Реферат на тему електродвигуни

Обновлено: 05.07.2024

Электрические двигатели постоянного и переменного тока. Применение универсальных коллекторных двигателей в промышленных электроустановках. Паспортные данные на щитке асинхронного электродвигателя. Формы исполнения электрических машин по способу монтажа.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 12.10.2011
Размер файла 31,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Электродвигатели и область их применения

Усть-Каменогорск 2009 г.

1. Какие бывают электрические двигатели и где они применяются

Электрические двигатели бывают постоянного и переменного тока. Наиболее распространены электрические двигатели переменного тока. Они просты по устройству, неприхотливы в эксплуатации. Основной недостаток - практически не регулируемая частота вращения.

Электрические двигатели переменного тока изготавливают одно- и многофазными. Основные элементы таких двигателей - статор (неподвижная часть) и ротор (вращающаяся часть). Выпускаются электродвигатели с короткозамкнутыми обмотками ротора (типа беличьей клетки) и обмотками, выведенными на коллектор (систему контактных колец) и замыкающимися через регулируемые резисторы. Такие роторы называют фазными, а электродвигатели - электродвигателями с фазным ротором.

Электрические двигатели переменного тока применяют для привода рабочих машин различного назначения (насосы, деревообрабатывающие станки, дробилки и т.д.), не требующих регулирования частоты вращения. Выпускаются на мощности от 0,2 до 200 и более киловатт.

Электродвигатели постоянного тока состоят из подвижной части (якоря) и неподвижной части (статора). Они выпускаются с параллельным, последовательным и смешанным соединением обмоток якоря и статора. Достоинством двигателей постоянного тока является способность регулировать частоту вращения, но они требуют значительных усилий при эксплуатации.

Универсальные коллекторные двигатели применяются в промышленных и бытовых электроустановках (электрифицированный инструмент, вентиляторы, холодильники, соковыжималки, мясорубки, пылесосы и др.). Они рассчитаны для работы как от сети постоянного тока (110 и 220 В), так и от сети переменного тока частотой 50 Гц (127 и 220 В). Эти двигатели имеют большой пусковой момент и сравнительно малые размеры.

По своему устройству универсальные коллекторные двигатели принципиально не отличаются от двухполюсных двигателей постоянного тока с последовательным возбуждением.

В универсальных коллекторных двигателях не только якорь набирается из листовой электротехнической стали, но и неподвижная часть магнитопровода (полюса и ярмо).

Обмотка возбуждения этих двигателей включается с обеих сторонах якоря. Такое включение (симметрирование) обмотки позволяет уменьшить радиопомехи, создаваемые двигателем.

Для получения примерно одинаковых частот вращения при номинальной нагрузке, как на постоянном, так и на переменном токе обмотку возбуждения выполняют с ответвлениями: при работе двигателя от сети постоянного тока обмотку возбуждения используют полностью, а при работе от сети переменного тока - лишь частично.

Вращающий момент создается за счет взаимодействия тока в обмотке якоря (ротора) с магнитным потоком возбуждения.

Эти двигатели выпускаются на сравнительно небольшие мощности - от 5 до 600 Вт (для электроинструмента - до 800 Вт) и частоты вращения - 2770 - 8000 об/мин. Пусковые токи таких двигателей невелики, поэтому их в сеть включают непосредственно без пусковых сопротивлений. Универсальные коллекторные двигатели имеют минимум четыре вывода: два для подключения к сети переменного тока и два для подключения к сети постоянного тока. КПД универсального двигателя на переменном токе ниже, чем на постоянном. Это вызвано повышенными магнитными и электрическими потерями. Величина тока, потребляемого универсальным двигателем при работе на переменном токе, больше, чем при работе этого же двигателя на постоянном токе, так как переменный ток помимо активной составляющей имеет еще и реактивную составляющую.

Частоту вращения таких двигателей регулируют, изменяя подводимое от сети напряжение, например, автотрансформатором, а у двигателей небольшой мощности - реостатом.

1.1 Паспортные данные на щитке асинхронного электродвигателя

Каждый двигатель снабжается техническим паспортом в виде приклепанной металлической таблички, на которой приведены основные характеристики двигателя. В паспорте указан тип двигателя. В нашем случае это двигатель типа 4А100S2УЗ асинхронный электродвигатель серии 4А закрытого исполнения с высотой оси вращения 100 мм, с короткой длиной корпуса, двухполюсный, климатического исполнения У, категории 3.

Заводской №100592 дает возможность отличить электрическую машину среди однотипных.

Далее приведены цифры и символы, которые расшифровываются следующим образом: 3 ~ - двигатель трехфазного переменного тока; 50 Hz - частота переменного тока (50 Гц), при которой двигатель должен работать; 4, 0 KW - номинальная полезная мощность на валу электродвигателя; cosф=0,89 - коэффициент мощности; A/Y - обмотка статора может соединяться в треугольник или в звезду; 220/380V, 13, 6/7, 8А - при соединении обмотки статора в треугольник она должна включаться на напряжение 220 В, а при соединении в звезду - на напряжение 380 В. При этом машина, работающая с номинальной нагрузкой, потребляет 13, 6 А при включении на треугольник и 7, 8 А - при включении на звезду;

S1 - двигатель предназначен для длительного режима работы;

2880 об/мин - частота вращения электродвигателя при номинальной нагрузке и частоте сети 50 Гц. Если двигатель работает вхолостую, частота вращения ротора приближается к частоте вращения магнитного поля статора;

КПД = 86,5% - номинальный коэффициент полезного действия двигателя, соответствующий номинальной нагрузке на его валу;

IP44 - степень защиты. Двигатель изготовлен во влагоморозостойком исполнении. Может работать в среде с повышенной влажностью и на открытом воздухе.

В паспорте указан ГОСТ, класс изоляции обмотки (для класса В предельно допустимая температура 130°С), масса машины и год выпуска.

1.2 Как обозначаются выводы обмоток электрических машин

При соединении обмоток статора трехфазных машин переменного тока звездой приняты следующие обозначения начала обмоток: первая фаза - С1, вторая фаза - С2, третья фаза - СЗ, нулевая точка - 0.

При шести выводах начало обмотки первой фазы - С1, второй - С2, третьей - СЗ; конец обмотки первой фазы - С4, второй - С5, третьей - Сб.

При соединении обмоток в треугольник зажим первой фазы - С1, второй фазы - С2 и третьей фазы - СЗ.

У трехфазных асинхронных электродвигателей роторная обмотка первой фазы - Р1, второй фазы - Р2, третьей фазы - РЗ, нулевая точка - 0.

У асинхронных многоскоростных электродвигателей выводы обмоток для 4 полюсов - 4С1, 4С2, 4СЗ; для 8 полюсов - 8С1, 8С2, 8СЗ и т.п.

У асинхронных однофазных двигателей начало главной обмотки - С1, конец - С2; начало пусковой обмотки - П1, конец - П2. В электродвигателях малой мощности, где буквенное обозначение выводных концов затруднено, их можно обозначать разноцветными проводами.

При соединении звездой начало первой фазы имеет желтый провод, второй фазы - зеленый, третьей фазы - красный, нулевая точка - черный.

При шести выводах начала фаз обмоток имеют такую же расцветку, как и при соединении, звездой, а конец первой фазы - желтый с черным провод, второй фазы - зеленый с черным, третьей фазы - красный с черным.

У асинхронных однофазных электродвигателей начало вывода главной обмотки - красный провод, конец - красный с черным. У пусковой обмотки начало вывода - синий провод, конец - синий с черным.

В коллекторных машинах постоянного и переменного тока начало обмотки якоря обозначается белым цветом, конец - белым с черным; начало последовательной обмотки возбуждения - красным, конец - красным с черным, дополнительный вывод - красным с желтым; начало параллельной обмотки возбуждения - зеленым, конец - зеленым с черным. У синхронных машин (индукторов) начало обмотки возбудителя - И1, конец - И2.

У машин постоянного тока начало обмотки якоря - Я1, конец - Я2. Начало компенсационной обмотки - К1, конец - К2; начало обмотки добавочных полюсов - Д1, конец - Д2; начало обмотки возбуждения последовательной-С1, конец - С2; начало обмотки возбуждения параллельной (шунтовой) - Ш1, конец - Ш2; начало обмотки или провода уравнительного - У1, конец - У2.

электродвигатель коллекторный асинхронный монтаж

1.3 Формы исполнения электрических машин по способу креплений и монтажа

По расположению и конструкции подшипников, а также по способу крепления и монтажа электрические машины имеют несколько форм исполнения.

Наиболее распространенные формы исполнения электродвигателей серии 4А, Да, АОЛ2

Наиболее употребительной формой исполнения являются электрические машины с горизонтальным расположением вала, с двумя щитовыми подшипниками и станиной на лапах для крепления установки на горизонтальном основании, стене и потолке.

У электрических машин с фланцевым креплением может и не быть лап. В этом случае фланец располагается на станине или на подшипниковом щите.

Машины с двумя щитовыми подшипниками могут работать и в вертикальном положении. Подшипники электродвигателей для вертикальной установки рассчитаны только на массу ротора и соединительной муфты и не допускают добавочной осевой нагрузки.

2. Как изменяются параметры трехфазного асинхронного двигателя при условиях, отличных от номинальных

Понижение напряжения при номинальной частоте приводит к уменьшению тока холостого хода и магнитного потока, а значит, и к уменьшению потерь в стали. Величина тока статора, как правило, повышается, коэффициент мощности увеличивается, скольжение возрастает, а КПД несколько падает. Вращающий момент двигателя уменьшается, так как он пропорционален квадрату напряжения.

При повышении напряжения сверх номинального и номинальной частоте двигатель перегревается из-за увеличения потерь в стали.

Вращающий момент двигателя растет, величина скольжения уменьшается. Ток холостого хода увеличивается, а коэффициент мощности ухудшается. Ток статора при полной нагрузке может уменьшиться, а при малой нагрузке может увеличиться вследствие увеличения тока холостого хода.

При уменьшении частоты и номинальном напряжении увеличивается ток холостого хода, что приводит к ухудшению коэффициента мощности. Ток статора обычно возрастает. Увеличиваются потери в меди и стали статора, охлаждение двигателя несколько ухудшается вследствие уменьшения частоты вращения.

При повышении частоты сети и номинальном напряжении уменьшается ток холостого хода и вращающий момент.

2.1 Как включить трехфазный электродвигатель в однофазную сеть

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из сетевых зажимов присоединяют рабочий конденсатор Ср и отключаемый (пусковой) СП, применяемый для увеличения пускового момента.

Если пуск двигателя происходит без нагрузки, то конденсатор Сп не используется. После пуска двигателя пусковой конденсатор отключают.

Изменяют направление вращения (реверсирование) путем переключения сетевого провода с одного зажима конденсатора на другой.

Рабочая емкость пропорциональна мощности двигателя (номинальному току) и обратно пропорциональна напряжению.

За номинальные ток и напряжение принимают фазные значения величин, указанных в паспорте электродвигателей.

В качестве рабочих могут применяться конденсаторы типов КБГ-МН (конденсатор бумажный, герметический, в металлическом корпусе, нормальный). БГТ (бумажный, герметический, термостойкий), МБГЧ (металлобумажный, герметический, частотный).

При определении пусковой емкости исходят из пускового момента. Если пуск двигателя происходит без нагрузки, пусковой емкости не требуется. Чтобы получить пусковой момент, близкий к номинальному, достаточно иметь пусковую емкость, определяемую соотношением Сп = (2, 5 - 3) Ср.

Отключаемые (пусковые) конденсаторы работают несколько секунд при включении, поэтому используют более дешевые электролитические конденсаторы типа ЭП.

Напряжение конденсатора для приведенных схем

где Uк - напряжение на конденсаторе при номинальной нагрузке, В; Uc - напряжение сети, В.

При работе двигателя с недогрузкой Uк= 1, 15 Uc.

Номинальное напряжение конденсаторов типов КБГ-МН и БГТ дается для работы на постоянном токе. При работе их на переменном токе величина допустимого напряжения не должна превышать значений, указанных в таблице 3.

При ремонте и после каждого отключения конденсатор разряжают с помощью какого-либо сопротивления. Разрядным сопротивлением могут служить несколько ламп накаливания, соединенных последовательно.

Для включения и защиты от перегрузок конденсаторного двигателя используют магнитные пускатели с тепловыми реле.

Таблица 1. Величины допустимых напряжений

Номинальное напряжение постоянного тока, В

Допустимое напряжение переменного тока В, при частоте 50 Гц и емкости конденсатора, мкФ

Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического регулирования и управления, в быту.

Электрические машины преобразуют механическую энергию в электрическую, и наоборот. Машина, преобразующая механическую энергию в электрическую, называются генератором. Преобразование электрической энергии в механическую осуществляется двигателями.

Любая электрическая машина может быть использована как в качестве генератора, так и в качестве электродвигателя. Это свойство электрической машины изменять направление преобразуемой ею энергии называется обратимостью машины. Электрическая машина может быть также использована для преобразования электрической энергии одного рода тока ( частоты, числа фаз переменного тока, напряжения постоянного тока ) в энергию другого рода тока. Такие электрические машины называются преобразователями.

В основу работы любой электрической машины положен принцип электромагнитной индукции. В зависимости от рода потребляемого или отдаваемого в сеть тока электрические машины подразделяются на машины переменного и постоянного тока. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.

Асинхронный электродвигатель с ко-роткозамкнутым ротором:
1 — ротор,. 2 — обмотка статора, 3 — корпус, 4 — цилиндр из листов электротехнической стали, 5 — вал

Асинхронный электродвигатель с фазным ротором:
а — общий вид, б -~ ротор; 1 — вал, 2 — контактные кольца, 3 — обмотка ротора, 4 — пакет ротора

Электродвигатель постоянного тока:
1 — коллектор, 2 — щетки, 3 — якорь, 4 — главный полюс, 5 — катушка обмотки возбуждения, 6 — корпус, 7 — подшипниковый щит, 8 — вентилятор, 9 — обмотка якоря

Ротор может быть:

- фазным (с обмоткой) — используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. Сейчас эти двигатели редкость, так как на рынке появились преобразователи частоты, ранее же они очень часто использовались в крановых установках.

Якорь — это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте). По сути универсальный двигатель — это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление. Поэтому любая болгарка, если выкинуть электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.

Конструкция машин постоянного тока более сложная, стоимость выше и эксплуатация более дорогая, чем асинхронных, поэтому двигатели постоянного тока применяются в приводах, требующих широкого и плавного регулирования частоты вращения, или в автономных установках при питании двигателей от аккумуляторных батарей.

Асинхронные двигатели переменного тока являются основными преобразователями электрической энергии в механическую и составляют основу привода большинства механизмов, используемых во всех областях человеческой деятельности. Наиболее широко применяются асинхронные электродвигатели общего назначения средней мощности (от 1 до 4000 кВт) на низкое напряжение (до 1000 В)

Говоря об асинхронных электродвигателях переменного тока, можно дополнительно выделить две основные группы по назначению: электродвигатели общего назначения (общепромышленные) и двигатели специального назначения. К двигателям специального назначения относятся крановые и металлургические, тяговые, судовые, экскаваторные и взрывозащищенные электродвигатели.

Контактные кольца - вид электрических контактов, выполненных в виде токопроводящего кольца с прилегающими к нему щётками, обеспечивающих подачу электричества во вращающейся электрической машине из одной части цепи в другую при помощи скользящего контакта.

Контактные кольца применяются в случае невозможности прямой передачи электрической энергии при помощи проводов, например при подаче на вращающийся вал.

Используются в машиностроении, электродвигателях, робототехнике (для передачи информационного и управляющего сигнала). Применяемые в электродвигателях контактные кольца более предпочтительны по сравнению с коллекторным узлом, так как в процессе работы получают меньший износ.

В зависимости от выбранного технологического решения могут применяться контактные кольца концентрические и продольные.

Контактные кольца изготавливаются обычно из твёрдых металлов и, в отдельных случаях, имеют устойчивое к износу и воздействию внешней среды покрытие (позолоченное или серебряное).

Также известны случаи применения жидкометаллических контактных колец — ртутных токосъемников, обеспечивающих передачу больших токов и имеющие низкое сопротивление.

Читайте также: