Реферат на тему эйлеровы графы

Обновлено: 02.07.2024

Первая работа по теории графов, принадлежащая известному швейцарскому математику Л.Эйлеру, появилась в 1736г. Вначале теория графов казалась довольно незначительным разделом математики, так как она имела дело в основном с математическими развлечениями и головоломками. Однако дальнейшее развитие математики и особенно её приложений дало сильный толчок развитию теории графов. Уже в XIX столетии графы использовались при построении схем.

В этой работе мы подробнее рассмотрим эйлеровы графы, основные сведения и теоремы, связанные с этим понятием. А также задачи, которые решаются с помощью эйлеровых графов.

Глава 1. Теоретическая часть.

Основные понятия теории графов

Граф G – пара ( V , X ), где V конечное непустое множество, содержащее p вершин, а множество Х содержит q неупорядоченных пар различных вершин из V .

Каждую пару X = < u , v >вершин в Х называют ребром графа G и говорят, что Х соединяет u и v .Мы будем писать X = uv и говорить, что u и v – смежные вершины. Вершина u и ребро Х инцидентны, так же как v и Х. Если два различных ребра X и Y инцидентны одной и той же вершине, то они называются смежными. Граф с р вершинами и q ребрами называется ( p ; q )- графом. Граф (1,0)- называется тривиальным.[6]

Если элементом множества V может быть пара одинаковых элементов u , то такой элемент множества V называется петлёй.[3]

Мультиграф, в нём не допускаются петли, но пары вершин могут соединяться более чем одним ребром, эти рёбра называются кратными (рис.1).

Псевдограф, в нём допускаются петли и кратные рёбра (рис.2).

Ориентированный граф, или орграф, состоит из конечного непустого множества V вершин и заданного набора Х упорядоченных пар различных вершин. Элементы из Х называются ориентированными рёбрами, или дугами. Нет петель и кратных дуг (рис. 3).

Направленный граф – это орграф, не имеющий симметричных пар ориентированных рёбер (рис.4).

Помеченные графы (или перенумерованные), если его вершины отличаются одна от другой какими-либо пометками. В качестве пометок обычно используются буквы или целые числа.[6]

Степенью вершины v i в графе G называется число рёбер, инцидентных v i ,обозначается d i . [6] Для орграфа вводятся понятия степени входа и выхода. Степенью выхода вершины v называется количество рёбер, для которых v является начальной вершиной, обозначается outdeg ( v ). Степенью входа вершины v называется количество рёбер , для которых v является конечной вершиной, обозначается indeg ( v ). Если indeg ( v )=0, то вершина v называется источником. Если outdeg ( v )=0, то вершина v называется стоком.[1]

Маршруты и связность

Граф G / ( U / , V / ) называется подграфом графа G ( U , V ), если U /  U и V /  V . Обозначение: G /  G .

Если V / = V , то G / называется остовным подграфом G .[3]

Маршрутом в графе G называется чередующаяся последовательность вершин и рёбер v 0 , x 1 , v 1 ,… v n -1 , x n , v n ; эта последовательность начинается и кончается вершиной, и каждое ребро последовательности инцидентно двум вершинам, одна из которых непосредственно предшествует ему, а другая непосредственно следует за ним. Указанный маршрут соединяет вершины v 0 и v n и его можно обозначить v 0 v 1 v 2 … v n (наличие рёбер подразумевается). Эта последовательность иногда называется ( v 0 - v n )-маршрутом. Маршрут замкнут, если v 0 = v n , и открыт в противном случае. Маршрут называется цепью, если все его рёбра различны, и простой цепью, если все вершины (а следовательно, и рёбра ) различны. Замкнутая цепь называется циклом. Замкнутый маршрут называется простым циклом, если все его n вершин различны и n 3.

Граф G называется связным, если любая пара его вершин соединена простой цепью.[6]

Графы. Решение практических задач с использованием графов (С++)

. , чтобы граф был эйлеровым, необходимо и достаточно, чтобы он был связным и все . // Определение эйлеровости графа int count; for(int i=0;i > Информатика, программирование

. Да­дим теперь строгое определение эйлерову циклу и эйлерову графу. Если граф имеет цикл (не обязательно . , то такой цикл называется эйлеровым циклом, а граф называется эйлеровым графом. Если граф имеет цепь (не .

Построение эйлерова цикла. Алгоритм Форда и Уоршелла

. равно 1. Пусть теперь G не является эйлеровым графом. Обозначим через k число его вер­шин . вершин нечетной степени. Тогда оказывается эйлеровым графом и имеет эйлеров цикл . После удаления .

Гамильтоновы графы и сложность отыскания гамильтоновых циклов

. циклом, а граф называется гамильтоновым графом. Граф, который . эйлеровых графов, где имеется критерий для графа быть эйлеровым, для гамильтоновых графов . : d(u) + d(v) ≥ n и (u, v)E, то граф G — гамильтонов. Граф G имеет гамильтонов цикл если выполняется .

Графы

Графы

. каждому мосту ребро графа, а суше вершину (рис. 11). Эйлеровым путем в графе G называется такой . . Если граф содержит точно две вершины нечетной степени, то в эйлеровом пути эти . граф имеет замкнутый эйлеров путь. На рисунке 12, а нет замкнутого эйлерова .

Графы. Основные понятия

. локальные степени вершин графа, проверить существует ли в данном графе эйлерова цепь, эйлеров цикл . (х1)=2 ; 2 (х1)=2 ; (х1)=4 ; 1 (х2)=2 ; 2 .

Основы дискретной математики

. для ориентированного графа Алгоритм построения эйлерова цикла в эйлеровом ориентированном графе является аналогом . граф называется эйлеровым? Приведите пример эйлерова графа. 12) Какой граф называется гамильтоновым? Приведите пример гамильтонова графа .

Типовой расчет графов

. ) Выписать степенную последовательность вершин графа G. а) Указать в графе G Эйлерову цепь. Если таковой цепи не . цикл. Степенная последовательность вершин графа G: (3,6,4,5,3,6,4,3,4,4) а) Для существования Эйлеровой цепи допустимо только две .

Обзор методов графического представления моделей в экономике и управлении

Первая работа по теории графов, принадлежащая известному швейцарскому математику Л.Эйлеру, появилась в 1736г. Вначале теория графов казалась довольно незначительным разделом математики, так как она имела дело в основном с математическими развлечениями и головоломками. Однако дальнейшее развитие математики и особенно её приложений дало сильный толчок развитию теории графов. Уже в XIX столетии графы использовались при построении схем.
В этой работе мы подробнее рассмотрим эйлеровы графы, основные сведения и теоремы, связанные с этим понятием. А также задачи, которые решаются с помощью эйлеровых графов.

Содержание работы

Введение………………………………………………….
1.Дерево.Свойство деревьев
2.Элеров Граф
3.Критерии Существования Эйлера цикла.
4.Теорема Эйлера
Заключение……………………………………………….
Список Литературы………………………………………

Содержимое работы - 1 файл

Дискретная математика.docx

Пусть e – ребро графа G / , пусть Ge – компонента графа G / , содержащая е. Поскольку G / имеет менее, чем k, вершин, и у каждой вершины графа G / чётная степень, граф G / имеет эйлеров цикл. Пусть С2 . Далее у С1 и С2 имеется общая вершина, допустим, а. Теперь можно продолжить эйлеров цикл, начиная его в а, пройти С1 , вернуться в а, затем пройти С2 и вернуться в а. Если новый эйлеров цикл не является эйлеровым циклом для G , продолжаем использовать этот процесс, расширяя наш эйлеров цикл, пока, к конце концов, не получим эйлеров цикл для G .[1]

Из теоремы 1 следует, что если в связном графе G нет вершин с нечётными степенями, то в G есть замкнутая цепь, содержащая все вершины и все рёбра графа G. Аналогичный результат справедлив для связных графов, имеющих некоторое число вершин с нечётными степенями.

Следствие 1(а): Пусть G- связный граф, в котором 2n вершин имеют нечётные степени, n>1. Тогда множество рёбер графа G можно разбить на n открытых цепей.

Следствие 1(б): Пусть G- связный граф, в котором две вершины имеют нечётные степени. Тогда в G есть открытая цепь, содержащая все вершины и все рёбра графа G (и начинающаяся в одной из вершин с нечётной степенью, а кончающаяся в другой).[6]

Эйлеровым путём в графе называется путь, содержащий все рёбра графа. Эйлеров путь называется собственным, если он не является эйлеровым циклом.[1]

Теорема 2: Если граф G обладает эйлеровым путём с концами А и В (А не совпадает с В), то граф G связный и А и В – единственные нечётные его вершины.

Доказательство: Связность графа следует из определения эйлерова пути. Если путь начинается в А, а заканчивается в другой вершине, то и А и В – нечётные даже если путь неоднократно проходил через А и В. В любую другую вершину графа путь должен был привести и вывести из неё, то есть все остальные вершины должны быть чётными.

Теорема 3: (обратная) Если граф G связный и А и В единственные нечётные вершины его, то граф G обладает эйлеровым путём с концами А и В.

Доказательство: Вершины А и В могут быть соединены ребром в графе, а могут быть соединены.

Если А и В соединены ребром, то удалим его; тогда все вершины станут чётными. Новый граф (по теореме 1) обладает эйлеровым циклом, началом и концом которого может служить любая вершина. Начнём эйлеров путь в вершине А и кончим его в вершине А. Добавим ребро (А,В) и получим эйлеров путь с началом в А и концом в В.

Если А и В не соединены ребром, то к графу добавим новое ребро (А,В), тогда все вершины его станут чётными. Новый граф (по теореме 1) обладает эйлеровым циклом. Начнём его из вершины А по ребру (А,В). Заканчивается путь тоже в вершине А. Если удалить теперь из полученного цикла ребро (А,В), то останется эйлеров путь с началом в В и концом в А или началом в А и концом В.

Таким образом, всякую замкнутую фигуру, имеющую в точности две нечётные вершины, можно начертить одним росчерком без повторений, начав в одной из нечётных вершин, а кончив в другой.

Теорема 4: Если связный граф G имеет 2k нечётных вершин, то найдётся семейство из k путей, которые в совокупности содержат все рёбра графа в точности по одному разу.

Доказательство: Половину нечётных вершин обозначим А12,…,Аk,другую половину В12,…,Вk(рис.7). Если вершины Аi и Вi (1

Пусть G=(V,E) – ориентированный граф. Ориентированным циклом называется ориентированный путь ненулевой длины из вершины в ту же вершину без повторения ребер.

Пусть G=(V,E) – ориентированный граф. Ориентированный цикл, который включает все рёбра и вершины графа G, называется эйлеровым циклом. Говорят, что ориентированный граф G имеет эйлеров цикл.

Теорема 5: Ориентированный граф имеет эйлеров цикл тогда и только тогда, когда он связный и степень входа каждой вершины равна степени выхода.[1]

Критерии существования Эйлерова цикла

Что необходимо, чтобы в графе существовал эйлеров цикл? Во-первых, граф должен быть связанным: для любых двух вершин должен существовать путь, их соединяющий. Во-вторых, для неориентированных графов число ребер в каждой вершине должно быть четным. На самом деле этого оказывается достаточно.

Теорема 1. Чтобы в связанном неориентированном графе G существовал эйлеров цикл, необходимо и достаточно, чтобы число вершин нечетной степени было четным.

Необходимость. Любой эйлеров цикл должен прийти в вершину по одному ребру и покинуть ее по другому, так как любое ребро должно использоваться ровно один раз. Поэтому, если G содержит эйлеров цикл, то степени вершин должны быть четными.

Достаточность. Пусть G — связный неориентированный граф, все вершины которого имеют четную степень. Начнем путь из некоторой произвольной вершины x0 и пойдем по некоторому ранее не использованному ребру к следующей вершине, и так до тех пор, пока не вернемся в вершину x0 и не замкнем цикл. Если все ребра окажутся использованными, то нужный эйлеров цикл построен. Если же некоторые ребра не использованы, то пусть Ф — только что построенный цикл. Так как граф G связен, то цикл Ф должен проходить через некоторую вершину, скажем xi, являющуюся конечной вершиной какого-либо до сих пор не использованного ребра. Если удалить все ребра, принадлежащие Ф, то в оставшемся графе все вершины по-прежнему будут иметь четную степень, так как в цикле Ф должно быть четное число ребер (0 является четным числом), инцидентных каждой вершине.

Начиная теперь с xi, получаем цикл Ф’, начинающийся и оканчивающийся в xi. Если все оставшиеся ранее ребра использованы для цикла Ф’, то процесс окончен. Нужный эйлеров цикл будет образован частью цикла Ф от вершины x0 до xi, затем циклом Ф’ и, наконец, частью цикла Ф от вершины xi до x0. Если же все еще остались неиспользованные ребра, то объединение построенных выше циклов Ф и Ф’ дает новый цикл Ф. Мы снова можем найти вершину xj, принадлежащую циклу и являющуюся концевой вершиной некоторого неиспользованного ребра. Затем мы можем приступить к построению нового цикла Ф’, начинавшегося в xj, и так до тех пор, пока не будут использованы все ребра и не будет получен таким образом эйлеров цикл Ф. Это доказывает теорему.

Хотя доказательство проведено для неориентированных графов, оно сразу переносится на ориентированные, только требование четности заменяется теперь на такое: число входящих в каждую вершину ребер должно быть равно числу выходящих.

Для связного эйлерова графа G множество ребер можно разбить на простые циклы.

Для того чтобы связный граф G покрывался единственной эйлеровой цепью, необходимо и достаточно, чтобы он содержал ровно 2 вершины с нечетной степенью. Тогда цепь начинается в одной из этих вершин и заканчивается в другой.

В доказательстве теорем Коши и Александрова используется теорема Эйлера. Эта знаменитая теорема впервые появилась в 1752 году в журнале Петербургской академии наук в работах Леонарда Эйлера 1 "Элементы учения о телах" и "Доказательство некоторых замечательных свойств, которым подчинены тела, ограниченные плоскими гранями".

Теорема Эйлера. Пусть В --- число вершин выпуклого многогранника, Р --- число его ребер и Г --- число граней. Тогда верно равенство

Число =В-Р+Г называется эйлеровой характеристикой многогранника. Согласно теореме Эйлера, для выпуклого многогранника эта характеристика равна 2. То что эйлерова характеристика равна 2 для некоторых знакомых нам многогранников, видно из таблицы.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

ЭЙЛЕРОВЫГРАФЫВыполнила студентка 4 курса

42 группы математического

факультета Катышева Н.Г.Научный руководитель:

Токаревская С.А. Архангельск

Глава 1. Теоретическая часть. 4

Основные понятия теории графов 4

Маршруты и связность 6

Задача о кёнигсбергских мостах. 7

Эйлеровы графы 9

Оценка числа эйлеровых графов 13

Алгоритм построения эйлеровой цепи в данном эйлеровом графе. 14

Глава 2. Практическая часть 15

Введение Первая работа по теории графов, принадлежащая известному швейцарскому математику Л.Эйлеру, появилась в 1736г. Вначале теория графов казалась довольно незначительным разделом математики, так как она имела дело в основном с математическими развлечениями и головоломками. Однако дальнейшее развитие математики и особенно её приложений дало сильный толчок развитию теории графов. Уже в XIX столетии графы использовались при построении схем.

В этой работе мы подробнее рассмотрим эйлеровы графы, основные сведения и теоремы, связанные с этим понятием. А также задачи, которые решаются с помощью эйлеровых графов.

Глава 1. Теоретическая часть.Основные понятия теории графов

Граф G – пара (V,X), где V конечное непустое множество, содержащее p вершин, а множество Х содержит q неупорядоченных пар различных вершин из V.

Каждую пару X= вершин в Х называют ребром графа G и говорят, что Х соединяет u и v.Мы будем писать X=uv и говорить, что u и v – смежные вершины. Вершина u и ребро Х инцидентны, так же как v и Х. Если два различных ребра X и Y инцидентны одной и той же вершине, то они называются смежными. Граф с р вершинами и q ребрами называется (p;q)- графом. Граф (1,0)- называется тривиальным.[6]

Если элементом множества V может быть пара одинаковых элементов u, то такой элемент множества V называется петлёй.[3]

Мультиграф, в нём не допускаются петли, но пары вершин могут соединяться более чем одним ребром, эти рёбра называются кратными (рис.1).Псевдограф, в нём допускаются петли и кратные рёбра (рис.2).

Ориентированный граф, или орграф, состоит из конечного непустого множества V вершин и заданного набора Х упорядоченных пар различных вершин. Элементы из Х называются ориентированными рёбрами, или дугами. Нет петель и кратных дуг (рис. 3).

Направленный граф – это орграф, не имеющий симметричных пар ориентированных рёбер (рис.4).Помеченные графы (или перенумерованные), если его вершины отличаются одна от другой какими-либо пометками. В качестве пометок обычно используются буквы или целые числа.[6]

Степенью вершины vi в графе G называется число рёбер, инцидентных vi ,обозначается di.[6] Для орграфа вводятся понятия степени входа и выхода. Степенью выхода вершины v называется количество рёбер,

Пусть G=(V,E) – ориентированный граф. Ориентированным циклом называется ориентированный путь ненулевой длины из вершины в ту же вершину без повторения ребер.

Пусть G=(V,E) – ориентированный граф. Ориентированный цикл, который включает все рёбра и вершины графа G, называется эйлеровым циклом. Говорят, что ориентированный граф G имеет эйлеров цикл.

Теорема 5: Ориентированный граф имеет эйлеров цикл тогда и только тогда, когда он связный и степень входа каждой вершины равна степени выхода.[1]

Оценка числа эйлеровых графов

Лемма : В любом графе число вершин нечётной степени чётно.

Доказательство: По теореме 1 сумма степеней всех вершин число чётное. Сумма степеней вершин чётной степени чётна, значит, сумма степеней вершин нечётной степени также чётна, значит, их чётное число.

Пусть G(p) – множество всех графов с р вершинами, а Е(р) – множество эйлеровых графов с р вершинами.

Теорема 6: Эйлеровых графов почти нет, то есть

Доказательство: Пусть E/ (р) – множество графов с р вершинами и чётными степенями. Тогда по теореме1 Е(р)МЕ/(p) и |Е(р)|Ј|Е/(p)|.В любом графе число вершин нечётной степени чётно, следовательно, любой граф из Е/(p) можно получить из некоторого графа G(p-1), если добавить новую вершину и соединить её со всеми старыми вершинами нечётной степени. Следовательно, |Е/(p)| Ј|G(p-1)|. Но |G(p)|=2C(p, 2). Заметим, что

Алгоритм построения эйлеровой цепи в данном эйлеровом графе.

Этот метод известен под названием алгоритма Флёри.

Теорема 7: Пусть G – эйлеров граф, тогда следующая процедура всегда возможна и приводит к эйлеровой цепи графа G. Выходя из произвольной вершины и, идём по рёбрам графа произвольным образом, соблюдая лишь следующие правила:

стираем рёбра по мере их прохождения и стираем также изолированные вершины, которые при этом образуются;

на каждом этапе идём по мосту только тогда, когда нет других возможностей.

Доказательство: Покажем сначала, что указанная процедура может быть выполнена на каждом этапе. Предположим, что мы достигли некоторой вершины V; тогда если V№U, то оставшийся подграф H связен и содержит ровно две вершины нечётной степени, а именно U и V. Согласно теореме 3 и определению полуэйлерова графа, граф H содержит полуэйлерову цепь P из V в U. Поскольку удаление первого ребра цепи Р не нарушает связности графа Н, то описанное в теореме построение (Т 1б)) возможно на каждом этапе. Если же V=U, то доказательство остаётся тем же самым до тех пор, пока есть ещё рёбра, инцидентные вершине U.

Осталось только показать, что данная процедура всегда приводит к полной эйлеровой цепи. Но это очевидно, так как в G не может быть рёбер, оставшихся не пройденными после использования последнего ребра, инцидентного U. В противном случае удаление некоторого ребра, смежного одному из оставшихся, привело бы к несвязному графу, что противоречит условию 2).[5]

Глава 2. Практическая часть

Существует ли эйлеров цикл в графе G. Если существует, найдите его.[2]

А) Так как каждая вершина имеет чётную степень, то по критерию в этом графе существует эйлеров цикл: 1,4,6,9,10,8,5,3,2,4,7,10,11,8,6,5,2,1

Б) В этом графе также каждая вершина имеет чётную степень, значит, существует и эйлеров цикл: 1,2,3,4,5,3,1,4,5,2,1

В) Здесь каждая вершина имеет степень 5, то есть нечётную, следовательно, в этом графе (по критерию) нет эйлерова цикла.

Где на выставке следовало бы сделать вход и выход (рис.8) , чтобы можно было провести экскурсию по всем залам, побывав в каждом из них в точности один раз?[2]

В этом графе вершины А и В имеют степень 3, то есть нечётную, следовательно, в нём существует эйлеров путь с началом в одной из этих вершин и концом в другой. Значит, вход и выход следует установить в вершинах А и В.

3. Среди приведённых ниже графов найдите те, которые имеют эйлеров цикл.[1]

Эйлеровы графы

а) Т.к. этот граф связный и каждая его вершина имеет чётную степень, то по критерию эйлерова графа, данный граф имеет эйлеров цикл:

a b e j i f c b d h j g f a c d e h g i a

б) Этот граф связный, но т.к. все его вершины имеют нечётную степень, то он не имеет эйлерова цикла.

в) Этот граф связный, но т.к. все его вершины имеют степень 3, то есть нечётную, то он не имеет эйлерова цикла.

г) Данный граф связный, степени вершин а и с имеют нечётную степень, значит, этот граф не имеет эйлерова цикла.

4. Среди приведённых ниже графов найдите те, которые имеют эйлеров цикл.[1]

Эйлеровы графы

а) Граф не является связным, то есть не выполняется первое условие критерия, значит, он не имеет эйлерова цикла.

б) Этот граф является связным и все его вершины имеют чётную степень, значит, по критерию эйлерова графа, он имеет эйлеров цикл:

a c f h I j k g d c b f I l j g e d a

в) Данный граф связный, но степени вершин а и е нечётные, следовательно по критерию, этот граф не имеет эйлерова цикла.

г) Граф является связным, но так как все его вершины имеют нечётную степень, то граф не имеет эйлерова цикла.

5. Среди приведённых ниже графов найдите те, которые имеют собственный эйлеров путь.[1]

Эйлеровы графы

а) Граф связный, и только две его вершины (a и f) имеют нечётную степень, следовательно, то по теореме 3, граф имеет собственный эйлеров путь.

б) Граф связный; deg(a)=3, deg(b)=3, deg(c)=3, то есть более двух вершин имеют нечётную степень, значит, не имеет эйлерова пути.

в) Этот граф связный и только две вершины (с и j) имеют нечётную степень, значит, граф имеет собственный эйлеров путь.

г) Граф связный; deg(a)=3, deg(b)=4, deg(c)=1, deg(d)=3, то есть более двух вершин имеют нечётную степень, следовательно, в этом графе нет эйлерова пути.

6. Среди приведённых ниже графов найдите те, которые имеют собственный эйлеров цикл.[1]

Эйлеровы графы

а) Данный граф связный; deg(a)=3, deg(b)=2, deg(c)=3, deg(d)=2, deg(e)=2. Ровно две вершины имеют нечётную степень, значит, по теореме 3, граф имеет собственный эйлеров путь.

б) Граф является связным и ровно две его вершины (е и f) имеют нечётную степень, значит, данный граф имеет собственный эйлеров путь.

в) Граф связный, найдём степени вершин: deg(d)=5, deg(b)=5, deg(e)=5, нашлись три вершины, степень которых нечётная, значит, граф не имеет эйлерова пути.

г) Данный граф связный и только две его вершины (а и b) имеют нечётную степень, значит, этот граф имеет собственный эйлеров путь.

7. Какие из следующих ориентированных графов имеют эйлеровы циклы? [1]

Эйлеровы графы

Эйлеровы графы

а) Граф связный, найдём степени входа и выхода вершин (по теореме 5 степени входа и выхода каждой вершины должны совпадать):

indeg(a)=2, outdeg(a)=1, то есть нашлась вершина, у которой не совпадают степени входа и выхода, значит, граф не имеет эйлерова цикла.

б) Граф связный, найдём степени вершин:

Следовательно, по теореме 5, граф имеет эйлеров цикл.

в) Граф связный, найдём степени вершин:

Условия теоремы 5 не выполняются, значит, граф не имеет эйлерова цикла.

г) ) Граф связный, найдём степени вершин:

Следовательно, т.к. условия теоремы 5 не выполняются то, граф не имеет эйлерова цикла.

8. Какие из следующих ориентированных графов имеют эйлеровы циклы? [1]

Эйлеровы графы

а) Граф связный, найдём степени вершин:

Т.к. второе условие теоремы 5 не выполняется, значит, граф не имеет эйлерова цикла.

б) Граф не связный, то есть первое условие теоремы 5 не выполняется. Значит, граф не имеет эйлерова цикла.

в) Граф связный, найдём степени вершин:

Второе условие теоремы 5 не выполняется, значит, граф не имеет эйлерова цикла.

г) Граф связный, найдём степени вершин:

Граф не имеет эйлерова цикла, т.к. не выполняется второе условие теоремы 5.

9. На рисунке план подземелья, в одной из комнат которого скрыты богатства рыцаря. После смерти рыцаря его наследники нашли завещание, в котором было сказано, что для отыскания сокровищ достаточно войти в одну из крайних комнат подземелья, пройти через все двери, причём в точности по одному разу через каждую; сокровища скрыты за той дверью, которая будет пройдена последней. В какой комнате были скрыты сокровища?

Построим граф, вершинами которого являются комнаты подземелья, а рёбрами – двери. Затем найдём такой путь, чтобы пройти по всем рёбрам (через все двери) в точности по одному разу.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.

Читайте также: