Реферат на тему физические законы

Обновлено: 07.07.2024

ЭНЕРГИИ СОХРАНЕНИЯ И ПРЕВРАЩЕНИЯ ЗАКОН - общий закон природы: энергия любой замкнутой системы при всех процессах, происходящих в системе, остается постоянной (сохраняется). Энергия может только превращаться из одной формы в другую и перераспределяться между частями системы. Для незамкнутой системы увеличение (уменьшение) ее энергии равно убыли (возрастанию) энергии взаимодействующих с ней тел и физических полей.

АРХИМЕДА ЗАКОН - закон гидро- и аэростатики: на тело, погруженное в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх, числено равная весу жидкости или газа, вытесненного телом, и приложенная в центре тяжести погруженной части тела. F A = gV, где r - плотность жидкости или газа, V - объем погруженной части тела. Иначе можно сформулировать так: тело, погруженное в жидкость или газ, теряет в своем весе столько, сколько весит вытесненная им жидкость (или газ). Тогда P= mg - F A Открыт др. гр. ученым Архимедом в 212г. до н.э. Является основой теории плавания тел.

ВСЕМИРНОГО ТЯГОТЕНИЯ ЗАКОН - закон тяготения Ньютона: все тела притягиваются друг к другу с силой прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними: , где M и m - массы взаимодействующих тел, R - расстояние между этими телами, G - гравитационная постоянная (в СИ G=6,67 . 10 -11 Н . м 2 /кг 2 .

ГАЛИЛЕЯ ПРИНЦИП ОТНОСИТЕЛЬНОСТИ, механический принцип относительности - принцип классической механики: в любых инерциальных системах отсчета все механические явления протекают одинаково при одних и тех же условиях. Ср. относительности принцип.

ГУКА ЗАКОН - закон, согласно которому упругие деформации прямо пропорциональны вызывающим их внешним воздействиям.

ИМПУЛЬСА СОХРАНЕНИЯ ЗАКОН - закон механики: импульс любой замкнутой системы при всех процессах, происходящих в системе, остается постоянным (сохраняется) и может только перераспределяться между частями системы в результате их взаимодействия.

НЬЮТОНА ЗАКОНЫ - три закона, лежащие в основе ньютоновской классической механики . 1-й закон (закон инерции): материальная точка находится в состоянии прямолинейного и равномерного движения или покоя, если на нее не действуют другие тела или действие этих тел скомпенсировано. 2-й закон (основной закон динамики): ускорение, полученное телом, прямо пропорционально равнодействующей всех сил, действующих на тело, и обратно пропорционально массе тела (). 3-й закон: две материальные точки взаимодействуют друг с другом силами одной природы равными по величине и противоположными по направлению вдоль прямой, соединяющей эти точки ().

ОТНОСИТЕЛЬНОСТИ ПРИНЦИП - один из постулатов относительности теории , утверждающий, что в любых инерциальных системах отсчета все физические (механические, электромагнитные и др.) явления при одних и тех же условиях протекают одинаково. Является обобщением Галилея принципа относительности на все физические явления (кроме тяготения).

2. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

АВОГАДРО ЗАКОН - один из основных законов идеальных газов: в равных объемах различных газов при одинаковой температуре и давлении содержится одинаковое число молекул. Открыт в 1811 году итал. физиком А.Авогадро(1776-1856).

БОЙЛЯ-МАРИОТТА ЗАКОН - один из законов идеального газа: для данной массы данного газа при постоянной температуре произведение давления на объем есть величина постоянная. Формула: pV=const. Описывает изотермический процесс.

ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ - один из основных законов термодинамики , согласно которому невозможен периодический процесс единственным результатом которого является совершение работы, эквивалентной количеству теплоты, полученному от нагревателя. Другая формулировка: невозможен процесс, единственным результатом которого является передача энергии в форме теплоты от менее нагретого тела к более нагретому. В.з.т. выражает стремление системы, состоящей из большого количества хаотически движущихся частиц, к самопроизвольному переходу из состояний менее вероятных в состояния более вероятные. Запрещает создание вечного двигателя второго рода.

ГЕЙ-ЛЮССАКА ЗАКОН - газовый закон: для данной массы данного газа при постоянном давлении отношение объема к абсолютной температуре есть величина постоянная ,где =1/273 К -1 - температурный коэффициент объемного расширения.

ДАЛЬТОНА ЗАКОН - один из основных газовых законов: давление смеси химически не взаимодействующих идеальных газов равно сумме парциальных давлений этих газов.

ПАСКАЛЯ ЗАКОН - основной закон гидростатики : давление, производимое внешними силами на поверхность жидкости или газа, передается одинаково по всем направлениям.

ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ - один из основных законов термодинамики, являющийся законом сохранения энергии для термодинамической системы: количество теплоты Q, сообщенное системе, расходуется на изменение внутренней энергии системы U и совершение системой работы A против внешних сил. Формула: Q= U+A. Лежит в основе работы тепловых машин.

ШАРЛЯ ЗАКОН - один из основных газовых законов: давление данной массы идеального газа при постоянном объеме прямо пропорционально температуре: где p 0 - давление при 0 0 С, =1/273,15 К -1 - температурный коэффициент давления.

3. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

АМПЕРА ЗАКОН - закон взаимодействия двух проводников с токами; параллельные проводники с токами одного направления притягиваются, а с токами противоположного направления - отталкиваются. А.з. называют также закон, определяющий силу, действующую в магнитном поле на малый отрезок проводника с током. Открыт в 1820г. А.-М. Ампером.

ДЖОУЛЯ-ЛЕНЦА ЗАКОН - закон, описывающий тепловое действие электрического тока. Согласно Д. - Л.з. количество теплоты, выделяющееся в проводнике при прохождении по нему постоянного тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения.

ЗАРЯДА СОХРАНЕНИЯ ЗАКОН - один из фундаментальных законов природы: алгебраическая сумма электрических зарядов любой электрически изолированной системы остается неизменной. В электрически изолированной системе З.с.з. допускает появление новых заряженных частиц (напр., при электролитической диссоциации, ионизации газов, рождении пар частица - античастица и др.), но суммарный электрический заряд появившихся частиц всегда должен быть равен нулю.

КУЛОНА ЗАКОН - основной закон электростатики , выражающий зависимость силы взаимодействия двух неподвижных точечных зарядов от расстояния между ними: два неподвижных точечных заряда взаимодействуют с силой прямо пропорциональной произведению величин этих зарядов и обратно пропорциональной квадрату расстояния между ними и диэлектрической проницаемости среды, в которой находятся заряды. В СИ имеет вид: . Величина числено равна силе, действующей между двумя точечными неподвижными зарядами по 1 Кл каждый, находящимися в вакууме на расстоянии 1 м друг от друга. К.з. является одним из экспериментальных обоснований электродинамики.

ЛЕВОЙ РУКИ ПРАВИЛО - правило, определяющее направление силы, которая действует на находящийся в магнитном поле проводник с током (или движущуюся заряженную частицу). Оно гласит: если левую руку расположить так, чтобы вытянутые пальцы показывали направление тока (скорости частицы), а силовые линии магнитного поля (линии магнитной индукции) входили в ладонь, то отставленный большой палец укажет направление силы, действующей на проводник (положительную частицу; в случае отрицательной частицы направление силы противоположно).

ЛЕНЦА ПРАВИЛО (ЗАКОН) - правило, определяющее направление индукционных токов, возникающих при электромагнитной индукции. Согласно Л.п. индукционный ток всегда имеет такое направление, что его собственный магнитный поток компенсирует изменения внешнего магнитного потока, вызвавшие этот ток. Л.п. - следствие закона сохранения энергии.

ОМА ЗАКОН - один из основных законов электрического тока: сила постоянного электрического тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению. Справедлив для металлических проводников и электролитов, температура которых поддерживается постоянной. В случае полной цепи формулируется следующим образом: сила постоянного электрического тока в цепи прямо пропорциональна эдс источника тока и обратно пропорциональна полному сопротивлению электрической цепи.

проводника, то четыре вытянутых пальца покажут направление индукционного тока; 2) направление линий магнитной индукции прямолинейного проводника с током: если большой палец правой руки расположить по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции.

ФАРАДЕЯ ЗАКОНЫ - основные законы электролиза. Первый Фарадея закон: масса вещества, выделившегося на электроде при прохождении электрического тока, прямо пропорциональна количеству электричества (заряду), прошедшему через электролит (m=kq=kIt). Второй Ф.з.: отношение масс различных веществ, претерпевающих химические превращения на электродах при прохождении одинаковых электрических зарядов через электролит равно отношению химических эквивалентов. Установлены в 1833-34 г. М. Фарадеем. Обобщенный закон электролиза имеет вид: , где M - молярная (атомная) масса, z - валентность, F - Фарадея постоянная . Ф.п. равна произведению элементарного электрического заряда на постоянную Авогадро. F=e . N A . Определяет заряд, прохождение которого через электролит приводит к выделению на электроде 1 моля одновалентного вещества. F=(96484,56 0,27) Кл./моль. Названа в честь М.Фарадея.

ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ ЗАКОН - закон, описывающий явление возникновения электрического поля при изменении магнитного (явление электромагнитной индукции): электродвижущая сила индукции прямо пропорциональна скорости изменения магнитного потока. Коэффициент пропорциональности определяется системой единиц, знак - Ленца правилом. Формула в СИ: , где Ф - изменение магнитного потока, а t - промежуток времени, в течение которого это изменение произошло. Открыт М. Фарадеем.

ГЮЙГЕНСА ПРИНЦИП - метод, позволяющий определить положение фронта волны в любой момент времени. Согласно г.п. все точки, через которые проходит фронт волны в момент времени t, являются источниками вторичных сферических волн, а искомое положение фронта волны в момент времени t t совпадает с поверхностью, огибающей все вторичные волны. Позволяет объяснить законы отражения и преломления света.

ГЮЙГЕНСА - ФРЕНЕЛЯ - ПРИНЦИП - приближенный метод решения задач о распространении волн. Г.-Ф. п. гласит: в любой точке, находящейся вне произвольной замкнутой поверхности, охватывающей точечный источник света, световая волна, возбуждаемая этим источником, может быть представлена как результат интерференции вторичных волн, излучаемых всеми точками указанной замкнутой поверхности. Позволяет решать простейшие задачи дифракции света .

ОТРАЖЕНИЯ ВОЛН ЗАКОН - луч падающий, луч отраженный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем угол падения равен углу преломления. Закон справедлив для зеркального отражения.

ПРЕЛОМЛЕНИЕ СВЕТА - изменение направления распространения света (электромагнитной волны) при переходе из одной среды в другую, отличающуюся от первой показателем преломления . Для преломления выполняется закон: луч падающий, луч преломленный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем для данных двух сред отношение синуса угла падения к синусу угла преломления есть величина постоянная, называемая относительным показателем преломления второй среды относительно первой.

ПРЯМОЛИНЕЙНОГО РАСПРОСТРАНЕНИЯ СВЕТА ЗАКОН - закон геометрической оптики, заключающийся в том, что в однородной среде свет распространяется прямолинейно. Объясняет, напр., образование тени и полутени.

6. АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА.

БОРА ПОСТУЛАТЫ - основные допущения, введенные без доказательства Н.Бором, и положенные в основу БОРА ТЕОРИИ: 1) Атомная система устойчива только в стационарных состояниях, которые соответствуют дискретной последовательности значений энергии атома. Каждое изменение этой энергии связано с полным переходом атома из одного стационарного состояния в другое. 2) Поглощение и излучение энергии атомом происходит по закону, согласно которому связанное с переходом излучение является монохроматическим и обладает частотой : h =E i -E k , где h - Планка постоянная , а E i и E k - энергии атома в стационарных состояниях.

Современная физика изучает огромнейшее количество различных процессов в природе. Не все из них поддаются изучению и объяснению. Безусловно, многое человеку еще не известно, а если известно, то может быть, не объяснено сейчас. Тем не менее, наука идет вперед и общие (классические) концепции существования природы известны уже сейчас. В данной работе рассматриваются вопросы, о том, как современная… Читать ещё >

Характер физических законов ( реферат , курсовая , диплом , контрольная )

Содержание

  • Введение
  • 1. Фундаментальные законы Ньютона
    • 1. 1. Законы динамики
    • 1. 2. Классическая механика и лапласовский детерминизм
    • 2. 1. Первый закон термодинамики и невозможность создания вечного двигателя первого рода
    • 2. 2. Второй закон термодинамики и невозможность создания вечного двигателя второго рода
    • 2. 3. Принцип минимума диссипации энергии
    • 3. 1. Закон сохранения массы
    • 3. 2. Закон сохранения импульса
    • 3. 3. Закон сохранения заряда
    • 3. 4. Закон сохранения энергии в механических процессах
    • 3. 5. Законы сохранения в микромире
    • 4. 1. Пространственно-временные принципы симметрии
    • 4. 2. Внутренние принципы симметрии

    Современное миропонимание — важный компонент человеческой культуры. Огромную и особую роль в его формировании играет общение человека с природой. Очевидно, что каждый культурный человек должен хотя бы в общих чертах представлять, как устроен мир, в котором он живет, как ''работают'' в нем законы природы. Это необходимо не только для общего развития. Любовь к природе предполагает уважение к происходящим в ней процессам, а для этого надо понимать, по каким законам они совершаются. Знание законов природы позволяет взглянуть на деятельность человека и ее последствия в организованном мире и является эффективным средством борьбы с мистическими представлениями.

    Современная физика изучает огромнейшее количество различных процессов в природе. Не все из них поддаются изучению и объяснению. Безусловно, многое человеку еще не известно, а если известно, то может быть, не объяснено сейчас. Тем не менее, наука идет вперед и общие (классические) концепции существования природы известны уже сейчас.

    В данной работе рассматриваются вопросы, о том, как современная наука объясняет явления в окружающем нас мире.

    Физика - наука о природе, изучающая простейшие и вместе с тем наиболее общие закономерности природы, строение и законы движения материи.

    Принято считать, что в своей основе физика является наукой экспериментальной, поскольку открытые ею законы основаны на установленных опытным путем данных. В целом физика разделяется на экспериментальную, и теоретическую.

    В зависимости от ориентированности на потребителя получаемого знания выделяют фундаментальную и прикладную физику. В основе физики лежат фундаментальные физические принципы и теории, которые охватывают все разделы физики и наиболее полно отражают суть физических явлений и процессов действительности.

    От ранних цивилизаций, возникших на берегах Тигра, Евфрата и Нила (Вавилон, Ассирия, Египет), не осталось никаких свидетельств о достижениях в области физических знаний, за исключением овеществленных в архитектурных сооружениях, бытовых и т.п. изделиях знаний. Возводя различного рода сооружения и изготавливая предметы быта, оружия и т.д., люди использовали определенные результаты многочисленных физических наблюдений, технических опытов, их обобщений.

    Физические представления в Древнем Китае появились также на основе различного рода технической деятельности, в процессе которой вырабатывались разнообразные технологические рецепты. Естественно, что прежде всего вырабатывались механические представления.

    В Древней Индии основу натурфилософских представлений составляют учение о пяти элементах - земле, воде, огне, воздухе и эфире. К VI в. до н.э. эмпирические физические представления в некоторых областях обнаруживают тенденцию перехода в своеобразные теоретические построения (в оптике, акустике). Фалес, высказавший мысль о том, что все вещи произошли из воды, по сути произвел революционный переворот в мировоззрении, означавший отказ от мифологического объяснения явлений действительности Вслед за Фалесом по этому пути пошли Гераклит, высказавший идею об огне, как первооснове всего существующего, Анаксимандр - апейроне, Анаксагор - гомеомериях, Анаксимен - воздухе. Эмпедокл - четырех стихиях (огне, воздухе, воде и земле). Предшествующие концепции не допускали существования пустоты.

    ГЛАВА 1. ЗАКОНЫ НЬЮТОНА

      1. Первый закон Ньютона или закон инерции.

      Движущееся тело останавливается, если сила, его толкающая, прекращает свое действие.

      Наблюдения действительно показывали, что тело останавливалось при прекращении действия толкающей его силы. Естественное противодействие внешних сил (сил трения, сопротивления воздуха и т. п.) движению толкаемого тела, при этом, не учитывалось. Поэтому, Аристотель связывал неизменность скорости движения любого тела с неизменностью прилагаемой к нему силы.

      …скорость, однажды сообщенная движущемуся телу, будет строго сохраняться, поскольку устранены внешние причины ускорения или замедления, — условие, которое обнаруживается только на горизонтальной плоскости, ибо в случае движения по наклонной плоскости вниз уже существует причина ускорения, в то время, как при движении по наклонной плоскости вверх налицо замедление; из этого следует, что движение по горизонтальной плоскости вечно.

      Таким образом, Галилей просто и ясно доказал связь между силой и изменением скорости (ускорением), а не между силой и самой скоростью, как считал Аристотель и его последователи. Это открытие Галилея вошло в науку как Закон инерции, который теперь также известен как первый закон Ньютона (1643—1727).

      Первый закон Ньютона в современной формулировке звучит так:

      Существуют такие системы отсчёта, относительно которых любое тело (материальная точка) при отсутствии на него внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

      Системы отсчёта, в которых выполняется закон инерции, называют инерциальными системами отсчёта (ИСО). Все другие системы отсчёта называются соответственно неинерциальными. Проявлением инерции в них является также возникновение фиктивных сил инерции.

      1.2 Второй закон Ньютона

      Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как мера проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

      Второй закон Ньютона утверждает, что

      В инерциальной системе отсчета ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

      При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

      где — ускорение материальной точки;

      m — масса материальной точки.

      Или в более известном виде:

      В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:

      В инерциальной системе отсчета скорость изменения импульса материальной точки равна действующей на неё силе

      где — импульс точки,

      — производная импульса по времени.

      Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается:

      Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.

      Нельзя рассматривать частный случай (при ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.

      1.3 Третий закон Ньютона

      Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой , а второе — на первое с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

      Тела попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей центры масс этих тел (абсолютно-твердые тела), равными по модулю и противоположными по направлению:

      ГЛАВА 2. ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ.

      Закон всемирного тяготения гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними — то есть

      Здесь G — гравитационная постоянная, равная м³/(кг с²). Знак минус означает, что сила, действующая на тело, всегда равна по направлению радиус-вектору, направленному на тело, то есть гравитационное взаимодействие приводит всегда к притяжению любых тел.

      Свойства ньютоновского тяготения:

      • В ньютоновской теории каждое массивное тело порождает силовое поле притяжения к этому телу, которое называется гравитационным полем. Это поле потенциально, и функция гравитационного потенциала для массы M определяется формулой:

      Сила притяжения, действующая в таком поле на материальную точку с массой m, связана с потенциалом формулой:

      • Если тело не является материальной точкой, то создаваемое им поле притяжения можно рассчитать интегрированием по всему объёму тела. Сферически симметричное тело создаёт такое же притяжение, как материальная точка той же массы, расположенная в центре тела.
      • Траектория материальной точки в гравитационном поле, создаваемом много большей по массе материальной точкой, подчиняется законам Кеплера. В частности, планеты и кометы в Солнечной системе движутся по эллипсам или гиперболам. Влияние других планет, искажающее эту картину, можно учесть с помощью теории возмущений.

      Исторический очерк:

      • наблюдаемые движения планет свидетельствуют о наличии центральной силы;
      • обратно, центральная сила притяжения приводит к эллиптическим (или гиперболическим) орбитам.

      Теория Ньютона, в отличие от гипотез предшественников, имела ряд существенных отличий. Ньютон опубликовал не просто предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель:

      Физический закон — эмпирически установленная и выраженная в строгой словесной или математической формулировке устойчивая связь между повторяющимися явлениями, процессами и состояниями тел и других материальных объектов в окружающем мире. Согласно ньютоновской механике все физические явления происходят в трёхмерном пространстве, описываемом геометрией Евклида, находящемся вечно в состоянии абсолютного покоя.

      Расцвет классической физики приходится на XYIII—XIX века. Сам Ньютон при помощи своей теории объяснил и движение тел на Земле и устройство Солнечной системы. Вдохновлённые блестящими успехами ньютоновской механики астрономы и физики использовали её для описания движения жидкостей и газов, колебаний упругих тел и вновь добились успеха. Даже теория теплоты, которая первоначально основывалась на таинственном теплороде, получила механистическое объяснение, по которому теплота представляет собой энергию, порождённую хаотическим движением молекул вещества.

      Фундаментальной основой строгого детерминизма классической механики было декартовское разграничение между миром и человеком, лишённое упоминания о личности наблюдателя и дающее, якобы, объективное описание мира. Это было принципиальное отличие от основ не только современной физики, но и от религиозных подходов, на которых основывался сам Ньютон. Заложенное внутри классической физики противоречие породило и мощную волну свирепого атеизма, начатую французскими просветителями, и стало началом конца безграничного господства самой классической физики. Первый звонок прозвучал при попытках описать явления электричества и магнетизма, которые не допускали механистического толкования, свидетельствуя о существовании сил неизвестной до этого природы. Важный шаг в расширении механики Ньютона был сделан Майклом Фарадеем и Джеймс Клерком Максвеллом. Вместо того, чтобы утверждать, что два заряда взаимодействуют наподобие гравитационных масс, как это следовало из закона Кулона, они сочли более приемлемым утверждать, что каждый заряд создаёт вокруг себя возбуждение, которое они назвали полем. Вершиной этой теории, получившей название электродинамики, было осознание того, что свет является волной электромагнитного поля высокой частоты.

      Несмотря на эти открытия в основе классической физики лежала все-таки концепция Ньютона:

          абсолютность, т. е. незыблемость и независимость пространства и времени,

        концепция структуры мира, состоящего из твёрдых неделимых частиц,

        объективность, т. е. независимость от наблюдателя исследуемых процессов,

        строгая причинная обусловленность всех физических процессов.

        Нужна помощь в написании статьи?

        Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

        Cовременная физика

        Когда видишь уравнение ,

        становится стыдно за свою болтливость.

        Начало прошлого века кардинально изменило положение дел в физике. У истоков современной физики – великое свершение одного человека – Альберта Эйнштейна [3]. Две его статьи, опубликованные в 1905 году, содержали две радикально новые мысли. Первая из них, подорвав сразу два незыблемых ньютоновских принципа – абсолютность пространства и времени и объективность получаемых результатов наблюдений стала основой специальной теории относительности. Вторая, повергнув принцип неделимости элементарных частиц и причинную обусловленность физических процессов, стала основой квантовой механики. Квантовая теория окончательно сформировалась через двадцать лет благодаря блестящей плеяде физиков, но теорию относительности практически полностью разработал сам Эйнштейн и его труды увековечили достижения человеческого разума, став своеобразными пирамидами человеческой цивилизации.

        Согласно теории относительности, неверно, что пространство имеет три измерения, а время существует независимо от него. Одно тесно связано с другим и вместе они образуют пространственно-временной континуум, в котором нет единого течения времени и разные наблюдатели, двигаясь с различными скоростями относительно наблюдаемых явлений, наблюдали бы разную их последовательность. Таким образом, все измерения во времени и пространстве теряют абсолютный характер, становятся относительными, а время и пространство – лишь элементы языка, используемого наблюдателем, для описания исследуемых явлений. В 1915 году Эйнштейн выдвинул общую теорию относительности, которая в отличие от специальной учитывала гравитацию, которая в свою очередь способна искривлять и время и пространство. Категории пространства-времени становятся настолько основополагающими, что их изменение влечет за собой изменение общего подхода к описанию явлений природы. Одно из них – осознание того, что масса есть одна из форм энергии, выраженное великим уравнением .

        Второе – это то, что теория относительности делает пространственно-временной язык описания земных процессов абсолютным и обосновывает формальный приём Максвелла — выражения всех физических величин в размерностях пространства – L и времени – T.

        В начале XX века было сделано ряд открытий, необъяснимых с точки зрения классической физики. Первое свидетельство о том, что атомы обладают внутренней структурой, появилось с открытием рентгеновских лучей, которое тут же нашло практическое применение в медицине. Вскоре стали известны и другие виды излучения так называемых радиоактивных элементов, которые кроме практического значения, имели ещё и чисто научное. В результате бомбардировок атомов потоками альфа-частиц Резерфорд получил сенсационный результат. Вместо ньютоновских цельных частиц перед учёными предстали невероятно маленькие электроны, вращающиеся вокруг ядра на достаточно большом расстоянии, прикованные к ядрам электрическими силами. Эта планетарная модель неожиданно объяснила гениальное открытие Менделеева – его таблицу химических элементов и, в принципе, всю химию с её различными химическими реакциями. Но в то же время поставило целый ряд принципиально новых вопросов, без разрешения которых было невозможно дальнейшее исследование атомных процессов.

        Частицы, из которых состоит атом, не являются элементарными т.е. твёрдыми и не делимыми. Атом в основном состоит из пустоты – ядра, в котором сосредоточена практически вся масса, и вращающимися вокруг ядра на огромных расстояниях на несколько порядков превышающих размер ядра электронов. Если в центр купола самого большого Храма в России – Исаакиевского Собора поместить песчинку и она будет олицетворять ядро атома, то пылинки, вращающиеся вокруг него по образующей купола, будут олицетворять электроны. И в тоже время атом обладает удивительной стабильностью и физической твёрдостью. Например, в воздухе атомы миллионы раз в секунду сталкиваются друг с другом, и, тем не менее, после каждого столкновения приобретают прежнюю форму. Ни одна механическая система, включая планетарную, не выдержала бы таких нагрузок.

        Нужна помощь в написании статьи?

        Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Пишем статьи РИНЦ, ВАК, Scopus. Помогаем в публикации. Правки вносим бесплатно.

        Квантовая теория показала, что эти поразительные свойства атомов обусловлены волновой природой электронов. Твёрдость обусловлена двойственной природой материи – когда частица находится в ограниченном объёме пространства, она начинает усиленно двигаться, и чем значительнее ограничение, тем выше её энергия и скорость. Электрические силы стремятся как можно сильнее приблизить электрон к ядру и чем сильнее притяжение, тем выше скорость – до нескольких сот километров в секунду. Вследствие этого атом воспринимается как непроницаемая сфера, наподобие того, как вращающийся вентилятор воспринимается как сплошной диск. Однако атом нельзя уподобить маленькой планетарной системе, поскольку электроны не частицы, а вероятностные волны, распределённые по орбитам в соответствии с квантовыми числами, обозначающими местонахождение, энергию, форму, вращение и скорость электронов. Взаимодействие электрической силы притяжения с электронными волнами порождает огромное количество разнообразных структур и явлений в мире. Оно отвечает за все химические реакции и за образование всех молекулярных соединений, из которых состоят все твёрдые, жидкие и газообразные тела, включая живые организмы. Однако эта форма материи, обладающая многообразием очертаний, структур и сложной молекулярной архитектурой, может существовать лишь при условии не очень высокой температуры, порядка 300 градусов Кельвина. При увеличении температуры на всего на два порядка возбуждаются внутренние степени свободы (колебательные, вращательные) и разрушаются все молекулярные структуры, что и имеет место внутри большинства звёзд, т.е. для большей части материи Вселенной. Для нашей планеты особенно важными являются ядерные процессы, происходящие в центре Солнца, питающие энергией околоземное пространство и обеспечивающее жизнь на Земле.

        Это был важнейший этап в познании природы. До этого в физике считалось, что материя состоит из неразделимых элементарных частиц либо из сложных объектов, которые можно разделить на более мелкие. Вопрос был только в том, возможно ли бесконечное деление материи на всё более мелкие части, или существуют в конечном итоге мельчайшие неделимые элементы. Открытие Дирака обозначило новый подход к проблеме делимости вещества.

        При столкновении двух частиц с высокой энергией они обычно разбиваются на части, размеры которых, однако не меньше размеров и масс исходных частиц. Эти частицы такого же типа, возникающие из энергии движения, задействованной в процессе столкновения. Большинство частиц, возникающих при столкновениях, очень недолговечны и существуют менее одной миллионной доли секунды, после чего они распадаются на протоны, нейтроны и электроны. В этой связи частицы следует рассматривать не как самостоятельные сущности, а как неотделимые части целого и Вселенная представляет собой подвижную сеть нераздельно связанных динамических процессов, включающих в себя и наблюдателя.

        Таким образом влияние принципов современной физики на эволюцию человеческого общества можно сформулировать следующим образом.

        Пространственно-временной континуум является абсолютным языком описания всех процессов (физических, химических, биологических, экономических, социальных), происходящих на Земле.

        Материя, энергия, силы, взаимодействия – есть формы движения, т. е. свойства пространства-времени.

        Читайте также: