Реферат на тему цвета тел

Обновлено: 07.07.2024

Цвет тела, являющегося самостоятельным источником света, определяется его составом, строением, внешними условиями и процессами, протекающими в этом теле.

Поскольку цвет такого тела связан с составом распространяющегося от него излучения, то, изучив особенности его спектра, можно получить много важных сведений о нем. Цвет вторичных источников света зависит еще и от состава падающего на них излучения.

Вспомним, что цвет прозрачного тела определяется составом того света, который проходит сквозь это тело. Освещая белым светом различные прозрачные тела, можно заметить, что в проходящем свете одни из них остаются бесцветными, а другие имеют окраску. Если с помощью призмы получить спектр того излучения, которое проходит сквозь тело, то будет видно, что в спектре бесцветного тела имеются лучи всех цветов радуги, а спектры окрашенных тел состоят из более или менее широких окрашенных полос нескольких цветов, а иногда и из узкой полосы почти одного цвета. Последнее получается у некоторых светофильтров — цветных стекол, пропускающих лучи одного цвета. Это означает, что многие прозрачные тела неодинаково поглощают излучение различных цветов. Например, красный светофильтр сильно поглощает излучение всех цветов, кроме красного, а желтый — поглощает только красные и фиолетовые лучи.

Каждое вещество имеет свой спектр поглощения. Если прозрачное вещество равномерно поглощает лучи всех цветов, то в проходящем свете при освещении белым светом оно бесцветно, а при цветном освещении оно имеет цвет тех лучей, которыми оно освещено. При очень сильном поглощении лучей всех цветов тело кажется нам черным. Когда тело обладает избирательным поглощением, то при освещении лучами одного из тех цветов, которые оно пропускает, тело окрашено в тот же цвет. Если же это тело освещают такими лучами, которые оно поглощает, то оно становится черным, т. е. непрозрачным.

Цвет непрозрачного тела в отраженном свете определяется смесью лучей тех цветов, которые оно отражает. Если тело равномерно отражает лучи всех цветов радуги, то при освещении белым светом оно кажется белым, а при цветном освещении кажется окрашенным в цвет падающих на него лучей.

Многие непрозрачные тела преимущественно поглощают определенную часть видимого излучения. Поэтому при освещении белым светом они кажутся окрашенными. Если эти тела освещать теми лучами, которые они поглощают, то в отраженном свете они кажутся черными. Часто цвет телу придает окраска его поверхности. Смешение красок создает цвет, отличный от цвета, получающегося при смешении лучей тех же цветов. Напомним, что смешение желтого и синего лучей дает белый свет, а смешение желтой и синей краски окрашивает поверхность в зеленый цвет (см. цветной форзац). Объясняется это тем, что желтая краска отражает только желтые и зеленые лучи, а синяя краска отражает синие и зеленые лучи. Таким образом, обе эти краски вместе отразят только зеленые лучи.

Оказывается, что с помощью смешения трех красок (желтой, синей и пурпурной) можно окрасить поверхность в любой цвет. Поэтому для цветной печати основными являются желтая, синяя и пурпурная краски.

Из изложенного выше следует, что цвет прозрачного тела в проходящем и в отраженном свете может быть совершенно различным. Поскольку окраска тел сильно зависит от состава падающего на них излучения, приобретать окрашенные вещи, например ткани, надо при дневном свете.

Направив на призму белый свет, мы увидим два новых явления: во-первых, тонкий пучок превратится в расширяющийся и, во-вторых, белый свет превратится в многоцветный. Поместив на его пути белый экран, мы увидим радужную полоску – сплошной спектр (см. рисунок).

Цвета тел. На средней фотографии ракетки и теннисный шарик освещены белым светом. Посмотрим на них сквозь зелёное стекло: белый шарик стал зелёным, малиновая ракетка чёрной, а зелёная сохранила свой цвет (фото слева). Если же мы используем красное стекло, то белый шарик станет красным, зелёная ракетка чёрной, а малиновая красной (фото справа).

Правая ракетка видится нам зелёной, так как из всего спектра падающего на неё белого света она отражает лишь жёлто-зелёно-голубые лучи, дающие в смеси зелёный цвет. Лучи остальных цветов ракетка не отражает, а поглощает. Аналогично, если левая ракетка видится нам красной, значит, из всего спектра падающего на неё белого света она отражает только жёлто-красно-оранжевые лучи. Лучи других цветов ракетка поглощает.

Теперь объясним, почему ракетки поочерёдно выглядят чёрными: малиновая при рассматривании через зелёное стекло и зелёная – при рассматривании через красное. Оно потому и красное, что поглощает лучи всех цветов, пропуская лишь красно-оранжевые. А поскольку от зелёной ракетки таких лучей не исходит, она выглядит чёрной – от этой ракетки в наши глаза свет не поступает вообще, что наш мозг считает чёрным цветом. Аналогично, зелёное стекло поглощает лучи всех цветов, кроме сине-зелёно-жёлтых. Поэтому, наблюдая красную ракетку сквозь него, мы не видим испускаемого ею света – она выглядит чёрной.

Подтверждением такого объяснения поглощения цветного света служат опыты по измерению количества теплоты (см. § 6-в). Например, при пропускании красного цвета через красное и зелёное стёкла, в зелёном выделится больше теплоты, что говорит о более интенсивном поглощении им энергии света. И наоборот. Вместо цветных стёкол можно использовать и цветные фонари. Результат будет аналогичным: зелёный предмет, освещаемый красным светом, будет поглощать больше энергии.

  • Участник: Ворошнин Данил Александрович
  • Руководитель: Базыльникова Марина Александровна

Введение

Мы живем в мире разнообразных световых явлений – радуга, полярные сияния, голубое небо. Тем, кто не знаком с причинами их возникновения, эти световые явления кажутся необыкновенными и загадочными.

В повседневной жизни мы встречаемся со многими световыми явлениями, но обычно не задумываемся над ними – насколько они привычны для нас, а вот объяснить их часто затрудняемся. Например, чайная ложка, опущенная в стакан с водой, кажется нам надломленной или сломанной, в зависимости от того, с какой стороны мы смотрим на ложку. Мы видим окружающие нас предметы многоцветными при освещении Солнцем или яркой лампой, но с наступлением сумерек или при ослаблении света цветность предметов блекнет.

Задачи:

I. Теоритическая часть

1.1. Открытие Исаака Ньютона

Рисунок 1. Эксперимент И. Ньютона

Рисунок 1. Эксперимент И. Ньютона

1.2. Спектральный состав света

Полученную таким образом цветную полоску солнечного света Ньютон разделил на семь цветов радуги – красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый (рис. 2).

Рисунок 2. Разложение белого пучка света на спектр

Рисунок 2. Разложение белого пучка света на спектр

Рисунок 3. Спектр

Рисунок 3. Спектр

Если же рассматривать спектр без подобного предубеждения, то полоса спектра распадается на три главные части – красную, желто-зелёную и сине-фиолетовую. Остальные цвета занимают сравнительно узкие области между этими основными.

Все цвета спектра содержатся в самом солнечном свете, а стеклянная призма лишь разделяет их, так как различные цвета по-разному преломляются стеклом. Наиболее сильно преломляются фиолетовые лучи, слабее всего – красные.

1.3. Дисперсия света

Проходя через призму, луч солнечного света не только преломляется, но и разлагается на различные цвета.

Дисперсией называется явление разложения света на цвета при прохождении света через вещество.

Прежде чем разобраться в сути этого явления, необходимо рассмотреть преломлении световых волн. Изменение направления распространения волны при прохождении из одной среды в другую называется преломлением.

Положим на дно пустого не прозрачного стакана монету или другой небольшой предмет. Подвинем стакан так, чтобы центр монеты, край стакана и глаз находились на одной прямой. Не меняя положения головы, будем наливать в стакан воду. По мере повышения уровня воды дно стакана с монетой как бы приподнимается. Монета, которая ранее была видна лишь частично, теперь будет видна полностью. Эти явления объясняются изменением направления лучей на границе двух сред — преломлением света (рис. 4).

Рисунок 4. Преломление светового луча

Рисунок 4. Преломление светового луча

Закон преломления света: падающий луч, луч преломленный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости.

где n21относительный показатель преломления второй среды относительно первой.

При изменении угла падения α меняется и угол преломления β , но при любом угле падения отношения синусов этих углов остается постоянным для данных двух сред.

Если луч переходит в какую-либо среду из вакуума, то

где n абсолютный показатель преломления второй среды.

Абсолютный показатель преломления – физическая величина, равная отношению синуса угла падения луча к синусу угла преломления при переходе луча из вакуума в эту среду.

Чем больше у вещества показатель преломления, тем более оптически плотным считается это вещество. Например, рубин – среда оптически более плотная, чем лёд.

Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в той и другой среде. Это было доказано французским математиком Пьером Ферма и голландским физиком Христианом Гюйгенсом. Они доказали, что

Скорость света в любом веществе меньше скорости света в вакууме. Причиной уменьшения скорости света в среде является взаимодействие световой волны с атомами и молекулами вещества. Чем сильнее взаимодействие, тем больше оптическая плотность среды, и тем меньше скорость света. Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой.

Абсолютный показатель преломления определяется скоростью распространения света в данной среде, которая зависит от физического состояния среды, т. е. от температуры вещества его плотности. Показатель преломления зависит также и от характеристик самого света. Для красного света он меньше, чем для зеленого, а для зеленого – меньше, чем для фиолетового.

Дисперсия света – зависимость показателя преломления и скорости света от частоты световой волны.

Абсолютный показатель преломления стекла n, из которого изготовлена призма, зависит не только от свойств стекла, но и от частоты (от цвета) проходящего через него света. В опыте Ньютона при разложении в спектр пучка белого света, лучи фиолетового цвета, имеющие большую частоту, чем красные, преломились сильнее красных, поэтому на экране можно наблюдать цветную полосу – спектр (рис. 5).

Рисунок 5. Преломление светового луча при прохождении через более оптически-плотную среду – стеклянную призму

Рисунок 5. Преломление светового луча при прохождении через более оптически-плотную среду – стеклянную призму

1.4. Радуга

Дисперсией света объясняются многие явления природы, например Радуга. В результате преломления солнечных лучей в каплях воды во время дождя на небе появляется разноцветная дуга – радуга (рис. 6).

Рисунок 6. Природное явление радуга

Рисунок 6. Природное явление радуга

Радуга — это оптическое явление, связанное с преломлением световых лучей на многочисленных капельках дождя.

Разноцветная дуга появляется оттого, что луч света преломляется в капельках воды, а затем, возвращаясь к наблюдателю под углом в 42 градуса, расщепляется на составные части от красного до фиолетового цвета (рис. 7).

Рисунок 7. Преломления света в капле дождя

Рисунок 7. Преломления света в капле дождя

Прежде всего, заметим, что радуга может наблюдаться только в стороне, противоположной Солнцу. Если встать лицом к радуге, то Солнце окажется сзади. Наблюдаемые в радуге цвета чередуются в такой же последовательности, как и в спектре, получаемом при пропускании пучка солнечных лучей через призму. При этом внутренняя (обращенная к поверхности Земли) крайняя область радуги окрашена в фиолетовый цвет, а внешняя крайняя область — в красный.

Яркость оттенков и ширина радуги зависят от размера капель дождя. Чем крупнее капли, тем уже и ярче радуга, тем в ней больше красного насыщенного цвета. Если идёт мелкий дождик, то радуга получается широкая, но с блёклыми оранжевыми и жёлтыми краями.

Чаще всего видим радугу в форме дуги, но дуга – это лишь часть радуги. Радуга имеет форму окружности, но мы наблюдаем лишь половину дуги, потому что её центр находится на одной прямой с нашими глазами и Солнцем (рис. 8).

Рисунок 8. Схема образования радуги относительно наблюдателя

Рисунок 8. Схема образования радуги относительно наблюдателя

Целиком радугу можно увидеть лишь на большой высоте, с борта самолёта или с высокой горы (рис. 9).

Рисунок 9. Радуга с борта самолета

Рисунок 9. Радуга с борта самолета

II. Практическая часть

2.1. Демонстрация экспериментов по наблюдению дисперсии света

Изучив историю открытия дисперсии света, и процесс образования спектра, мы решили опытным путем пронаблюдать дисперсию света. Для этого подготовили и провели видео эксперименты, которые можно использовать на уроках физики при изучении темы Дисперсия света.

Эксперимент №1. Получение радужного спектра на мыльных пленках

Для проведения эксперимента понадобится: ёмкость с мыльным раствором, проволочная рамка.

Ход эксперимента: наливаем мыльный раствор в ёмкость, опускаем рамку в раствор, образуется мыльная плёнка. На плёнке появляется радужные полосы.

Эксперимент № 1

Эксперимент №2. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении сквозь стеклянную призму

Для проведения эксперимента понадобится: призма, источник света (фонарик телефона), экран (лист белой бумаги).

Эксперимент № 2

Ход эксперимента: устанавливаем призму на экспериментальном столике. С одной стороны столика устанавливаем экран. Свет направляем на призму и на экране наблюдаем радужные полосы.

Ход эксперимента № 2

Ход эксперимента № 2

Эксперимент № 3. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении через воду

Для проведения эксперимента понадобится: зеркало, источник света (фонарик телефона), экран (лист белой бумаги), ёмкость с водой.

Эксперимент № 3

Эксперимент № 3

Ход эксперимента: в ёмкость наливаем воду и кладем на дно зеркало. Направляем на зеркало свет, чтобы отраженный свет попадал на экран.

Ход эксперимента № 3

Ход эксперимента № 3

1.2. Цветовой диск Ньютона

Ньютон провел обычный опыт со стеклянной призмой и заметил разложение света на спектр. Направив луч дневного света на призму, он увидел на экране различные цвета радуги. После увиденного он выделил из них семь основных цветов. Это были такие цвета как: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый (каждый охотник желает знать где сидит фазан). Ньютон выбрал лишь семь цветов по той причине, что были наиболее яркие, он также говорил, что в музыке всего семь нот, но сочетание их, различные вариации позволяют получить совершенно различные мелодии. Проведя обратный опыт, т.е. полученный спектр он направил на грань другой призмы и в результате опыта Ньютон снова получил белый свет (рис.10).

Рисунок 10. Первая призма разлагает белый свет в спектр, вторая вновь собирает спектр в белый свет

Рисунок 10. Первая призма разлагает белый свет в спектр, вторая вновь собирает спектр в белый свет

На основе этих простых опытов Ньютону пришла в голову мысль о создании круга состоящего из семи секторов и закрашенных определенными цветами в результате вращения, которого произойдет их смешение и мы получим белую раскраску этого круга. В последствии этот круг стали называть Цветной диск Ньютона (рис. 11).

Рисунок 11. Цветной диск Ньютона

Рисунок 11. Цветной диск Ньютона

Попробуем повторить опыт Ньютона. Для этого создадим экспериментальную установку, которая состоит из компьютерного кулера и прикрепленного к нему цветового диска, также блока питания (рис. 12).

Рисунок 12. Экспериментальная установка по получению белого света из спектра

Рисунок 12. Экспериментальная установка по получению белого света из спектра

Кулер создает большой проток воздуха, и служит для того что бы привести во вращение цветной диск. Так как наша установка подключается в сеть с напряжением 220 В, а кулер рассчитан на 12 В, поэтому к кулеру подключили блок питания для понижения напряжения с 220 В на 12 В. Для безопасности установка изолирована в пластмассовом боксе.

В результате при включении установки в розетку сети питания цветной круг, закрепленный на кулере, начнет вращаться, и мы увидим желтовато-белую окраску круга (рис. 13).

Рисунок 13. Результат вращения цветового диск Ньютона

Рисунок 13. Результат вращения цветового диск Ньютона

Окраска круга при вращении желтовато-белая по двум причинам:

  1. Скорость вращения круга очень низкая по сравнению со скоростью света;
  2. Круг окрашен с резкими цветовыми переходами, если сравнивать со спектром разложения белого света.

Таким образом, нам удалось повторить эксперименты Ньютона по разделению белого света на спектр и наоборот получение белого света из спектра.

Заключение

Окружающий нас мир играет красками: нас радует и волнует голубизна неба, зелень травы и деревьев, красное зарево заката, семицветная дуга радуги. В своем проекте мы попытались ответить на вопрос - как можно объяснить удивительное многообразие красок в природе. В целом поставленная цель об изучении такого явления как дисперсия света в итоге достигнута. Для того чтобы глубже понять такое свойство света как дисперсия, была изучена дополнительная литература по световым явлениям, были проведены эксперименты по наблюдению явления, была изготовлена установка для вращения цветового круга Ньютона с некоторой скоростью.

В результате проведенных опытов и экспериментов нами были сделаны следующие выводы:

  1. Дисперсия – явление разложения белого света в спектр.
  2. Белый цвет имеет сложную структуру, состоящий из нескольких цветов.
  3. При падении света на границу раздела двух прозрачных сред световые лучи различной цветности преломляются по разному (наиболее сильно-фиолетовые лучи, менее других- красные).
  4. Призма не изменяет цвет, а лишь разлагает его на составные части.

Таким образом, посредством теоретического изучения данной темы и ее практического подтверждения и была достигнута основная цель проекта.


На этом уроке мы с вами поговорим о таком явлении, как дисперсия света, а также попробуем разобраться, почему окружающий нас мир имеет такое многообразие цветов и цветовых оттенков.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Дисперсия света. Цвета тел"

Мы привыкли видеть окружающий нас мир, наполненным многообразием различных цветов и цветовых оттенков. Но задумывался ли кто-нибудь из вас, что же такое цвет тел? Можем ли мы рассматривать цвет как одно из основных свойств материальных объектов?


Долгое время вопросами о природе цвета занимались в основном художники, поэты и философы. Но чаще всего их рассуждения касались пропорции смешения различных цветов, и на этой основе строились те или иные теории цвета. Например, ещё в четвёртом веке до нашей эры древнегреческий учёный Аристотель выдвинул свою теорию цветов, согласно которой солнечный свет является простым, а все остальные цвета получаются из него в результате смешивания с различным количеством тёмного цвета.

Подобные теории выдвигались и значительно позднее такими учёными, как Рене Декарт, Иоганн Кеплер и Роберт Гук. Однако научного обоснования природы цветов не было в плоть до 1666 года. В этом году Исаак Ньютон, занимаясь усовершенствованием телескопов, обратил внимание на интересный факт: изображение, получаемое с помощью объектива телескопа, было окрашено по краям. Предполагая, что это может быть как-то связано с явлением преломления света, он направил узкий пучок солнечного света, образованного малым отверстием в ставне, на грань стеклянной призмы, установленной в затемнённой комнате. При этом на экране появилось удлинённое изображение щели, состоящее из ряда цветных полос семи основных цветов, плавно переходящих друг в друга.


Получившуюся на экране цветную полоску Ньютон назвал спектром (от латинского видение). Из проведённого опыта следовало, что белый свет является сложным: пройдя через призму, он разлагается на пучки различных цветов.

Однако далеко не все современники Ньютона согласились с этим выводом: слишком уж необычным казалось это предположение. При этом возник ряд вопросов. Во-первых, почему белый свет, входящий в призму, выходил из неё в виде цветной полосы, содержащей семь основных цветов? Во-вторых, почему круглый в сечении пучок после преломления в призме оказался существенно растянутым в длину? И, наконец, влияет ли вещество самой призмы на окрашивание белого света?

Между тем Ньютон нашёл простой и убедительный способ доказательства справедливости своей теории. Для этого он на пути пучка, прошедшего через призму, поместил собирающую линзу: вышедший из неё пучок в точке схождения лучей вновь становился белым. Таким образом, опыты Ньютона убедительно свидетельствовали о том, что белый свет имеет сложную структуру.

Следующие опыты Ньютона были посвящены изучению влияния вещества призмы на характер окрашивания светового пучка. Для этого он закрывал отверстие в ставне поочерёдно синим и красным стеклом и наблюдал при этом синее и соответственно красное пятно на стене. Это означало, что призма не может влиять на цвет светового пучка.


Чтобы подтвердить предположение Ньютона, проведём современный опыт. Возьмём оптический диск с осветителем, возле объектива которого поставим диафрагму с горизонтальной щелью и фиолетовый светофильтр (то есть фиолетовое стекло). Включив осветитель будем наблюдать на диске луч света фиолетового цвета. Если заменить светофильтр на красный, то цвет луча поменяется также на красный.


А теперь на пути красного светового пучка поставим треугольную призму. Как видим, пройдя через неё луч отклоняется от своего первоначального положения в сторону более широкой части призмы.

Заменим красный светофильтр обратно на фиолетовый. Не трудно увидеть, что изображение щели, полученное в фиолетовых цветах, отклониться в туже сторону, что и красный луч, но уже на гораздо больший угол.

Как известно, показатель преломления среды зависит от скорости света в веществе. Следовательно, пучок фиолетового цвета преломляется в большей степени потому, что фиолетовый цвет имеет в веществе наименьшую скорость. Красные же лучи преломляются меньше других потому, что их скорость в веществе наибольшая.

Это означает, что показатель преломления вещества, из которого сделана призма, зависит не только от свойств самого вещества, но и от частоты проходящего через него света.

Зависимость показателя преломления среды от цвета световых лучей Ньютон назвал дисперсией света.

Фиолетовый и красный лучи, выделенные нами в опыте, при прохождении через призму не разлагались в спектр. Это говорит о том, что цветные лучи являются простыми или, как их ещё называют, монохроматическими.

Мы уже говорили о том, для сложения спектральных цветов Ньютон в своём опыте использовал собирающую линзу. Вышедший из неё пучок в точке схождения лучей становился белым. Однако сложить спектральные цвета и получить белый цвет можно и на более простом опыте. Возьмём центробежную машину и укрепим на её валу диск с разноцветными секторами. При быстром вращении диска создаётся впечатление, что он белого цвета.


Ньютон не только открыл дисперсию света, но и впервые ввёл цветовой график — цветовой круг Ньютона. На основе цветового графика и графического сложения цветов напрашивается вывод о том, что любой цвет можно получить смешением всего трёх цветов. Но потребовалось более ста лет после смерти Ньютона, чтобы этот основной закон цветоведения был окончательно установлен и нашёл своё объяснение в предположении о трёхцветной природе зрения.

Первые попытки объяснения многообразия воспринимаемых цветов принадлежат Томасу Юнгу. Он предположил, что в глазу находятся три вида светочувствительных нервных окончаний.


При раздражении волокон каждого отдельного вида возникают ощущения красного, зелёного и фиолетового цветов. Если же раздражаются волокна всех видов, то возникают ощущения всевозможных оттенков.

Юнг также первый правильно назвал одну из триад основных цветов: красный, зелёный и фиолетовый. Для определения сложных цветов он предложил пользоваться графиком, подобным цветовому кругу, но имеющим форму треугольника, в вершинах которого находятся точки трёх основных цветов.


Позже многие исследователи проводили измерения для выражения всех цветов спектра тремя основными. Относительно точные данные были получены лишь в двадцатых годах двадцатого века Уильямом Дэвидом Райтом и Джоном Гидом. Их опытные данные после пересчёта на единую триаду основных цветов очень хорошо совпали. Поэтому в 1931 году Конгресс Международной Осветительной Комиссии принял эти данные в качестве основы для международных систем измерения цветов — RGB, от английских слов красный, зелёный и синий.

А в 1947 году Рагнар Артур Гранит провёл серию опытов на живом глазу некоторых животных, обладающих цветовым зрением. В результате он обнаружил наличие в глазу трёх видов приёмников: сине–, зелено– и красно–чувствительного. Таким образом, подтвердилась трёхцветная теория Юнга, которая хотя и была очень достоверной, но все же оставалась гипотезой.


Итак, мы уже выяснили, что окружающий нас мир является красочным именно потому, что солнечный свет является сложным. Но всё же пока непонятно, почему траву и листья растений мы видим зелёными, мак — красным, а одуванчик — жёлтым? Почему различные предметы, освещённые одним и тем же солнечным светом, имеют разный цвет?

Чтобы разобраться в этом, проведём простой опыт. С помощью установки, получим на экране спектр белого света.


Теперь возьмём бумажную полоску зелёного цвета и закроем ей часть спектра. Как видим цвет полоски остался зелёным только в той области спектра, где на неё падают зелёные лучи. В других же частях спектра она либо меняет оттенок, как в жёлтой области, либо вообще выглядит тёмной. Это означает, что тела, имеющие зелёную окраску, способны отражать в основном зелёные лучи, а остальные поглощают. Аналогично тела, имеющие красную окраску, в основном отражают красные лучи. Белые тела, которые освещаются дневным светом, в равной степени отражают лучи всех цветов, поэтому мы их видим белыми. Чёрные же тела представляются нам чёрными потому, что они поглощают практически все падающие на них лучи.

Различные же цвета прозрачных тел обусловлены составом того цвета, который прошёл через них.

В настоящее время, для получения хороших и ярких спектров используются специальные оптические приборы. Одним из них является спектроскоп, изобретённый в тысяча восемьсот пятнадцатом году немецким физиком Йозефом Фраунгофером. Рассмотрим устройство двухтрубного спектроскопа. Он состоит из окуляра, зрительной трубы, объективов, коллиматора и щели.


При наблюдении спектров щель направляют на источник света и с помощью объективов и окуляра добиваются появления чёткого изображения. Поскольку щель расположена в фокальной плоскости линзы, то свет выходит из линзы параллельным пучком и попадает на призму. Из призмы выходят уже параллельные пучки разного направления (мы указали только крайние лучи двух пучков фиолетового и красного цветов). Эти пучки, преломившись в линзе зрительной трубы, образуют в её фокальной плоскости изображение щели. Причём, изображения, соответствующие разным частотам, приходятся на разные места в окуляре.

Если в качестве исследуемого света выступает белый свет, то изображения щели сливаются в одну цветную полосу всех основных цветов. Если же исследуемый свет является смесью нескольких монохроматических, то спектр получится в виде узких линий соответствующих цветов, разделённых широкими тёмными промежутками.

В заключении урока отметим, что дисперсией света также объясняется и такое явление, как радуга на небосклоне после дождя. Дело в том, что простой солнечный свет рассеивается на мелких капельках воды, которые остались в воздухе после дождя. Когда из воздуха исчезают капли воды, все семь цветов радуги снова сливаются в один белый свет.

Читайте также: