Реферат на тему дроссели

Обновлено: 05.07.2024

Объект исследования –дроссель питания малой мощности.

Цель проэкта – систематизирование, закрепление и расширение полученных теоретическихе знаний по дисциплине, приобретение практических навыков творческого решения конкретных конструкторских задач

В результате конструктивного расчёта дросселя по указанным данным определяется вид изоляции обмотки и марка обмоточного провода, после чего проверяется возможность его размещения в окне магнито провода выбранного типоразмера

В результате электрического расчёта дросселя определяется тип магнитопровода, его геометрические размеры, число обмоток число витков и сечение провода обмотки.

1.1 Анализ условий эксплуатации

1.2 Обоснование дополнительных требований и параметров

2. Выбор направления проектирования

3. Расчёт заданного элемента

3.1 Расчет электрических параметров

3.2 Расчет КПД дросселя

4. Обоснование конструктивных параметров и уточнение конструкции

Дроссели широко применяются в электротехнических и радиотехнических установках в качестве балластных и токоограничивающих сопротивлений, для регулирования и стабилизации напряжения и тока, для сглаживания пульсаций выпрямленного напряжения и в некоторых других случаях.

Дросселями называют статические электромагнитные устройства, используемые в электрических цепях в качестве индуктивных сопротивлений

Различают несколько разновидностей дросселей. Основными из них являются дроссели переменного тока, называемые также индуктивными катушками, сглаживающие дроссели электрических фильтров и дроссели насыщения.

Общим для них является то, что дроссель любого типа представляет собой катушку с ферромагнитным сердечником. Дроссели различают по числу обмоток и форме протекающего через них тока. Дроссель переменного тока имеет одну обмотку, обтекаемую переменным током. Сглаживающий дроссель также имеет одну обмотку, но обтекается пульсирующим током. Дроссель насыщения имеет две обмотки, одна из которых обтекается переменным, а вторая постоянным током.

В этом курсовом проекте решается задача конструирования маломощного дросселя переменного тока, предназначенного для работы в цепях питания. Вся трудность заключается в том, что дроссели имеют большие габариты, массу, что значительно ограничивает их применение. То есть данный курсовой проект является вкладом в процесс развития маломощных дросселей.

1. АНАЛИЗ ТЗ

По условиям ТЗ проектируемый дроссель предназначен для использования в бытовой радиотехнической аппаратуре апаратуре (РТА).

1.1 Анализ условий эксплуатации

Будущий дроссель должен быть согласно заданию по климатическому исполнению эксплуатирован в климатических районах с умеренным климатом в лабораторных, капитальных жилых и других подобных помещениях.

В конструкции дроссель имеется сердечник из материала с высокой магнитной проницаемостью и малым уровнем потерь и возможно большой индукцией насыщения. Обычно, для дросселей питания, применяются разрезные сердечники, полученные из набора отдельных пластин или лент. Разрезные сердечники требуют введения дополнительных элементов конструкции, обеспечивающих их сжатие и механическое соединение для уменьшения воздушного зазора. Сердечник обычно изготавливают из стальной ленты и пластин, а также из пермалоя и феррита. Для исключения контакта между слоями ленты и пластин, приводящего к увеличению потерь в сердечнике, который имеет конечную толщину. Поэтому высокой магнитной проницаемостью обладает только часть сечения сердечника, чем более тонкие ленты используется в сердечнике.

1.2 Обоснование дополнительных требований и параметров.

Изготовить дроссель, одновременно удовлетворяющий требованию минимальной массы, стоимости, перегрева, и падения напряжения, невозможно. Например, если предъявляется требование минимальной стоимости, то в связи с тем, что стоимость проводов (меди) значительно выше сердечника (стали), выгоднее увеличить размеры и массу сердечника и уменьшать окно.

Если же важно, чтобы дроссель имел минимальную массу, то следует уменьшить сечение сердечника и увеличивать окно, а необходимый режим работы сердечника обеспечивать, увеличивать число витков.

Лучшие магнитные свойства имеют ленточные сердечники, у которых направление магнитных силовых линий совпадает с направлением проката. Кроме того, в них можно использовать очень тонкие ленты толщиной до 0,01 мм. Ленточные разрезные сердечники в настоящее время нормализованы.

Основными требованиями к магнитному материалу, применяемому в дросселях питания, являются высокая индукция насыщения и малые потери. Для маломощных дросселей, питающихся напряжением частотой 50-800 Гц, основным требованием является высокая индукция насыщения. При увеличении размеров дросселей объём сердечника увеличивается быстрее, чем поверхность охлаждения. При использовании ленточных проводников увеличивается коэффициент заполнения, не возникает пустот между обмотками, значительно улучшается теплоотвод, увеличивается долговечность трансформатора и способность выдерживать перегрузки.

2. Выбор направления проектирования

Так как дроссель имеет большие электромагнитные силовые потоки, а соответственно большие размеры обмотки элемента. Для уменьшения размеров и массы важную роль играет грамотный подбор материалов составных частей дросселя.

На основании практических данных наиболее приемлемым при данных условиях считается стержневой дроссель.

Учитывая недостатки в существующих дросселях, относительно проектирования выбираем следующие направления:

Для стяжки трансформатора используем ленту специальной формы;

Токосъем выполним в виде паянного соединения контактов дросселя с отводящими элементами;

Обмотка дросселя – открытого типа , то есть крышки не имеет, так как условия работы – лаборатории, жилые дома и другие подобные помещения.

3. РАСЧЕТ ЗАДАННОГО ЭЛЕМЕНТА

3.1 Расчет электрических параметров.

Определяем габаритную мощность дросселя (типовую мощность, определяющую габаритные размеры сердечника) по формуле (3.1) [4]

где L=0.4 Гн- заданная индуктивность дросселя; I=1.2 А заданный рабочий ток ; f=800 Гц-рабочая частота.

Подставляем значения на основе исходных данных и определяем габаритную мощность дросселя:

S = 2*3,14*800*0.4* =2894 ВА

Исходя из определённой . S выбираем тип магнитопровода и выписываем из табл.7-7 [2, стр 308] величины индукции В, удельное намагничивание ампер-витков а , плотность тока . В соответствии с рабочей частотой, условиями эксплуатации выбираем материал и толщину ленты магнитопровода; материал и марку обмоточного провода и провода, используемого для выводов концов обмотки; определяемся с материалом каркаса.

Тип магнитопровода: стержневой типа ПЛ

В качестве материала для магнитопровода выбираем холоднокатаную сталь Э340 с толщиной ленты 0.15 мм

В=0.6 тл; а =60 А/см; d=4А/мм ;

В качестве материала обмотки используем медь, имеющую малое удельное сопротивление.

В качестве обмоточного провода выбираем провод круглого сечения с эмалевой изоляцией (основное достоинство- малая толщина изоляционного слоя, невысокая стоимость)

Марка обмоточного провода ПЭВ-1.

Для выводов концов обмотки используем провод марки МГДШЛ.

В качестве каркаса выбираем каркас изготовленный из электротехнического картона.

Определяем обьём стали магнитопровода по формуле (3.2) [2], угол потерь принимаем равным 5

V = см 3 (3.2)

где =0,9- коэфициент заполнения сечения магнитопровода, выбираем из табл.5-4 [2,стр.178] .

Подставляем значения в формулу (3.2) и определяем обьём стали магнитопровода :

V = =279,4 см 3

По найденной величине V и данным таблиц [2,стр.364-393] выбираем предварительно типоразмер магнитопровода: ПЛ20Х40-100

По формуле (3.3), пользуясь таблицей [ 2,стр.310] , определяем базовый линейный размермагнитопровода дросселя:

а=1.98 , см (3.3)

m=5; n=1.6; l=2-оптимальные коэфициенты формы, определяемые согласно рекомендациям изложенным в [2,стр.158].

Подставляем известные значения в формулу (3.3) и определяем базовый линейный размермагнитопровода дросселя :

а=1.98 =1.21 см

Окончательно уточняем размер магнитопровода, подбирая по табл. [2,стр.364-393] наиболее близкие к найденным значениям V , а. Выбрав магнитопровод, выписываем из таблицы стандартные значения обьёма стали V , см 3 , длину средней магнитной силовой линии lст, см, габаритные размеры.

Из таблицы П2-5 [2,стр.377] выбираем магнитопровод ПЛ20Х40-100, у которого:

V =262 см 3 ;

S S =256см 4 -площадь сеченияф сталиXплощадь окна;

S =8см 2 – активная площадь сечения магнитопровода ;

G = 1.77кг- вес магнитопровода;

Определяем число витков обмотки дросселя по формуле (3.4) .

Подставляем известные значения в формулу (3.4) и определяем число витков обмотки дросселя:

Выбираем предварительно марку обмоточного провода, исходя из условий эксплуатации. ПЭВ-1: (tp - до 105°С; Up- до 500 В).

Определяем диаметр обмоточного провода по формуле (3.5)

Подставляем известные значения в формулу (3.5) и определяем диаметр обмоточного провода

Определяем площадь поперечного сечения обмоточного провода по формуле (3.6):

где =0.31 мм- радиус обмоточного провода.

Подставляем известные значения в формулу (3.6) и определяем площадь поперечного сечения обмоточного провода:

Используя таблицу с номинальными данными обмоточных проводов [2,стр.359] выбираем провод с ближайшим номинальным значением:

Марка провода: ПЭВ-1

Определяем число витков в одном слое обмотки по формуле (3.7)

Где =1.1-коэфициент неплотности [1,стр. 185]

Подставляем известные значения в формулу (3.7) и определяем число витков в одном слое обмотки :

Зная число витков в одном слое обмотки,определяем число слоёв в обмотке по формуле (3.8)

Подставляем известные значения в формулу (3.8) и определяем число слоёв в обмотке :

Назначив толщину межслоевой изоляциии ,определяем сумарную толщину обмотки по формуле (3.9).

Подставляем известные значения в формулу (3.9) и определяем сумарную толщину обмотки:

t=12 *0.67 +(12 -1)*1=20 мм

Определяем величину амплитудного значения рабочего напряжения Uр мах, и величину испытательного напряжения Uисп

Значение Uисп выбираем из таблицы [2,стр.98]

Выбираем изоляционные расстояния hиз 1 , hиз.ос , h изн ,hос пользуясь приведенными рекомендациями [2,стр.100-107] .

hиз 1 =2 мм –расстояние от крайнего витка обмотки до сердечника;

hиз.ос =2 мм-расстояние от первого слоя обмотки до серднчника через сплошную изоляцию каркаса;

h изн =0.34 мм – толщина внешней изоляции обмотки.

hос=3 мм-толщина каркаса.

Определяем коэфициенты укладки провода kу1 , kу2 пользуясь справочными таблицами : [2,стр. 103-104].

kу1=1.05 - коэфициенты укладки провода в осевом направлении;

kу2=1.06- коэфициенты укладки провода в радиальном направлении.

Определяем коэфициент выпучивания провода обмотки kв , используя справочный рисунок [2,стр.104].

Используя рекомендации [2,стр.107] определяем зазор между катушкой и сердечником.

Определяем радиальный размер обмотки дросселя по формуле (3.11)

hиз.мс=0.09мм –толщина межслоевой изоляции из пропиточной бумаги марки ЭИП-50.

Подставляем известные значения в формулу (3.11) и определяем радиальный размер обмотки дросселя:

Определяем среднюю длину витка пользуясь рекомендациями изложенными в [2,стр.107].

Подставляем известные значения в формулу (3.12) и определяем среднюю длину витка дросселя :

Определяем массу меди обмотки.

Подставляем известные значения в формулу (3.13) и определяем массу меди обмотки:

Определяем потери в обмотке.

3.2 Расчет КПД дросселя.

По формуле (3.15) и кривой, рисунок 5 [2], определяем потери в стали для индукции В =0.6 (Тл).

Где р =0.9Вт/кг - удельные потери ( на 1 кг стали ) [2,стр.179];

G =1.77 кг - масса магнитопровода.

Определяем рабочую мощность дросселя по формуле (3.16)

Определяем КПД дросселя, используя рекомендации приведенные в [2,стр.195].

Подставляем известные значения в формулу (3.17) и определяем КПД дросселя:

=89 %,что допустимо.

4. Обоснование конструктивных параметров и уточнение конструкции

В данной работе разрабатывается маломощный дроссель питания. Медная проволока обмотки намотана на каркас и через отверстие в щёчке каркаса выведена на внешнюю поверхность стенки, припаяна к лепестку, с которого в последствии происходит снимание или подача электрических сигналов.

Конструкция разработанного дросселя, используемого в указанных выше условиях, должна обеспечивать его надёжную работу в течении всего заданного срока службы. Поэтому конструкция разработанного дросселя соответствует следующим основным требованиям: механическая прочность, нагревостойкость, влагостойкость и электрическая прочность. Под перечисленными выше требованиями подразумевается способность конструкции противостоять механическим и температурным воздействиям, сохранять работоспособность при повышенной влажности и в предусмотренных случаях климатических воздействий обеспечивать достаточный запас электрической прочности изоляции обмотки.

В целом конструкция проста ,надёжна и технологична, не требует больших затрат средств и пригодна для серийного производства.

1. Напряжение источника питания, …………………………. 210

2. Частота питающей сети, ……………………………………..800

4.Фактическая плотность тока в проводе обмотки, ………. 4

5. Номинальная мощность, …………………………………..252

8. Температура окружающей среды (С°)……………………………+40

Предназначен для бытовой аппаратуры.

Программа выпуска 40000 шт. в год.

В результате проектирования был разработан маломощный дроссель питания. Его характеристики, приведенные в паспорте, при сравнении сразу выделяют его достоинства и недостатки.

Сам дроссель имеет довольно существенные габаритные размеры, но этот недостаток компенсируется его надёжностью, простотой конструкциии, технологичностью, что удобно при эксплуатации. Температура нагрева обмотки дросселя равна 105 0 С.

В результате расчетов получили дроссель с большой эксплуатационной надёжностью и хорошими электрическими показателями для определённых исходных данных .

Недостатком является его крупные габариты по сравнению с аналогичными конструкциями, что ограничивает применение дросселя данной конструкции.

Полученная конструкция удобна при массовом производстве. Она проста, технологична и не требует очень сложного оборудования. Между тем конструкция надежна и долговечна. Подлежит ремонту и замене.

ПЕРЕЧЕНЬ ССЫЛОК

1. Волгов В.А. Детали и узлы радиоэлектронной аппаратуры. М.,1967.

2. Белопольский М.И.,Пикалова Л.Г. Расчет трансформаторов и дросселей малой мощности. М. Энергия. 1973.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Главной целью данного курсового проекта является электрический и конструктивный расчет помехоподавляющего дросселя по основным исходным данным, а так же составление технической документации.

Анализ технического задания

Анализ аналогичных конструкций

Расчет электрических и конструктивных параметров

Список используемой литературы

Современная радиоэлектроника является мощным средством научно-технического прогресса. Методы и средства радиоэлектроники проникли во все отрасли науки и техники, они находят широкое применение в различных отраслях народного хозяйства, в военном деле, в культуре и в быту. Современная радиоэлектроника – это комплекс областей науки и техники, включающий наряду с радиотехникой и электронной техникой оптоэлектронику, рентгеноэлектронику, гамма – электронику и другие.

ХХ столетие, и особенно его вторая половина, ознаменовалась для радиотехники бурным её развитием как по количеству, так и по качеству и сложности функций, выполняемых радиотехническими системами и средствами. Потребности развивающейся радиотехники способствовали развитию электронной техники, и напротив, появление новых электронных приборов, в особенности сверхвысокочастотных и квантовых электронных приборов: магнетронов и клистронов, ламп бегущей и обратной волны, лазеров, мазеров и др., привело к резкому расширению возможностей радиотехники, к освоению СВЧ – диапазонов электромагнитных волн. Всё шире применяются радиотехнические методы для задач, не связанных с излучением электромагнитных волн. Поэтому понятие "радиотехника" стало заменяться более широким понятием "радиоэлектроника".

АНАЛИЗ ТЕХНИЧЕСКОГО ЗАДАНИЯ

1. Рабочая частота: 100 кГц

2. Рабочее напряжение: 100В

3. Индуктивность: 0,05 Гн

4. Рабочий ток: 0,05 А

5. Климатическое исполнение: УХЛ.4.1. ГОСТ 15150-69.

6. Годовой выпуск: 100000 шт.

Так как рассчитываемый дроссель маломощный, расчёт температурного режима можно опустить.

Проектируемый дроссель предполагается использовать в бытовой аппаратуре, выбираем следующие дополнительные параметры:

1.Значения климатических факторов внешней среды при эксплуатации и испытаниях.

Категория размещения изделия – 4.1.

2.Значения температуры воздуха при эксплуатации, 0 С.

- верхнее значение + 25;

- нижнее значение + 10;

- среднее значение + 20.

- верхнее значение + 40;

- нижнее значение + 1.

Относительная влажность: 80% при 25 0 С.

3. Механические воздействия.

- длительность ударного импульса: 16 мс;

- число ударов, не менее: 20.

3) Ударопрочность оборудования:

- длительность ударного импульса: 16 мс;

- общее число ударов, не менее: 10 3 .

- рабочая температура: 40 0 С;

- предельная температура: 55 0 С.

рабочая температура:-10 0 С;

предельная температура:-40 0 С .

температура: 25 0 С .

АНАЛИЗ АНАЛОГИЧНЫХ КОНСТРУКЦИЙ

Обычно под катушками индуктивности понимают элементы, у которых взаимодействие тока и поля происходит на высокой частоте. Высокочастотные катушки индуктивности в зависимости от их назначения можно разделить на четыре группы:

катушки колебательных контуров, не определяющих частоту;

катушки колебательных контуров, определяющих частоту;

дроссели высокой частоты;

Катушки контуров могут быть с постоянной переменной индуктивностью (вариометры).

По конструктивному признаку катушки могут быть разделены на однослойные и многослойные, экранированные и неэкранированные, катушки без сердечников и катушки с магнитными или немагнитными сердечниками, цилиндрические, плоские и печатные.

Свойства катушек могут быть охарактеризованы следующими основными параметрами; индуктивностью, допуском индуктивности, добротностью, собственной емкостью и стабильностью.

В данном курсовом проекте будет рассчитана однослойная катушка индуктивности, экранированная от внешних воздействий с цилиндрическим сердечником из карбонильного железа, который перемещается внутри каркаса.

Главная часть конструкции, определяющая электромагнитную основу катушки индуктивности - сердечник и обмотка с изоляцией, составляющие вместе катушку.

Применение сердечников обеспечивает изменение заданной индуктивности в требуемых пределах. Достоинствами немагнитных сердечников являются повышенная температурная стабильность индуктивности катушки и возможность использования при высоких рабочих частотах, недостатками - малые пределы регулировки индуктивности и снижение добротности катушки. Таким образом, данные сердечники используются в высокостабильных высокочастотных катушках с однослойной намоткой. Достоинство магнитных сердечников заключается в достижении больших пределов регулировки индуктивности, увеличение добротности катушки и возможность существенного уменьшения ее габаритных размеров. Однако при этом значительно снижается температурная стабильность индуктивности, а рабочий диапазон частот ограничен значениями потерь, возникающих в магнитных материалах.

В сердечнике броневого типа обмотки располагаются внутри центрального стержня, что упрощает конструкцию катушки, обеспечивает более полное использование его окна и частичную защиту обмотки от механических воздействий.

Недостаток – повышенная чувствительность к воздействию полей низкой частоты.

При использовании сердечников стержневого типа упрощается процесс подстройки катушки, уменьшается толщина намоток. Это так же способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Кольцевые сердечники позволяют полнее использовать магнитные свойства материала и создают очень слабое поле, но из-за сложности изготовления обмоток не получили широкого распространения.

Гидродроссели по типу запорного элемента подразделяются на игольчатые, золотниковые, щелевые, тарельчатые и др.
Регулируемый дроссель — это такой дроссель, у которого площадь его проходного сечения можно менять путём воздействия на его запорно-регулирующий элемент извне.
Пневмодроссели служат для регулирования расхода сжатого воздуха, применяются в том числе и для управления скоростью движения пневмоцилиндра и других устройств. Пневматические дроссели являются одним из основных конструктивных элементов пневматических устройств и служат для создания сопротивления течению газа и перепада давлений.

Содержание работы

Введение.
Общее описание золотникового дросселя.
Регулирование золотниковыми дросселями. Управляющие дроссельные золотники.
Особенности разработки дросселей.
Дроссель как основной элемент золотникового распределителя.

Файлы: 1 файл

Referat.doc

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Владимирский государственный университет

по дисциплине: "Гидро-пневмоавтоматика и привод"

  1. Введение.
  2. Общее описание золотникового дросселя.
  3. Регулирование золотниковыми дросселями. Управляющие дроссельные золотники.
  4. Особенности разработки дросселей.
  5. Дроссель как основной элемент золотникового распределителя.

Дроссели являются одним из основных конструктивных элементов гидравлических и пневматических устройств и предназначены для создания перепада давлений на определенных участках гидролинии (пневмолинии) при течении через нее рабочей среды.

Гидравлический дроссель — регулирующий гидроаппарат, предназначенный для создания гидравлического сопротивления потоку жидкости. Дополнительное гидравлическое сопротивление создаётся за счёт изменения проходного сечения потока жидкости. Изменением гидравлического сопротивления гидродросселя создаётся необходимый перепад давлений на тех или иных элементах гидросистем, а также изменяется величина потока жидкости, проходящего через гидродроссель.

Гидродроссели по типу запорного элемента подразделяются на игольчатые, золотниковые, щелевые, тарельчатые и др.

Регулируемый дроссель — это такой дроссель, у которого площадь его проходного сечения можно менять путём воздействия на его запорно-регулирующий элемент извне.

Пневмодроссели служат для регулирования расхода сжатого воздуха, применяются в том числе и для управления скоростью движения пневмоцилиндра и других устройств. Пневматические дроссели являются одним из основных конструктивных элементов пневматических устройств и служат для создания сопротивления течению газа и перепада давлений.

Подачу (расход) жидкости регулируют дросселями (дроссельными устройствами) и гидрораспределителями (обычно золотникового типа).

Применяют также устройства для комбинированного регулирования, которые выполняют несколько функций и состоят из нескольких аппаратов различного назначения, конструктивно объединенных в одном агрегате, что позволяет сократить количество трубопроводов и снизить массу агрегатов.

Рис.1 Принцип действия дросселей и обозначение их на схемах. 1

По условиям работы дроссели можно разделить на три типа:
Турбулентные дроссели, имеющие канал цилиндрической формы с малым отношением длины к диаметру, в которых эффект дросселирования вызывается местными сопротивлениями на входе и выходе из канала, а влияние сил трения при движении воздуха по каналу практически не сказывается. Как правилу движение воздуха в этих дросселях оказывается турбулентным и обычно адиабатным.
Ламинарные дроссели, имеющие цилиндрический канал с большим отношением длины к диаметру, при котором обеспечивается ламинарное движение воздуха и основное значение приобретают потери на трение при протекании воздуха по каналу дросселя. К ламинарным дросселям относятся дроссели и другой формы, в частности щелевые, при условии, что процесс течения воздуха в них удовлетворяет указанным выше признакам. Ламинарные дроссели работают в условиях под- критического режима.
Дроссели смешанного типа, работающие при любых других сочетаниях условий течения воздуха.
Каждый из трех указанных типов дросселей может быть выполнен регулируемым, т. е. предусматривается возможность измерения его гидравлического сопротивления, или нерегулируемым, т. е. с постоянным гидравлическим сопротивлением.

2. Общее описание золотникового дросселя.

В гидропневмоавтоматике широко распространены золотниковые регулируемые дроссели, являющимися основными элементами золотниковых распределителей. Золотники в свою очередь бывают плоские и цилиндрические. Кроме того, золотники могут иметь ручной, электрический, гидравлический или смешанный привод. Золотники также могут фиксироваться в позициях или иметь возврат. Наиболее часто применяются цилиндрические золотники. Золотники крупных и средних размеров имеют гидравлическое управление от вспомогательных золотников или пилотов. В таких случаях золотник управления и рабочий золотник компонуются вместе или могут находиться на значительном расстоянии друг от друга.

Рис.2 1-гильза, 2-золотник.

а) дроссель с кольцевой проточкой в гильзе. б) дроссель с окном в гильзе. 2

Принцип действия (рис.3)- в золотниковом дросселе в исходном положении каналы дросселя 4 открыты. Под влиянием внешнего воздействия на хвостовик золотника 1, последний сжимая пружину 3, перемещается влево, частично перекрывая проходные каналы 4. В зависимости от положения золотника изменяется гидравлическое сопротивление проходу рабочей жидкости, а, следовательно, и ее расход.

3. Регулирование золотниковыми дросселями. Управляющие дроссельные золотники.

Дроссельное регулирование осуществляется путем изменения гидравлического сопротивления гидросети дросселем, в результате чего только часть жидкости, подаваемой насосом, поступает к гидродвигателю. Этот способ регулирования позволяет иметь простые нерегулируемые насос и гидродвигатель, однако является неэкономичным, поскольку имеет низкий КПД (0,3¸0,4) и, кроме того, создает трудности при отводе значительного количества тепла, выделяющегося при дросселировании. В связи с этим дроссельное регулирование применяется при небольших мощностях, при кратковременном режиме работы, или, когда другой способ регулирования практически невозможен. Например, если в гидроприводе один насос или несколько параллельно работающих гидродвигателей с различными нагрузками.

Дроссельное регулирование гидроприводов - один из распространенных способов регулирования гидродвигателей малой мощности.

При прохождении жидкости через щель дросселя часть располагаемой энергии жидкости теряется на преодоление сопротивления щели, что приводит к снижению скорости гидродвигателя. При дроссельном регулировании располагаемая энергия, получаемая от насоса, должна всегда превышать потребную энергию, необходимую для движения гидродвигателя с заданной скоростью.

Рис.4 Управляющий дроссельный золотник. 4

В качестве дроссельных устройств применяют также специальные управляющие дроссельные золотники, рис.4, позволяющие плавно изменять скорость жидкости в трубопроводах за счет изменения площади рабочего окна.

В управляющем золотнике 2 жидкость подвергается двойному дросселированию. Из насоса 1 жидкость под давлением поступает в золотник. При смещении золотника от нейтрального положения в золотнике образуется два проходных окна: на входе в гидродвигатель 3 и на выходе из него. Дросселирование жидкости через эти окна сопровождается потерей энергии, которая обуславливает потерю давления.

В идеальном управляющем золотнике ширина пояска плунжера должна быть равна ширине дросселирующего окна, рис.5а. Однако на практике для повышения чувствительности часто делают золотники с протоком жидкости, рис.5б. Ширина пояска плунжера этих золотников меньше ширины окна на несколько микрометров. Применяются управляющие золотники и с перекрытием в несколько микрометров. Золотники с перекрытием, в нейтральном положении имеют значительно меньшую утечку, но зона чувствительности такого золотника увеличивается.

Золотники с положительным осевым перекрытием (рис.5.1, а) имеют ширину поясков b больше, чем ширину проточки c или диаметр рабочих окон в корпусе. При нейтральном положении золотника такого гидрорапределителя напорная гидролиния отделена от линий, соединяющих полости гидродвигателя и слива. Величина перекрытия П = (b - c) / 2 зависит от диаметра золотника: при d = 10…12 мм перекрытие принимают равным 1…2 мм; при d до 25 мм - 3…5 мм; при d до 50 мм - 6…8 мм. Золотники с положительным осевым перекрытием позволяют фиксировать положение исполнительного механизма. Недостатком является наличие у них зоны нечувствительности, определяемой величиной осевого перекрытия: в пределах этой зоны при перемещении золотника расход жидкости через гидрораспределитель равен нулю, а исполнительный механизм не движется, несмотря на подаваемый к золотнику сигнал управления.

Рис.5.1 Конструктивные исполнения золотников 4

Золотники с нулевым осевым перекрытием (рис.5.1, б) имеют ширину пояска b равную ширине проточки c или диаметру рабочих окон, а осевое перекрытие П = 0. Такие золотники не имеют зоны нечувствительности и наилучшим образом удовлетворяют требованиям следящих гидросистем. Однако изготовление таких золотников связано со значительными технологическими трудностями.

Золотники с отрицательным осевым перекрытием (рис.5.1, в), у которых b золотникового распределителя.

При эксплуатации гидросистем возникает необходимость изменения направления потока рабочей жидкости на отдельных ее участках с целью изменения направления движения исполнительных механизмов машины, требуется обеспечивать нужную последовательность включения в работу этих механизмов, производить разгрузку насоса и гидросистемы от давления и т.п. Эти и некоторые другие функции могут выполняться специальными гидроаппаратами - направляющими гидрораспределителями.

При изготовлении гидрораспределителей в качестве конструктивных материалов применяют стальное литье, модифицированный чугун, высоко- и низкоуглеродистые марки сталей, бронзу. Для защиты отдельных элементов распределителей от абразивного износа, поверхности скольжения цементируют, азотируют и т.п.

Размеры и масса гидрораспределителей зависят от расхода жидкости через них, с увеличением которого они увеличиваются.

По способу присоединения к гидросистеме гидрораспределители выпускают в трех исполнениях: резьбового, фланцевого и стыкового присоединения. Выбор способа присоединения зависит от назначения гидрораспределителя и расхода через него рабочей жидкости.

Золотниковый гидрораспределитель (Рис. 6)— гидравлический распределитель, в котором запорно-регулирующим элементом служит золотник. В качестве золотника чаще всего выступает плунжер переменного диаметра.

Рис. 6 Конструктивная схема золотникового гидрораспределителя. 6

Рис. 6.1 Условное графическое обозначение механизма, показанного на рис. 6. Буквами обозначены: Р — распределитель; Ц — гидроцилиндр. Стрелками показаны направления потоков жидкости в каждой из трёх позиций золотника (в нейтральном положении каналы золотника закрыты и жидкость через распределитель не движется) 6

В золотниковых гидрораспределителях изменение направления потока рабочей жидкости осуществляется путем осевого смещения запорно-регулирующего элемента.

Рассмотрим также устройство золотникового пневмораспределителя:

Рис.7 Схема пневмораспределителя золотникового типа. 7

В золотниковых пневмораспределителях управление потоком осуществляется путем перемещения золотника, который соединяет и разъединяет отверстия, выполненные в стенках неподвижного корпуса.

Приветствую, дорогие посетители моего канала! Сегодня мы поговорим о дросселе. Разберемся, что это, из чего состоит и как работает, где применяется. Информацию постараюсь подавать максимально доступно, буквально на пальцах расскажу, как всё устроено.

Что такое дроссель, принцип работы

Дроссель напоминает трансформатор, но он обычно имеет только одну обмотку (как в понижающих, повышающих преобразователях). При пропускании электрического тока образуется электромагнитное поле. Причем его нарастание и спад в дросселе происходит с задержкой, за счет этого и обеспечивается функция сглаживания резких скачков значений электрических параметров, т. к. магнитное поле в катушке не может быстро изменить направление.

Когда рост напряжения имеет импульсный характер, неравномерность сигнала поглощается дросселем. Благодаря этому на выходе получают стабильное напряжение. Такой принцип работы используется при производстве сетевых фильтров. Они обеспечивают возможность подачи напряжения без помех, за счет чего снижается вероятность поломки подключенной через дроссель техники в случае резких скачков.

Такая особенность функционирования дросселя востребована в цепях переменного тока. Для постоянного тока катушка не является сдерживающим элементом. Причем в цепях переменного тока дроссель может полностью заблокировать сигнал с неподходящими параметрами, если его индуктивность будет изначально слишком большой.

DC/DC преобразователи, работающие на понижение напряжения

В понижающих преобразователях дроссель выступает в качестве источника энергии. Это становится возможным благодаря способности накапливать энергию. Такой процесс называют также зарядом дросселя. Достигается нужный результат путем подачи множества коротких импульсов на него. В дальнейшем дроссель становится источником энергии и отдает то, что накопил. При этом меняется полярность напряжения на обмотке, что провоцирует изменение направления протекания тока. На выходе через дроссель можно получить более низкое напряжение, например, если подали 12 В, будет 5 В.

Величины электрических параметров определяются продолжительностью подаваемого импульса, что позволяет регулировать выходное напряжение. Безопасность работы приборов с такой электрической схемой обеспечивается также благодаря конденсатору. Его функция заключается в сглаживании пульсации, т. к. иногда за 1 секунду проходит до 1000 импульсов и больше.

DC/DC повышающие преобразователи

Такое свойство, как невозможность сохранения энергии дросселем в течение длительного периода, используется не только для понижения, но и для повышения значений электрических параметров (в частности, напряжения). Если нужно получить 12 В на выходе из поданных 5 В, также используют DC/DC преобразователи, но повышающие. Принцип их работы основан на свойстве дросселя накапливать энергию по мере подачи тока. Но при размыкании цепи напряжение резко повышается, частично достигает конденсатора.

При повторном замыкании цепи описанный цикл повторяется. Но пока дроссель накапливает энергию, питание обеспечивается благодаря конденсатору. Затем снова происходит резкий скачок напряжения. Он приобретает импульсный характер. А увеличение напряжение также обеспечивается благодаря тому, что суммируется его значение на источнике питания и дросселе.

Таким образом, дроссель выполняет важную функцию, поэтому до сих пор востребован в электротехнике. Его важность не может быть приуменьшена даже с появлением цифровых технологий, т. к. стабильность работы разных устройств, электроники намного сложнее обеспечить без такого свойства, как сглаживание импульсов питающей сети.

Читайте также: