Реферат на тему датчики автоматизации

Обновлено: 05.07.2024

мыми чувствительными элементами или датчиками. Сигнал от датчика подается на устройство сравнения вместе с заданным сигналом, сигнал разности подается на усилитель, и этот усиленный сигнал действует на исполнительный органа изменяющий состояние регулируемого объекта.

В электроустановках датчик воздействует на электрическую цепь, включая или выключая ее, изменяя электрическое сопротивление или вырабатывая электричество.

Всегда важно выбрать место установки датчика. Например, в системе водяного отопления от электрокотла датчик температуры ставится на выходе ее из котла, чтобы подавать сигнал на включение и отключение нагревательных элементов котла для поддержания температуры воды на выходе котла соответствующей заданной. При установке датчика в других местах котел может не отключиться даже при аварийных режимах работы, например, при отсутствии циркуляции воды и перегреве котла.

Датчики температуры

Термопреобразователи сопротивления (термометры сопротивления) применяются для передачи сигнала о температуре объекта на расстоянии от объекта до показывающего прибора, т. е. для дистанционного измерения температуры. Их принцип работы основан на свойстве металлов изменять удельное сопротивление при изменении температуры. Схема термопреобразователя сопротивления показана на рис. 2.38.

2-121.jpg


Рис. 2.38. Схема термопреобразователя сопротивления

1 — чувствительный элемент, 2 — провода, 3 — корпус, 4 — штуцер крепления корпуса, 5 — клеммы, 6 — штуцер для вывода проводов.

Чувствительный элемент термопреобразователя состоит из проволоки, намотанной на каркас. В зависимости от материала проволоки различаются термопреобразователи сопротивления медные (ТСМ) и платиновые (ТСП). Размер каркаса чувствительного элемента от 60 до 100 мм. Каркас вставляется в конец корпуса защитной арматуры, а на другом конце корпуса имеется головка с зажимами для проводов, идущих от чувствительного элемента. На корпусе имеется штуцер для его крепления на технологическом оборудовании.

Термопреобразователи различаются монтажной длиной — расстоянием от штуцера до конца, в котором находится чувствительный элемент, которая может меняться от 80 до 3150 мм.

Пределы измеряемой температуры термопреобразователя

от -200 до 600 -С.

Термоэлектрические преобразователи (термопары) служат также для дистанционного измерения температуры. Их принцип действия основан на использовании ЭДС, получаемой от двух спаянных концов разного металла, если их спай и свободные концы находятся при разных температурах.

Термоэлектрические преобразователи обозначаются в зависимости от применяемых сплавов: хромель—копель — ТХК, хромель—алюмель — ТХА, платинородий—платина — ТПП, платинородий (30% родия) — платинородий (6% родия) —

Термоэлектрический преобразователь устроен аналогично

термопреобразователю сопротивления. Длина его монтажной части до 10 м, пределы измеряемой температуры — от -50 до

Особенность применения термоэлектрических преобразователей заключается в необходимости компенсации температуры холодных концов спая. Если температура холодных концов, равная температуре окружающего воздуха, будет изменяться, а температура измеряемой среды будет неизменной, то значения термо-ЭДС будут также изменяться. Неизменность показаний прибора достигают электрической компенсацией влияний температуры в месте установки прибора, воспринимающего термо-ЭДС. Для этого термоэлектрический преобразователь присоединяют к вторичному прибору специальными компенсационными проводами (табл. 2.51).

Манометрические термометры применяются для дистанционного измерения температуры. Их принцип действия основан на зависимости между температурой и давлением жидкости или газа при постоянном объеме. Схема манометрического

термометра показана на рис. 2.39.

Прибор состоит из термобаллона, соединенного капилляром с вторичным прибором — манометром. В манометре капилляр соединяется с трубчатой пружиной, которая скручиваемся или раскручивается в зависимости от давления жидкости

или газа в системе манометра, зависящего от температуры измеряемой среды, куда помещен термобаллон. Пружина действует на механизм манометра, воздействующий на показывающие и регулирующие устройства (стрелки, самописцы, контакты).

Таблица 2.51 ДАННЫЕ ТЕРМОЭЛЕКТРОДНЫХ ПРОВОДОВ

2-122.jpg

Манометрические термометры могут быть газовые, жидкостные и конденсационные, самопишущие, сигнализирующие и показывающие. К последним относятся газовые типа ТГП—100, конденсационные типа ТКП—100. Пределы измерения различных типов приборов от —50 до 600 °С, длина капилляра от 1,6 до 40 м.

Терморезисторы широко применяются в устройствах автоматики. Они встраиваются в обмотки электродвигателей, если применяется устройство температурной защиты, являются датчиками в регуляторах температуры.

2-123.jpg


Рис. 2.39. Схема манометрического термометра:

1 — пружина манометрическая, 2 — стрелка показывающая, 3 — ось, 4 — механизм передаточный, 5 — капилляр, 6 — термобаллон.

Биметаллические элементы являются датчиками температурами. Их принцип действия основан на свойстве пластинки,

сваренной иэ двух разных металлов, изгибаться из-за разного удлинения этих металлов при нагревании. Биметаллические

элементы применяются в приборах для регулирования температуры различных сред, в защитных тепловых реле, применяемых в бытовых приборах и в промышленных установках

Датчики давления

Для измерения давления в различных средах широко применяются манометры. Чувствительными элементами манометры являются плоские или гофрированные мембраны, мембранные коробки, сильфоны и различного рода манометрические пружины.

В системах автоматики применяются электроконтактактные

манометры типов ЭКМ-1У, ЭКМ-2У, ВЭ-16Р6 с пределами измерения от 0,1 до 160 МПа. Схема электроконтактного манометра показана на рис. 2.40.

2-124.jpg


Pиc. 2.40. Электрическая схема электроконтактного манометра.

1 — стрелка, 2 — шкала, 3 — зажимы выводов, связанные с неподвижными контактами и стрелкой, 4 — контакты подвижные

Датчики уровня

Датчики уровне служат для контроля уровня жидкостей в резервуарах и для подачи сигналов о регулировании этого

Электродный датчик имеет короткий и длинный электроды, укрепленные в коробке зажимов. Короткий электрод является контактом верхнего уровня, а длинный — нижнего уровня. Датчик соединяется проводами со станцией управления.

двигателем насоса. Касание коротким электродом воды приводит к отключению пускателя насоса, понижение уровня воды ниже длинного электрода приводит к включению насоса.

Электродные датчики применяются и в других установках, кроме насосных, например, в системе подкачки воды в парогенераторах.

Поплавковое реле применяется в отапливаемых резервуарах. Одна из конструкции этого реле состоит из коромысла, на конце которого подвешены на тросе один над одним два поплавка. Верхний поплавок представляет собой емкость дном вверх, а нижний — емкость дном вниз. Ось коромысла заходит в корпус, где кулачками переключает тумблер, включающий или отключающий двигатель насоса.

При снижении уровня воды конец коромысла опускается под действием веса поплавков и воды в нижнем поплавке, кулачок коромысла включает насос, воздействуя на тумблер.

При повышении уровня воды поплавки поднимаются, коромысло под действием противовеса поднимает конец с тросом и переключает тумблер на остановку насоса.

Электроконтактные манометры также применяются как датчики уровня, так как каждый уровень воды соответствует определенному ее давлению. При этом шкала манометра должна иметь достаточно большие деления, чтобы установить пределы давления на включение и отключение насоса с помощью подвижных контактов на приборе.

Для определения уровня сыпучих материалов в бункерах служат мембранные датчики уровня, которые крепятся в отверстии стенки бункера. В них мембрана воздействует на контакты, замыкая или размыкая цепь управления загрузочными или разгрузочными устройствами.

Датчики освещенности и пламени

Для включения и отключения уличного освещения применяются фотореле, датчиком освещенности с которыми применяются фотосопротивления ФСК—Г1. Они представляют собой герметические корпуса с окном со стеклом для освещения фотосопротивления, которое находится внутри. Наружу выведены два контакта для припайки проводов.

Для контроля пламени в топках на жидком топливе применяются фотореле — приборы контроля пламени, датчиками которых являются фотоголовки ФСК—6, внутри которых за стеклом находятся два фоторезистора.

Механические контактные датчики

Принцип работы датчиков такой же, как кнопочных постов, только переключаются они не вручную, а различными выступающими деталями механизмов, действующими на штоки и педали, несущие подвижные контакты. Широкое распространение имеют конечные выключатели, сигнализирующие о положении различных механизмов, служащие для их остановки или изменения направления движения. Конечные выключатели, имеющие малые габариты, называются микропереключателями.

Бесконтактные датчики перемещения

Пример конструкции датчика показан на рис. 2.41, о, его принципиальная схема — на рис. 2.41, б. Датчик состоит из генератора и усилителя на транзисторах. На генератор воздействует внешняя стальная пластина, связанная с движущейся частью объекта регулирования, например, с цепью транспортера. При введении в зазор корпуса датчика металлической пластины между базовой и коллекторной обмотками трансформатора происходит уменьшение коэффициента обратной связи генератора, вызывающее срыв генерации. В усилителе нормально закрытый выходной транзистор открывается, что дает сигнал на срабатывание реле и блока управления. Детали датчика залиты в компаундную смолу, поэтому он является водозащищенным и выдерживает экстремальные температуры производственных условий.

2-125.jpg


Рис. 2.41. Бесконтактный датчик перемещения типа КВД—6:

о) общий вид: 1 — пластина металлическая на контролируемом механизме, 2 провода для присоединения к пульту управления; 6) принципиальная схема.

Неисправности датчиков

При выборе датчиков нужно учитывать соответствие условий внешней среды и напряжения, при которых они будут работать, исполнению датчиков. Датчик также должен иметь запас по измеряемому параметру. Например, если термоэлектрический преобразователь поместить в среду с большей температурой, чем та, которая указана на его корпусе или в его документации, то он выйдет из строя. Следует иметь в виду, что при выходе из строя системы регулирования температуры может быть перегрев объекта регулирования и выход из строя термоэлектрического преобразователя.

Для подключения термоэлектрических преобразователей к измерительным приборам применяют специальные термоэлектродные провода с двумя жилами из специально подобранных металлов и сплавов, которые в интервале температур от 0 до 100 С развивают такую же термо-ЭДС, как и соответствующий преобразователь. Плюсовая жила провода должна присоединяться к плюсовому термоэлектроду, а минусовая — к минусовому. Данные по термоэлектродным проводам приведены в табл. 2.51.

Неисправности термоэлектрического преобразователя при работе вместе с конечным прибором приведены в табл. 2.52.

В манометрах органом, воспринимающим давление, являются мембраны, коробки, сильфоны и трубки, и надежность манометра зависит от герметичности этих устройств.

В системе регулирования уровня воды с помощью электроконтактных манометров может быть неустойчивая работа и подгорание контактов манометра, промежуточных реле и пускателя. Причина в том, что стрелка манометра, с которой связан подвижный контакт, не сразу устанавливается в положение равновесия при переключении насоса из-за колебаний давления в системе, которое воспринимает стрелка. Колебание стрелки, несущей подвижный контакт, приводят к включению и выключению насоса, что приводит снова к колебаниям, которые могут быть незатухающими, что может вывести из строя двигатель насоса.

Для обеспечения устойчивости могут быть механические и электрические корректирующие устройства.

Механическое корректирующее устройство может быть в виде успокоителя — демпфера в трубке, подводящей воду к манометру, но оно не всегда эффективно.

Если электрическое корректирующее устройство не предусмотрено схемой, то оно может быть сделано в виде цепочки последовательно соединенных конденсатора и резистора, присоединенных параллельно контактам манометра. Эти детали можно расположить в любом удобном месте, например, в пульте управления, присоединив к соответствующим точкам схемы. Величины емкости и сопротивления можно подобрать опытным путем.

Таблица 2.52 НЕИСПРАВНОСТИ ТЕРМОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ПРИ РАБОТЕ С ПРИБОРОМ

2-126.jpg

Примечание: ремонт всех приборов производится специализированными организациями.

Чтобы полностью исключить влияние неустойчивого включения контактов манометра на работу системы, можно применить задержку их влияния на систему с помощью реле времени. Для этого размыкающий контакт реле времени включается параллельно контактам манометра. Реле времени включается сразу после касания контактов манометра, потом происходит задержка времени включения размыкающего контакта, пока стрелка манометра не успокоится, после чего контакт реле времени размыкается.— рис. 2.42.

Датчики уровня поплавковые, электродные и мембранные при низкой температуре являются неработоспособными. Первые два вмерзают в воду и требуют обогрева, которое не всегда возможно осуществить. Мембрана датчика уровня для сыпучих материалов при низкой температуре также не работает и выходит из строя, поэтому и хранить их нужно при положительной температуре.

2-127.jpg


Рис. 2.42. Коррекция системы автоматического управления насосом с электроконтактным манометром:

о) цепь RC, присоединенная параллельно контактам манометра; б) размыкаемые контакты реле времени, присоединенные параллельно контактам манометра.

Если в воде, где применяется электродный датчик, много минеральных частиц, то они осаждаются на электродах и детали крепления электродов, что приводит к нарушению работы системы автоматики, и нужна чистка датчика. При повышенной температуре на электродах осаждается также накипь, что требует более частой чистки.

В корпусах фотосопротивлений и фотоголовок активный элемент защищен стеклом, через которое он освещается. Стекло может загрязняться, а у датчиков пламени топок покрываться сажей, поэтому стекло датчиков нужно периодически чистить.

На датчик может влиять посторонний свет, нарушая работу установки. Например, освещение датчика наружного освещения ночью вызывает отключение наружного освещения. Освещение может быть фарами машин, от близко расположенного светильника, от снежной поверхности. Для защиты от случайного освещения можно применить козырек из жести, влияние снежного покрова можно устранить регулировкой переменного резистора в цепи фотореле.

На работу контактных механических датчиков влияют условия среды. Сырость, агрессивная среда приводят к окислению контактов и всех металлических деталей, так что датчик трудно разобрать для ремонта, и приходится его заменять. При понижении температуры при наличии сырости все подвижные детали смерзаются и заклиниваются, и датчик перестает работать. Запыленность также ведет к отказу датчиков.

Всех этих недостатков лишены бесконтактные датчики перемещения. Они также безопасны, так как электронное устройство имеет малое напряжение питания — 12 В.

Целью данного реферата является изложение читателю основных и самых распространённых и испытанных временем и производством видов датчиков, а так же осмысление степени важности этих элементов в современной автоматизации технологических процессов.

Датчик как понятие

Автоматизация различных технологических процессов, эффективное управление различными агрегатами, машинами, механизмами требуют многочисленных измерений разнообразных физических величин.

Датчики (в литературе часто называемые также измерительными преобразователями), или по-другому, сенсоры являются элементами многих систем автоматики — с их помощью получают информацию о параметрах контролируемой системы или устройства. Датчик – это элемент измерительного, сигнального, регулирующего или управляющего устройства, преобразующий контролируемую величину (температуру, давление, частоту, силу света, электрическое напряжение, ток и т.д.) в сигнал, удобный для измерения, передачи, хранения, обработки, регистрации, а иногда и для воздействия им на управляемые процессы. Или проще, датчик – это устройство, преобразующее входное воздействие любой физической величины в сигнал, удобный для дальнейшего использования. Используемые датчики весьма разнообразны и могут быть классифицированы по различным признакам:

В зависимости от вида входной (измеряемой) величины различают: датчики механических перемещений (линейных и угловых), пневматические, электрические, расходомеры, датчики скорости, ускорения, усилия, температуры, давления и др.В настоящее время существует приблизительно следующее распределение доли измерений различных физических величин в промышленности: температура – 50%, расход (массовый и объемный) – 15%, давление – 10%, уровень – 5%, количество (масса, объем) – 5%, время – 4%, электрические и магнитные величины – менее 4%.

По виду выходной величины, в которую преобразуется входная величина, различают неэлектрические и электрически е: датчики постоянного тока (ЭДС или напряжения), датчики амплитуды переменного тока (ЭДС или напряжения), датчики частоты переменного тока (ЭДС или напряжения), датчики сопротивления (активного, индуктивного или емкостного) и др.

Большинство датчиков являются электрическими. Это обусловлено следующими достоинствами электрических измерений:

  • электрические величины удобно передавать на расстояние, причем передача осуществляется с высокой скоростью;
  • электрические величины универсальны в том смысле, что любые другие величины могут быть преобразованы в электрические и наоборот;
  • они точно преобразуются в цифровой код и позволяют достигнуть высокой точности, чувствительности и быстродействия средств измерений.

По принципу действия датчики можно разделить на два класса: генераторные и параметрические (датчики- модуляторы).

Электрические измерения

. измеряемая или воспроизводимая физическая величина, в соответствии с этим приборы подразделяются на ряд видов: амперметры — для измерения силы электрического тока; вольтметры — для измерения электрического напряжения; омметры — для измерения электрического сопротивления; мультиметры (иначе тестеры, .

Генераторные датчики осуществляют непосредственное преобразование входной величины в электрический сигнал. Параметрические датчики входную величину преобразуют в изменение какого-либо электрического параметра (R, L или C) датчика. Также их можно разделить можно разделить на омические, реостатные, фотоэлектрические (оптико-электронные), индуктивные, емкостные и д.р.

Рассмотрим более подробно эти и другие виды датчиков и измерительных устройств в следующем разделе.

Виды датчиков и их назначение

Параметрические датчики активного сопротивления (омические)

К данному типу датчиков относятся: контактные датчики; потенциометрические (реостатные) датчики, однотактные и двухтактные; тензометрические датчики; полупроводниковые датчики (p-n переход, термоэлектронный и др.)

Контактными называются датчики, в которых механическое перемещение преобразуется в замкнутое или разомкнутое состояние контактов, управляющих узлов или несколькими электрическими цепями, при этом сопротивление датчика изменяется от бесконечности до нуля и наоборот. Это датчики, в которых имеется дискретность измерения. Широко применятся в машиностроении при обработке механических деталей, их сортировке и отбраковке. Выявляют дефекты деталей с точностью до 1-2 мкм.

Рис.1.Устройство контактного датчика

Потенциометрическим называется датчик, предназначенный для преобразования линейного перемещения в электрический сигнал.

В зависимости от включения потенциометрический датчик может быть реостатным. Выполнен в виде переменного сопротивления, подвижная часть которого имеет связь с преобразующим элементом.

Состоит из каркаса с намотанной проволокой высокого удельного сопротивления. Производит измерение ошибок и дефектов механических деталей. Работает на постоянном токе и переменном токе. Измеряет дефекты только в одну сторону.

Однотактный (нереверсивный) потенциометрический датчик.

Рис.2. Схема включения и характеристика в режиме Х.Х.

Преобразующий элемент (испытуемая деталь) проходит по конвейеру и воздействует ползунок датчика, при наличии дефекта. При этом по датчику будет протекать ток по цепи: “+” источника, невведенная часть резистора, ползунок, приемник, “-” источника. При этом выходное напряжение равно:

где K – коэффициент пропорциональности

L – длина всего реостата

X – невведенная его часть

Статическая характеристика датчика выражает зависимость выходного напряжения от величины введенной часть ползунка. Чем больше эта величина, тем большее напряжение снимается с датчика.

Двухтактный потенциометрический датчик (реверсивный).

Рис.3. Схема включения и характеристика в режиме Х.Х.

В технике часто применяются датчики, реагирующие на знак допущенной ошибки при изготовлении детали. Для этого применяются потенциометрические датчики со средней точкой (двухтактные).

Применяются для измерения углов поворота, а так же линейных размеров механических изделий.

Специфика формирования технологической части дипломного проекта

. этапов или сокращение цикла и пр.). Какие источники информации кладут в основу технологической части дипломной работы? Технологическая часть ВКР представлена в виде всевозможных расчетов, схем . с ограничением сроков реализации и оформления результатов. Роль технологической части дипломной работы Технологический раздел дипломной работы играет важнейшую роль в подготовке и оценке новоиспеченного .

Статическая характеристика – прямая линия, пересекающая центр координат, т.е. показывает положительное и отрицательное направление напряжений.

Если датчик имеет номинальные размеры, ползунок находиться ровно посередине линейного размера датчика, т.е. напротив средней точки. Ток будет протекать по цепи: от “+” источника через резистор, через среднюю точку, через ползунок, через остальную часть резистора на “-” источника. Токи, протекающие по нижней и по верхней части, противоположно направлены, общий ток равен нулю. Поэтому на статической характеристике выходное напряжение равно нулю.

Если деталь имеет размеры больше номинального, то ток будет протекать по цепи : “+” источника, нижняя часть резистора до ползунка, ползунок, приемник, средняя точка, нижняя часть резистора, “-” источника. Выходное напряжение будет увеличиваться пропорционально перемещению ползунка от средней точки вверх. Если ползунок находиться ниже средней точки, то ток будет протекать по цепи: “+” источника, верхняя часть резистора, средняя точка, приемник, ползунок, нижняя часть резистора, “-” источника.

Тензометрическими называются датчики специальной конструкции, предназначенные для измерения статических или динамических деформаций в механических деталях и преобразующие эти деформации в изменения активного сопротивления.

Тензоэффектом называется свойство материалов высокого сопротивления изменять свое сопротивление под действием приложенной силы.

Тензодатчики бывают проводниковые и фольгов ые. В качестве проводящих материалов используются нихром, константан, манганин.

Конструктивное выполнение: это спираль из материала с высоким удельным сопротивлением, наклеенная на бумажную основу и жестко закрепленную на механическую деталь, после чего деталь подвергается испытаниям на сжатие или растяжение. Эта же сила действует и на датчик. При этом происходит сжатие или растяжение спирали датчика, а следовательно и изменение его электрического сопротивления. Если деталь разрушается при определенном усилии, то ток, протекающий по измерительному прибору, покажет величину этой силы. Т.О. тензометрические датчики применяются для определения механических усилий при испытаниях металлических деталей.

Рис.4. Схема тензометрического датчика: а) общая б) в разрезе

Коэффициент тензочувствительности датчика определяется:

  • абсолютное изменение длины проволоки,
  • относительное изменение длины проволоки,
  • относительное изменение сопротивления тензодатчика.

Сопротивление тензодатчика составляет от 200 до 500 Ом, а коэффициент

Рис.5. Статическая характеристика тензометрического датчика.

Данные приборы представляют собой наклеенную на бумагу или пленку решетку из тонких полосок фольги с высоким удельным сопротивлением.

Электрическая схема потенциометрического датчика

. соответствующую номиналу одного сопротивления. Изменение сопротивлений может происходить в широких пределах. Погрешность измерений определяется размерами контактных площадок. Ламельный потенциометрический датчик Проволочные потенциометрические датчики Диаметр проволоки определяет класс точности потенциометрического датчика (высокий-0,03-0,1 мм .

прямая, розеточная, мембранная.

Рис.6. Конструкции фольговых тензодатчиков: а)прямая б) розеточная

Прямая конструкция применяется для измерения линейных деформаций.

Розеточная – для измерения крутящих моментов.

Мембранная для измерения усилий, воздействующих на мембраны.

Коэффициент тензочувствительности равен 2.5, пропускает ток до 0.2 А, сопротивление датчика от 50 до 200 Ом.

Полупроводниковые датчики активного сопротивления

Данные приборы представляют собой полупроводниковые приборы (транзисторы, фотоэлементы с внутренним фотоэффектом, терморезисторы).

Фотоэлектронный датчик представляет собой фоторезистор, включенный в электрическую цепь с приемником.

Рис.7. Электрические схемы: фоторезистора, фотодиода, терморезистора

Полупроводниковые датчики активного сопротивления выполняются на полупроводниковых элементах (транзисторах, фототранзисторах, фотодиодах, фоторезисторах, терморезисторах).

Фоторезистор изменяет свое сопротивление в зависимости от величины потока освещенности чувствительного элемента. Сопротивление изменяется по закону: если освещенность равна нулю, сопротивление очень велико и обратно.

Терморезисторы – это приборы, сопротивление которых зависит от температуры:

Датчики реактивного сопротивления.

К ним относятся индуктивные и емкостные датчики.

Индуктивными называются датчики, принцип действия которых основан на изменении индуктивного сопротивления электромагнитного дросселя при перемещении его якоря. Они применяются для измерения угловых и линейных механических перемещений, деформаций и контроля размеров деталей. Представляют собой электромагнитный дроссель с переменным воздушным зазором, обмотка которого включена последовательно с сопротивлением приемника.

Нереверсивный индуктивный датчик.

Рис.10. Рабочая характеристика нереверсивного индуктивного датчика

Где — количество витков — магнитная проницаемость

S–сечение, -величина зазора

С увеличением зазора магнитный поток в катушке возрастает, сердечник насыщается, магнитная проницаемость уменьшается. В результате уменьшается индуктивность обмотки дросселя и уменьшается его индуктивное сопротивление, что вызывает увеличение тока в катушке и в приемнике – вызовет увеличение падения напряжения на нем, которое является выходным напряжением датчика. Поэтому с увеличением зазора выходное напряжение возрастает, как показано на статической характеристике.

Если приемник имеет активную индуктивную составляющую, то

Датчик обладает высокой чувствительностью, надежностью, имеет достаточно большую выходную мощность.

Примеры похожих учебных работ

Величина и её измерение

Величины и их измерения

. измеряемой величины (чем больше величина, тем больше ее численное значение и наоборот); § результат измерения зависит от выбранной мерки (чем больше мерка, тем меньше численное значение и наоборот); § для сравнения величин необходимо их измерять .

Специфика формирования технологической части дипломного проекта

. мероприятий с ограничением сроков реализации и оформления результатов. Роль технологической части дипломной работы Технологический раздел дипломной работы играет важнейшую роль в подготовке и оценке новоиспеченного специалиста. От качества .

Экономическая часть дипломной работы строительство

Датчики перемещения

. последние годы, стали малогабаритные емкостные инклинометры с электрическим выходным сигналом, пропорциональным углу наклона датчика. В качестве основных можно считать следующие области применения инклинометров: использование в системах .

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.




Оглавление.
1. Понятие датчика…………………………………………………….2
2. Принцип действия и классификация…………………………………3
3. Основные виды………………………………………………………. 3
4. Датчики влажности и газовые анализаторы…………………………..6
5. Газовые датчики………………………………………………………..7
6. Магнитные датчики…………………………………………………….7
7. Список литературы…………………………………………………8
1. Понятие датчика

Человек глазами воспринимает форму, размеры и цвет окружающих предметов, ушами слышит звуки, носом чувствует запахи. Обычно говорят о пяти видах ощущений, связанных со зрением, слухом, обонянием, вкусом и осязанием. Для формирования ощущений человеку необходимо внешнее раздражение определенных органов - "датчиков чувств". Для различных видов ощущений роль датчиков играют определенные органы чувств:
Зрение. Глаза
Слух. Уши
Вкус. Язык
Обоняние. Нос
Осязание. Кожа
Однако, для получения ощущения одних только органов чувств недостаточно. Например, при зрительном ощущении совсем не значит, что человек видит только благодаря глазам. Общеизвестно, что через глаза раздражения от внешней среды в виде сигналов по нервным волокнам передаются в головной мозг и уже в нем формируется ощущение большого и малого, черного и белого и т.д. Эта общая схема возникновения ощущения относится также к слуху, обонянию и другим видам ощущения, т.е. фактически внешние раздражения как нечто сладкое или горькое, тихое или громкое оцениваются головным мозгом, которому необходимы датчики, реагирующие на эти раздражения.
Аналогичная система формируется и в автоматике. Процесс управления заключается в приеме информации о состоянии объекта управления, ее контроле и обработке центральным устройством и выдачи им управляющих сигналов на исполнительные устройства. Для приема информации служат датчики неэлектрических величин. Таким образом, контролируется температура, механические перемещения, наличие или отсутствие предметов, давление, расходы жидкостей и газов, скорость вращения и т.п.

2. Принцип действия и классификация
Датчики информируют о состоянии внешней среды путем взаимодействия с ней и преобразования реакции на это взаимодействие в электрические сигналы. Существует множество явлений и эффектов, видов преобразования свойств и энергии, которые можно использовать для создания датчиков. В табл. 1 приведен сравнительно скромный перечень.
При классификации датчиков в качестве основы часто используется принцип их действия, который, в свою очередь, может базироваться на физических или химических явлениях и свойствах.
3. Основные виды
Температурные датчикия. С температурой мы сталкиваемся ежедневно, и это наиболее знакомая нам физическая величина.
Среди прочих датчиков температурные отличаются особенно большим разнообразием типов и являются одним из самых распространненых.
Стеклянный термометр со столбиком ртути известен с давних времен и широко используется в наши дни. Терморезисторы сопротивления которых изменяется под влиянием температуры, используются довольно часто в разнообразных устройствах благодаря сравнительно малой стоимости датчиков данного типа. Существует три вида терморезисторов: с отрицательной характеристикой (их сопротивление уменьшается с повышением температуры), С положительной характеристикой (с повышением температуры сопротивление увеличивается) и с критичной характеристикой (сопротивление увеличивается при пороговом значении температуры). Обычно сопротивление под влиянием температуры изменяется довольно резко. Для расширения линейного участка этого изменения параллельно и последовательно терморезистору присоединяются резисторы.
Термопары особенно широко применяются в области измерений. В них используется эффект Зеебека: в спае из разнородных металлов возникает ЭДС, приблизительно пропорциональная разности температур между самим спаем и его выводами. Диапазон измеряемых термопарой температур зависит от применяемых металлов. В термочувствительных ферритах и конденсаторах используется влияние температуры соответственно на магнитную и диэлектрическую проницаемость, начиная с некоторого значения, которое называется температурой Кюри и для конкретного датчика зависит от применяемых в нем материалов.

Термочувствительные диоды и тиристоры относятся к полупроводниковым датчикам, в которых используется температурная зависимость проводимости p-n-перехода (обычно на кристалле кремния). В последнее время практическое применение нашли так называемые интегральные температурные датчики, представляющие собой термочувствительный диод на одном кристалле с периферийными схемами, например усилителем и др.
Оптические датчики.

Подобно температурным оптические датчики от личаются большим разнообразием и массовостью применения. Как видно из табл. 3, по принципу оптико-электрического преобразования эти датчики можно разделить на четыре типа: на основе эффектов фотоэлектронной эмиссии, фотопроводимости, фотогальванического и пироэлектрических.
Фотогальваническая эмиссия, или внешний фотоэффект, - это испускание электронов при падении света физическое тело. Для вылета электронов из физического тела им необходимо преодолеть энергетический барьер. Поскольку энергия фотоэлектронов пропорциональна hc/л (где h - постоянная Планка, с - скорость света, л - длина волны света), то, чем короче длина волны облучающего света, тем больше энергия электронов и легче преодоление ими указанного барьера.
Эффект фотопроводимости, или внутренний фотоэффект, - это изменение электрического сопротивления физического тела при облучении его светом. Среди материалов, обладающих эффектом фотопроводимости, - ZnS, CdS, GaAs, Ge, PbS и др. Максимум спектральной чувствительности CdS приходится приблизительно на свет с длиной волны 500-550 нм, что соответствует приблизительно середине зоны чувствительности человеческого зрения. Оптические датчики, работающие на эффекте фотопроводимости, рекомендуется использовать в экспонометрах фото- и кинокамер, в автоматических выключателях и регуляторах света, обнаружителях пламени и др. Недостаток этих датчиков - замедленная реакция (50 мс и более).
Фотогальванический эффект заключается в возникновении ЭДС на выводах p-n-перехода в облучаемом светом полупроводнике. Под воздействием света внутри p-n-перехода появляются свободные электроны и дырки и генерируется ЭДС. Типичные датчики, работающие по этому принципу, - фотодиоды, фототранзисторы. Такой же принцип действия имеет оптико-электрическая часть двухмерных твердотельных датчиков изображения, например датчиков на приборах с зарядовой связью (ПЗС-датчиков). В качестве материала подложки для фотогальванических датчиков чаще всего используется кремний.

Сравнительно высокая скорость отклика и большая чувствительность в диапазоне от ближней инфракрасной (ИК) зоны до видимого света обеспечивает этим датчакам широкую сферу применения.
Пироэлектрические эффекты - это явления, при которых на поверхности физического тела вследствие изменений поверхностного температурного "рельефа" возникают электрические заряды, соответствующие этим изменениям. Среди материалов, обладающих подобными свойствами: и множество других так нызываемых пироэлектрических материалов. В корпус датчика встроен полевой транзистор, позволяющий преобразовывать высокое полное сопротивление пиротехнического элемента с его оптимальными электрическими зарядами в более низкое и оптимальное выходное сопротивление датчика. Из датчиков этого типа наиболее часто используются ИК-датчики.
Среди оптических датчиков мало найдется таких, которые обладали бы достаточной чувствительностью во всем световом диапазоне. Большинство датчиков имеет оптимальную чувствительность в довольно узкой зоне ультрафиолетовой, или видимой, или инфракрасной части спектра.
Основные преимущества перед датчиками других типов:
1. Возмож ность бесконтактного обнаружения.
2. Возможность (при соот ветствующей оптике) измерения объектов как с чрезвычайно большими, так и с необычайно малыми раз мерами.
3. Высокая скорость отклика.
4. Удобство применения интегральной технологии (оптические датчики, как правило, твердотельные и полупроводниковые),
обеспечивающей малые размеры и большой срок службы.
5. Обширная сфера использования: измерение различных физических величин, определение формы, распознавания объектов и т.д.
Наряду с преимуществами оптические датчики обладают и некоторыми недостатками, а именно чувствительны к загрязнению, подвержены влиянию постороннего света, светового фона, а также температуры (при полупроводниковой основе).
Датчики давления. В датчиках давления всегда испытывается большая потребность, и они находят весьма широкое применение.

Принцип регистрации давления служит основой для многих других типов датчиков, например датчиков массы, положения, уровня и расхода жидкости и др. В подавляющем большинстве случаев индикация давления осуществляется благодаря деформации упругих тел, например диафрагмы, трубки Прудона, гофрированной мембраны. Такие датчики имеют достаточную прочность, малую стоимость, но в них затруднено получение электрических сигналов. Потенциалометрические (реостатные), емкостные, индукционные, магнитнострикционные, ультразвуковые датчики давления имеют на выходе электрический сигнал, но сравнительно сложны в изготовлении.
В настоящее время в качестве датчиков давления все шире используются тензометры. Особенно перспективными представляются полкпроводниковые тензометры диффузионного типа. Диффузионные тензометры на кремниевой подложке обладают высокой чувствительностью, малыми размерами и легко интегрируются с периферийными схемами. Путем травления по тонкопленочной технологии на поверхности кристалла кремния с n-продимостью формируется круглая диафрагма. На краях диафрагмы методом диффузии наносятся пленочные резисторы, имеющие p-проводимость. Если к диафрагме прикладывается давление, то сопротивление одних резисторов увеличивается, а других - уменьшается. Выходной сигнал датчика формируется с помощью мостовой схемы, в которою входят эти резисторы.
Полупроводниковые датчики давления диффузионного типа, подобные вышеописанному, широко используются в автомобильной электронике, во всевозможных компрессорах. Основные проблемы - это температурная зависимость, неустойчивость к внешней среде и срок службы.
4. Датчики влажности и газовые анализаторы
Влажность - физический параметр, с которым, как и с температурой, человек сталкивается с самых древних времен; однако надежных датчиков не было в течение длительного периода. Чаще всего для подобных датчиков использовались человеческий или конский волос, удлиняющиеся или укорачивающиеся при изменении влажности. В настоящее время для определения влажности используется полимерная пленка, покрытая хлористым литием, набухающим от влаги. Однако датчики на этой основе обладают гистерезисом, нестабильностью характеристик во времени и узким диапазоном измерения. Более современными являются датчики, в которых используются керамика и твердые электролиты. В них устранены вышеперечисленные недостатки. Одна из сфер применения датчиков влажности - разнообразные регуляторы атмосферы.
5. Газовые датчики широко используются на производственных предприятиях для обнаружения разного рода вредных газов, а в домашних помещениях - для обнаружения утечки горючего газа. Во многих случаях требуется обнаруживать определенные виды газа и желательно иметь газовые датчики, обладающие избирательной характеристикой относительно газовой среды. Однако реакция на другие газовые компоненты затрудняет создание избирательных газовых датчиков, обладающих высокой чувствительностью и надежностью. Газовые датчики могут быть выполнены на основе МОП-транзисторов, гальванических элементов, твердых электролитов с использованием явлений катализа, интерференции, поглощения инфракрасных лучей и т.д. Для регистрации утечки бытового газа, например сжиженного природного или горючего газа типа пропан, используется главным образом полупроводниковая керамика, в частности, или устройства, работающие по принципу каталитического горения.
При использовании датчиков газа и влажности для регистрации состояния различных сред, в том числе и агрессивных, часто возникает проблема долговечности.
6. Магнитные датчики.

Главной особенностью магнитных датчиков, как и оптических, является быстродействие и возможность обнаружения и измерения бесконтактным способом, но в отличие от оптических этот вид датчиков не чувствителен к загрязнению. Однако в силу характера магнитных явлений эффективная работа этих датчиков в значительной мере зависит от такого параметра, как расстояние, и обычно для магнитных датчиков необходима достаточная близость к воздействующему магнитному полю.
Среди магнитных датчиков хорошо известны датчики Холла. В настоящее время они применяются в качестве дискретных элементов, но быстро расширяется применение элементов Холла в виде ИС, выполненных на кремниевой подложке. Подобные ИС наилучшим образом отвечают современным требованиям к датчикам.
Магниторезистивные полупроводниковые элементы имеют давнюю историю развития. Сейчас снова оживились исследования и разработки магниторезистивных датчиков, в которых используется ферромагнетики. Недостатком этих датчиков является узкий динамический диапазон обнаруживаемых изменений магнитного поля. Однако высокая чувствительность, а также возможность создания многоэлементных датчиков в виде ИС путем напыления, т. е. технологичность их производства, составляют несомненные преимущества.

Список использованной литературы
1. Како Н., Яманэ Я. Датчики и микро-ЭВМ. Л: Энергоатомиз дат, 1986г.
2. У.Титце, К.Шенк. Полупроводниковая схемотехника. М: Мир, 1982г.
3. П.Хоровиц, У.Хилл. Искусство схемотехники т.2, М: Мир, 1984г.
4. Справочная книга радиолюбителя-конструктора. М: Радио и связь, 1990г.

Курсовая работа - Первичные преобразователи (датчики)

Агеев О.А., Мамиконова В.М., и др. Микроэлектронные преобразователи неэлектрических величин

  • формат pdf
  • размер 2.95 МБ
  • добавлен 25 сентября 2009 г.

Агеев О. А., Мамиконова В. М., Петров В. В., Котов В. Н., Негоденко О. Н.- Таганрогский радиотехнический университет. - Таганрог, 153 с. 2000. -153 с. Основные параметры датчиков Микроэлектронные преобразователи магнитного поля Полупроводниковые датчики давления Микроэлектронные датчики химического состава газов. Влагочувствительные интегральные сенсоры. Автогенераторные микроэлектронные датчики на основе транзисторных аналогов негатронов.

Виглеб Г. Датчики. Устройство и применение

  • формат djvu
  • размер 2.52 МБ
  • добавлен 02 декабря 2008 г.

Пер. с нем. М.: Мир, 1989 г. - 196 с. Основные сведения о датчиках. микро-ЭВМ и сенсорика. Технология изготовления датчиков. Датчики температуры: платиновые, никелевые и кремниевые датчики. Термопары. Терморезисторы с отрицательным и положительным ТКС. Калибровка. Датчики давления: кремниевые датчики; электронные барометр; высотомер. Датчики расхода и скорости: терморезисторный анемометр; датчики расхода и направления. Датчики газа: термокондукт.

Лабораторная работа - Исследование датчиков

  • формат doc
  • размер 2.89 МБ
  • добавлен 13 марта 2011 г.

ТГСХА, 110303, для специальности МП с/х продукции, по предмету Автоматика, 4 курс, Датчики давлений и усилий Омические датчики Оптические воспринимающие органы Датчики температуры

Лекции - электромеханические устройства систем управления

  • формат doc
  • размер 11.6 МБ
  • добавлен 10 июня 2009 г.

Тензометрические измерительные преобразователи. Потенциометрические датчики. Индуктивные датчики. Емкостные датчики.rn

Маругин А.П. Элементы систем автоматики

  • формат doc
  • размер 2.06 МБ
  • добавлен 13 марта 2011 г.

Низэ В.Э., Антик И.В. Справочник по средствам автоматики

  • формат djvu
  • размер 8.63 МБ
  • добавлен 10 апреля 2009 г.

М.: Энергоатомиздат, 1983 г. Приводятся сведения о физических и схемотехнических принципах действия средств автоматики. предназначенных для получения, преобразования, передачи и хранения информации. рассмотрены первичные измерительные преобразователи. полупроводниковые, магнитные, оптические, пневматические и гидравлические промежуточные преобразователи - аналоговые и дискретные, электромашинные средства автоматики. Для инженерно-технических рабо.

Реферат Датчики перемещений

  • формат rtf
  • размер 1019.1 КБ
  • добавлен 08 января 2012 г.

Минск, Белорусский государственный университет информатики и радиоэлектроники, Кафедра электронной техники и технологии, 12с. Одним из узлов, определяющих точность работы любой системы позиционирования, являются датчики перемещения. Датчики перемещений предназначены для преобразования величины линейного перемещения или угла оборота ходового винта в унитарный код: простую последовательность одинаковых по длительности и амплитуде электрических импу.

Руководство по выбору датчиков - большой выбор инновационных и удобных в использовании датчиков

  • формат pdf
  • размер 3.02 МБ
  • добавлен 30 апреля 2009 г.

Фотоэлектрические, индуктивные, ультразвуковые датчики, оптические энкодеры, концевые выключатели, датчики давления, ёмкостные, промышленные видеосистемы, системы индуктивной идентификации. Характеристики, принцип работы, описание.

Теперин А.А. Лекции по дисциплине: СД.01 Технические средства автоматизации и управления

  • формат doc
  • размер 2.88 МБ
  • добавлен 16 июня 2011 г.

Казанский государственный технический университет им. А. Н. Туполева. Кафедра автоматики и управления. Общие сведения о технических средствах автоматизации и управления. Основные понятия и определения. Функции автоматизированных систем управления и требования к ним. Мониторинг. Управление. Автоматическое управление. пример — регулятор температуры. Требования к промышленным системам управления. Совместимость средств автоматизации. Измерительные пр.

Analog Devices. Методы практического конструирования при нормировании сигналов с датчиков

  • формат pdf
  • размер 3.64 МБ
  • добавлен 01 июня 2009 г.

По материалам семинара "Practical design techniques for sensor signal conditioning". Перевод на русский. Рассмотрены измерения деформации, силы, давления, потока, датчики высокого импеданса, датчики положения и перемещения, температурные датчики, АЦП для формирования сингнала, интеллектуальные датчики, методы разработки аппаратуры

Читайте также: