданию сернисто-свинцовых фоторезисторов, использованных Германией в конце второй мировой войны для обнаружения военных объектов. С этого момента начинается быстрое развитие фоторезисторов, нашедших применение не только в военной технике, но и в различных областях народного хозяйства.

В нашей стране большую роль в деле изучения фотоэффекта в полупроводниках, в создании и изучении новых полупроводниковых материалов, пригодных для изготовления фоторезисторов, сыграли работы А.Ф. Иоффе и его сотрудников. Большой вклад в изучение механизма фотопроводимости был внесен также работами Б.Т. Коломийца, С.М. Рывкина, Л.Н. Курбатова, В.В. Балакова, Д.В. Наследова. Всеобщее признание получили работы В.Е Лошкарева и его сотрудников в области исследования фотоэлектрических явлений в сернистом кадмии.

Серийный выпуск фоторезисторов в нашей стране начался в 1948 г., когда были освоены сернисто-висмутовые фоторезисторы. Позже они были заменены сернисто-кадмиевыми и селенисто-кадмиевыми фоторезисторами, обладающими значительно лучшими параметрами. Большая роль в создании первых промышленных образцов фоторезисторов на основе сернистого кадмия и сернистого свинца принадлежит профессору Б.Т. Коломийцу и его сотрудникам. В последние годы ими и другими учеными были созданы также фоторезисторы на основе селенистого свинца, обладающие высокими фотоэлектрическими параметрами и эксплуатационными свойствами.

В настоящее время трудно найти такую отрасль народного хозяйства, науки или техники, где бы не применялись фоторезисторы.

2. Фоторезисторы, их свойства и принцип работы Фоторезистором называют полупроводниковый прибор, электрическое сопротивление которого меняется под действием светового потока. Структура фоторезистора и схема его включения показаны на рис. 1 (а, б).

Рис. 1. Структура фоторезистора и схема его включения Основной частью фоторезистора является полупроводниковый элемент, снабженный выводами и расположенный так, что на него может падать свет (рис. 1, а). На диэлектрическую пластину 1 нанесен тонкий слой полупроводника 2 с контактами 3 по краям. Фоторезистор включается в цепь независимо от полярности источника питания Е.

Схема включения фоторезистора показана на рис. 1, б. Здесь R - нагрузочное сопротивление, U -

Фоторезисторы – это фотоэлектрические полупроводниковые приборы с внутренним фотоэффектом. Физическая сущность внутреннего фотоэффекта состоит в том, что при освещении поверхности полупроводника (селен, сернистый висмут, сернистый кадмий, сернистый свинец и т.д.) часть световой энергии поглощается веществом и расходуется на освобождение электронов от связей с атомами; при этом количество свободных электронов в веществе сильно возрастает, что приводит к увеличению электропроводности полупроводника.

В зависимости от типа и назначения, фоторезисторы выполняют с естественным воздушным (неохлаждаемые) и с жидкостным охлаждением. Неохлаждаемые фоторезисторы по конструкции разделяются на бескорпусные и корпусные.

Они имеют тонкий слой светочувствительного материала (2), нанесенного на изолирующую подложку (1) путем пульверизации исходного материала из суспензии (реже – путем испарения материала в вакууме или спекания в таблетки порошкообразной массы). В качестве электродов (4) обычно применяют пленки металлов, не подвергающихся коррозии (золото, платина, серебро), наносимые испарением в вакууме. Для защиты от влияния влаги, воздуха и других внешних воздействий, чувствительные элементы фоторезисторов покрывают слоем защитного лака (3) – герметика. При этом требуется, чтобы слой лака обладал достаточной прозрачностью в той области спектра, для работы в которой предназначен фоторезистор, был влагостойким и не изменял своих свойств в пределах всего диапазона рабочих температур.

Фоторезистор имеет одинаковую проводимость в обоих направлениях, включается последовательно с управляемым им устройством и источником энергии. Фоторезистор может реагировать не только на появление светового потока. Но и на его исчезновение, т.е. является световым реле. При отсутствии освещения или при постоянном освещении фоторезистор представляет собой активное сопротивление, и ток, протекающий по нему, пропорционален приложенному напряжению, а в случае постоянной величины приложенного напряжения величина тока пропорциональна интенсивности действующего светового потока.

Неосвещенный фоторезистор характеризуется темновым током (Iт) и темновым сопротивлением. Темновой ток очень мал и обусловлен наличием в полупроводнике небольшого числа свободных электронов, освобожденных действием тепла окружающей среды.

Фоторезисторы обладают избирательным фотоэффектом. Например в видимой части спектра наиболее чувствительны приборы с сульфидом кадмия, а с сульфидом свинца – к инфракрасным лучам (это дает возможность использовать их для наблюдения и регистрации излучений слабо нагретых тел).

Если фоторезистор включен последовательно с источником энергии Е с резистором rн (рис. 2), то изменения светового потока Ф сопровождаются изменением тока в цепи, т.е. фоторезистор может работать как вакуумный фотоэлемент для преобразования световой энергии в электрическую.

У полупроводниковых материалов есть много интересных свойств. Одно из них – изменение сопротивления под действием света. Электрическое сопротивление полупроводниковых элементов используется в приборах под названием фоторезистор. Управление внутренним сопротивлением полупроводниковых приборов с помощью световых потоков широко применялось в устаревших конструкциях, реже в современной электротехнике.

Полупроводниковый резистор может изменять параметры электрического тока в зависимости от интенсивности освещения. Это свойство часто используют на практике для создания устройств, управляемых потоком излучения.Сегодня промышленность поставляет на рынок фоторезисторы с различными характеристиками, а это значит, что они еще находят применение в современных электротехнических устройствах.

Что такое фоторезистор?

Остановимся более подробно на описании полупроводникового фоторезистора. Для начала дадим ему определение.

Фоторезистор — это полупроводниковый прибор (датчик), который при облучении светом изменяет (уменьшает) свое внутреннее сопротивление.

В отличие от фотоэлементов других типов (фотодиодов и фототранзисторов) данный прибор не имеет p-n перехода. Это значит, что фоторезистор может проводить ток независимо от его направления и может работать не только в цепях постоянного тока, где присутствует постоянное напряжение, но и с переменными токами.

Устройство

Конструкция разных моделей фоторезисторов может отличаться по форме материалу корпуса. Но в основе каждого такого прибора лежит подложка, чаще всего керамическая, покрытая слоем полупроводникового материала. Поверх этого полупроводника наносятся змейкой тонкий слой золота, платины или другого коррозиестойкого металла. (см. рис. 1). Слои наносятся методом напыления.

Устройство фоторезисторов

Рис. 1. Устройство фоторезисторов

Напиленные слои соединяют с электродами, на которые поступает электрический ток. Всю эту конструкцию часто покрывают прозрачным пластиком и помещают в корпус с окошком для попадания световых лучей (см. рис. 2).

Конструкция фоторезистора

Рис. 2. Конструкция фоторезистора

Форма корпуса, его размеры и материал зависит от модели фоторезистора, определяемой технологией производителя. Примеры моделей показаны на рисунках 3 и 4.

Рис. 3. Датчик на основе фоторезистора Рис. 4. Фотоприемник

Сегодня в продаже можно увидеть детали в металлическом корпусе, часто в пластике или модели открытого типа. Некоторые модели изготавливают без метода напыления, а вырезают тонкий резистивный слой непосредственно из полупроводника. Существуют также технологии изготовления пленочных фотодатчиков (см. рис. 5).

Конструкция пленочного фоторезистора

Рис. 5. Конструкция пленочного фоторезистора

Для напыления слоя полупроводника используют различные фоторезистивные материалы. Для фиксации видимого спектра света применяют селенид кадмия и сульфид кадмия.

Более широкий спектр материалов восприимчив к инфракрасному излучению:

  • германий чистый либо легированный примесями золота, меди, цинка;
  • кремний;
  • сульфид свинца и другие химические соединения на его основе;
  • антимонид или арсенид индия;
  • прочие химические соединения чувствительные к инфракрасным лучам.

Чистый германий или кремний применяют при изготовлении фоторезисторов с внутренним фотоэффектом, а вещества легированные примесями – для конструкций с внешним фотоэффектом. Независимо от вида применяемого фоторезистивного материала, оба типа фоторезисторов обладают одинаковыми свойствами – обратной, нелинейной зависимостью сопротивления от силы светового потока.

Принцип работы

В неактивном состоянии полупроводник проявляет свойства диэлектрика. Для того, чтобы он проводил ток, необходимо воздействие на вещество внешнего стимулятора. Таким стимулятором может быть термическое воздействие или световое.

Под действием фотонов света полупроводник насыщается электронами, в результате чего он становится способным проводить электрический ток. Чем больше электронов образуется, тем меньшее сопротивление току оказывает полупроводниковый материал. Зависимость силы тока от освещения иллюстрирует график на рис. 6.

График зависимости силы тока от освещения

Рис. 6. График зависимости силы тока от освещения

На этом принципе базируется работа фоторезисторов. Образованию электронов способствует как видимый спектр света так и не видимый. Причем фоторезистор более чувствителен к инфракрасным лучам, имеющим большую энергию. Низкую чувствительность к видимому свету проявляют чистые материалы.

Для повышения чувствительности фоторезистивного слоя его легируют разными добавками, которые образуют обновленную внешнюю зону, расположенную поверх валентной зоны полупроводника. Такое внешнее насыщение электронами потребует меньше энергии для перехода в состояние насыщения фототоком проводимости. Возникает внешний фотоэффект, стимулированный видимым спектром излучения.

Путем подбора легирующих добавок можно создавать фоторезисторы для работы в разных спектральных диапазонах. Фоторезистор имеет спектральную чувствительность. Если длина световых волн находится вне зоны проводимости, то прибор перестает реагировать на такие лучи. Освещенность в таких случаях, уже не может оказывать влияния на токопроводимость изделия.

Выбор спектральных характеристик зависит от условий эксплуатации изделия и решаемых задач. Если интенсивностей излучения не достаточно для стабильной работы устройства, его эффективность можно повысить путем подбора чувствительных элементов, с соответствующим полупроводниковым слоем.

Важно помнить, что инерционность фоторезисторов заметно выше чем у фотодиодов и фототранзисторов. Инерционность прибора имеет место потому, что для насыщения полупроводникового слоя требуется некоторое время. Поэтому датчик всегда подает сигнал с некоторым опозданием.

Обозначение на схеме

Отличить фоторезистор на схеме от обычного резистора достаточно просто. На значке фоторезистора присутствуют две стрелки, направленные в сторону прямоугольника. Эти стрелки символизируют поток света (см. рис. 7). На некоторых схемах символ резистора помещают внутри окружности, а на других обозначают прямоугольником без окружности. Но главное отличие – наличие стрелок.

Фоторезистор на схеме

Рис. 7. Фоторезистор на схеме

Несмотря на разнообразие фотодатчиков их можно разделить всего на два вида:

  1. Фоторезисторы с внутренним фотоэффектом;
  2. Датчики с внешним фотоэффектом.

Они отличаются лишь по технологии производства, а точнее, по составу фоторезистивного слоя. Первые – это фоторезисторы, в которых полупроводник изготавливается из чистых химических элементов, без примесей. Они малочувствительны к видимому свету, однако хорошо реагируют на тепловые лучи (инфракрасный свет).

Фоторезисторы с внешним эффектом содержат примеси, которыми легируют основной состав полупроводникового вещества. Спектр чувствительности у этих датчиков гораздо шире и перемещается в зону видимого спектра и даже в зону УФ излучения.

По принципу действия эти два вида фоторезисторов не отличаются. Их внутреннее сопротивление нелинейно уменьшается с ростом интенсивности светового потока в зоне чувствительности.

Технические характеристики

Какие критерии применять при выборе фоторезистора?

Первым делом обращайте внимание на спектральные характеристики. Если этот параметр вы неправильно выберете, то с большой долей вероятности устройство работать не будет или его функционирование будет нестабильным. Например, фоторезисторы с внутренним эффектом не будут реагировать на дневной свет. Если в качестве облучателя не планируется использовать ИК излучатель, то остановите свой выбор на втором типе приборов.

Другие важные характеристики:

  • интегральная чувствительность;
  • энергетическая характеристика (порог чувствительности);
  • инерционность.

Вольт-амперная характеристика показывает зависимость величины тока от приложенного напряжения. Графически такая характеристика изображается в виде гиперболы. Но если выполняется условие стабильности интенсивности освещения, то ест световой поток Ф = const, то зависимость силы тока от напряжения будет линейной, а график – прямой линией. (см. рис. 8 а).

Энергетическая характеристика показывает, как зависит сила тока от величины светового потока, при постоянном напряжении (см. рис. 8 б). На графике видно как изменяется энергетическая кривая: сначала она устремляется вверх, а при достижении какого-то предела плавно изменяет направление и почти параллельна оси светового потока. Объясняется это тем, что после насыщения полупроводникового элемента его сопротивление минимально и в дальнейшем не зависит от интенсивности света.

Характеристики фоторезистора

Рисунок 8. Характеристики фоторезистора

Что касается инерционности, то она в разной степени присутствует у всех типах датчиков. Если вам нужна молниеносная реакция на свет, то лучше используйте фотодиод.

Преимущества и недостатки

Сильными сторонами фоторезисторов оказывается их высокая надежность и низкая цена. Иногда полезным свойством бывает его вольтамперная характеристика, когда ток возрастает не молниеносно, а постепенно. Достоинством является низкий порог чувствительности.

К недостаткам можно отнести инерционность датчиков. Запаздывание сигнала понижает быстродействие устройств на базе терморезисторов, что часто бывает неприемлемым.

Применение

Благодаря низкому порогу чувствительности фоторезисторы часто используются для регистрации слабых потоков световых волн.

Это качество используется:

  • в сортировальных машинах;
  • в полиграфической промышленности для регистрации факта обрыва бумажной ленты;
  • в сельскохозяйственных машинах для контроля густоты высевания зерновых;
  • в световых реле для включения/отключения освещения, в фотоэкспонометрах и т. п.

В промышленной электронике фоторезисторы применяются для учета изделий, движущихся на ленте транспортера или падающих в емкость для хранения.

Сам по себе датчик не может производить расчёты, но его сигналы используются и обрабатываются микроконтроллерами, с последующими вычислениями. Сигналы фоторезистора воспринимаются как аналоговыми, так и цифровыми логическими схемами. Задержка сигнала на доли секунды в большинстве случаев не является препятствием для использования фоторезисторов.

На базе фоторезисторов производятся оптроны – приборы с собственным источником света, которым можно управлять. Пример схемы такого устройства показан на рис. 9.

Схема оптрона

Рис. 9. Схема оптрона

Несмотря на некоторые недостатки приборов, эра фоторезисторов видимо еще не закончилась.

ФОТОРЕЗИСТОР (от фото. и резистор), представляет собой непроволочный полупроводниковый резистор , омическое сопротивление которого определяется степенью освещенности . В основе принципа действия фоторезисторов лежит явление фотопроводимости полупроводников. Фотопроводимость- увеличение электрической проводимости полупроводника под действием света. Причина фотопроводимости — увеличение концентрации носителей заряда — электронов в зоне проводимости и дырок в валентной зоне. Светочувствительный слой полупроводникового материала в таких сопротивлениях помещен между двумя токопроводящими электродами. Под воздействием светового потока электрическое сопротивление слоя меняется в несколько раз ( у некоторых типов фотосопротивлений оно уменьшается на два- три порядка ). В зависимости от применяемого слоя полупроводникового материала фотосопротивления подразделяются на сернистосвинцовые, сернистокадмиевые, сернисто-висмутовые и поликристаллические селено- кадмиевые. Фотосопротивления обладают высокой чувствительностью , стабильностью , экономичны и надежны в эксплуатации. В целом ряде случаев они с успехом заменяют вакуумные и газонаполненные фотоэлементы.

Основные характеристики фотосопротивлений.

1. Рабочая площадь.


2. Темновое сопротивление (сопротивление в полной темноте), варьирует в обычных приборах от 1000 до 100000000 ом.

3. Удельная чувствительность


-фототок, равный разности токов в темноте и на свету;

Ф - световой поток;

U - приложенное напряжение.

4. Предельное рабочее напряжение ( как правило от 1 до 1000 в ).

5. Среднее относительное изменение сопротивления, % -

обычно лежит в пределах 10 - 99,9 %,



-сопротивление в темноте;


-сопротивление в освещенном состоянии.

6. Средняя кратность изменения сопротивления ( как правило от 1 до 1000 ). Определяется соотношением :


Применение: устройства воспроизведения звука, системы слежения, различные устройства автоматики.

Схема включения фоторезисторов:

При определенном освещении сопротивление фотоэлемента уменьшается, а, следовательно, сила тока в цепи возрастает, достигая значения, достаточного для работы какого- либо устройства ( схематично показано в виде некоторого сопротивления нагрузки ).

С П И С О К Л И Т Е Р А Т У Р Ы

Читайте также: