Реферат на тему бесконтактные датчики

Обновлено: 30.06.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Человек глазами воспринимает форму, размеры и цвет окружающих предметов, ушами слышит звуки, носом чувствует запахи. Обычно говорят о пяти видах ощущений, связанных со зрением, слухом, обонянием, вкусом и осязанием. Для формирования ощущений человеку необходимо внешнее раздражение определенных органов - "датчиков чувств". Для различных видов ощущений роль датчиков играют определенные органы чувств:

Однако для получения ощущения одних только органов чувств недостаточно. Например, при зрительном ощущении совсем не значит, что человек видит только благодаря глазам. Общеизвестно, что через глаза раздражения от внешней среды в виде сигналов по нервным волокнам передаются в головной мозг и уже в нем формируется ощущение большого и малого, черного и белого и т.д. Эта общая схема возникновения ощущения относится также к слуху, обонянию и другим видам ощущения, т.е. фактически внешние раздражения как нечто сладкое или горькое, тихое или громкое оцениваются головным мозгом, которому необходимы датчики, реагирующие на эти раздражения.

Аналогичная система формируется и в автоматике. Процесс управления заключается в приеме информации о состоянии объекта управления, ее контроле и обработке центральным устройством и выдачи им управляющих сигналов на исполнительные устройства. Для приема информации служат датчики неэлектрических величин. Таким образом, контролируется температура, механические перемещения, наличие или отсутствие предметов, давление, расходы жидкостей и газов, скорость вращения и т.п..

Датчики информируют о состоянии внешней среды путем взаимодействия с ней и преобразования реакции на это взаимодействие в электрические сигналы. Существует множество явлений и эффектов, видов преобразования свойств и энергии, которые можно использовать для создания датчиков. При классификации датчиков в качестве основы часто используется принцип их действия, который, в свою очередь, может базироваться на физических или химических явлениях и свойствах.

С температурой мы сталкиваемся ежедневно, и это наиболее знакомая нам физическая величина. Среди прочих датчиков температурные отличаются особенно большим разнообразием типов и являются одним из самых распространенных.

Стеклянный термометр со столбиком ртути известен с давних времен и широко используется в наши дни. Терморезисторы сопротивления, которых изменяется под влиянием температуры, используются довольно часто в разнообразных устройствах благодаря сравнительно малой стоимости датчиков данного типа. Существует три вида терморезисторов: с отрицательной характеристикой (их сопротивление уменьшается с повышением температуры), С положительной характеристикой (с повышением температуры сопротивление увеличивается) и с критичной характеристикой (сопротивление увеличивается при пороговом значении температуры). Обычно сопротивление под влиянием температуры изменяется довольно резко. Для расширения линейного участка этого изменения параллельно и последовательно терморезистору присоединяются резисторы.

Термопары особенно широко применяются в области измерений. В них используется эффект Зеебека: в спае из разнородных металлов возникает ЭДС, приблизительно пропорциональная разности температур между самим спаем и его выводами. Диапазон измеряемых термопарой температур зависит от применяемых металлов. В термочувствительных ферритах и конденсаторах используется влияние температуры соответственно на магнитную и диэлектрическую проницаемость, начиная с некоторого значения, которое называется температурой Кюри и для конкретного датчика зависит от применяемых в нем материалов. Термочувствительные диоды и тиристоры относятся к полупроводниковым датчикам, в которых используется температурная зависимость проводимости p-n-перехода (обычно на кристалле кремния). В последнее время практическое применение нашли так называемые интегральные температурные датчики, представляющие собой термочувствительный диод на одном кристалле с периферийными схемами, например усилителем и др.

Подобно температурным оптические датчики отличаются большим разнообразием и массовостью применения по принципу оптико-электрического преобразования эти датчики можно разделить на четыре типа: на основе эффектов фотоэлектронной эмиссии, фотопроводимости, фотогальванического и пироэлектрических. Фотогальваническая эмиссия, или внешний фотоэффект,0 - это испускание электронов при падении света физическое тело. Для вылета электронов из физического тела им необходимо преодолеть энергетический барьер. Поскольку энергия фотоэлектронов пропорциональна1hc/л0 (где1h0 - постоянная Планка,1с0 - скорость света,1л0 - длина волны света), то, чем короче длина волны облучающего света, тем больше энергия электронов и легче преодоление ими указанного барьера.

Эффект фотопроводимости, или внутренний фотоэффект,0 - это изменение электрического сопротивления физического тела при облучении его светом. Среди материалов, обладающих эффектом фотопроводимости,- ZnS, CdS, GaAs, Ge, PbS и др. Максимум спектральной чувствительности CdS приходится приблизительно на свет с длиной волны 500-550 нм, что соответствует приблизительно середине зоны чувствительности человеческого зрения. Оптические датчики, работающие на эффекте фотопроводимости, рекомендуется использовать в экспонометрах фото и кинокамер, в автоматических выключателях и регуляторах света, обнаружителях пламени и др. Недостаток этих датчиков - замедленная реакция (50 мс и более).

Фотогальванический эффект 0 заключается в возникновении ЭДС на выводах p-n-перехода в облучаемом светом полупроводнике. Под воздействием света внутри p-n-перехода появляются свободные электроны и дырки и генерируется ЭДС. Типичные датчики, работающие по этому принципу, - фотодиоды, фототранзисторы. Такой же принцип действия имеет оптико-электрическая часть двухмерных твердотельных датчиков изображения, например датчиков на приборах с зарядовой связью (ПЗС-датчиков). В качестве материала подложки для фотогальванических датчиков чаще всего используется кремний. Сравнительно высокая скорость отклика и большая чувствительность в диапазоне от ближней инфракрасной (ИК) зоны до видимого света обеспечивает этим датчикам широкую сферу применения. Пироэлектрические эффекты 0 - это явления, при которых на поверхности физического тела вследствие изменений поверхностного температурного "рельефа" возникают электрические заряды, соответствующие этим изменениям. Среди материалов, обладающих подобными свойствами и множество других так называемых пироэлектрических материалов. В корпус датчика встроен полевой транзистор, позволяющий преобразовывать высокое полное сопротивление пиротехнического элемента с его оптимальными электрическими зарядами в более низкое и оптимальное выходное сопротивление датчика. Из датчиков этого типа наиболее часто используются ИК-датчики. Среди оптических датчиков мало найдется таких, которые обладали бы достаточной чувствительностью во всем световом диапазоне.

Большинство датчиков имеет оптимальную чувствительность в довольно узкой зоне ультрафиолетовой, или видимой, или инфракрасной части спектра. Основные преимущества перед датчиками других типов:

2. Возможность (при соответствующей оптике) измерения объектов как с чрезвычайно большими, так и с необычайно малыми размерами.

4. Удобство применения интегральной технологии (оптические датчики, как правило, твердотельные и полупроводниковые), обеспечивающей малые размеры и большой срок службы.

5. Обширная сфера использования: измерение различных физических величин, определение формы, распознавания объектов и т.д. Наряду с преимуществами оптические датчики обладают и некоторыми недостатками, а именно чувствительны к загрязнению, подвержены влиянию постороннего света, светового фона, а также температуры(при полупроводниковой основе).

В датчиках давления всегда испытывается большая потребность, и они находят весьма широкое применение.

Принцип регистрации давления служит основой для многих других типов датчиков, например датчиков массы, положения, уровня и расхода жидкости и др. В подавляющем большинстве случаев индикация давления осуществляется благодаря деформации упругих тел, например диафрагмы, трубки Прудона, гофрированной мембраны. Такие датчики имеют достаточную прочность, малую стоимость, но в них затруднено получение электрических сигналов. Потенциалометрические (реостатные), емкостные, индукционные, магнитнострикционные, ультразвуковые датчики давления имеют на выходе электрический сигнал, но сравнительно сложны в изготовлении.

В настоящее время в качестве датчиков давления все шире используются тензометры. Особенно перспективными представляются полкпроводниковые тензометры диффузионного типа. Диффузионные тензометры на кремниевой подложке обладают высокой чувствительностью, малыми размерами и легко интегрируются с периферийными схемами. Путем травления по тонкопленочной технологии на поверхности кристалла кремния с 1 n 0-продимостью формируется круглая диафрагма. На краях диафрагмы методом диффузии наносятся пленочные резисторы, имеющие 1p 0-проводимость. Если к диафрагме прикладывается давление, то сопротивление одних резисторов увеличивается, а других - уменьшается.

Выходной сигнал датчика формируется с помощью мостовой схемы, в которою входят эти резисторы. Полупроводниковые датчики давления диффузионного типа, подобные вышеописанному, широко используются в автомобильной электронике, во всевозможных компрессорах. Основные проблемы - это температурная зависимость, неустойчивость к внешней среде и срок службы.

Влажность - физический параметр, с которым, как и с температурой, человек сталкивается с самых древних времен; однако надежных датчиков не было в течение длительного периода. Чаще всего для подобных датчиков использовались человеческий или конский волос, удлиняющиеся или укорачивающиеся при изменении влажности. В настоящее время для определения влажности используется полимерная пленка, покрытая хлористым литием, набухающим от влаги. Однако датчики на этой основе обладают гистерезисом, нестабильностью характеристик во времени и узким диапазоном измерения. Более современными являются датчики, в которых используются керамика и твердые электролиты. В них устранены вышеперечисленные недостатки. Одна из сфер применения датчиков влажности - разнообразные регуляторы атмосферы. Газовые датчики широко используются на производственных предприятиях для обнаружения разного рода вредных газов, а в домашних помещениях - для обнаружения утечки горючего газа. Во многих случаях требуется обнаруживать определенные виды газа и желательно иметь газовые датчики, обладающие избирательной характеристикой относительно газовой среды. Однако реакция на другие газовые компоненты затрудняет создание избирательных газовых датчиков, обладающих высокой чувствительностью и надежностью. Газовые датчики могут быть выполнены на основе МОП-транзисторов, гальванических элементов, твердых электролитов с использованием явлений катализа, интерференции, поглощения инфракрасных лучей и т.д. Для регистрации утечки бытового газа, например сжиженного природного или горючего газа типа пропан, используется главным образом полупроводниковая керамика, в частности , или устройства, работающие по принципу каталитического горения. При использовании датчиков газа и влажности для регистрации состояния различных сред, в том числе и агрессивных, часто возникает проблема долговечности.

Главной особенностью магнитных датчиков, как и оптических, является быстродействие и возможность обнаружения и измерения бесконтактным способом, но в отличие от оптических этот вид датчиков не чувствителен к загрязнению. Однако в силу характера магнитных явлений эффективная работа этих датчиков в значительной мере зависит от такого параметра, как расстояние, и обычно для магнитных датчиков необходима достаточная близость к воздействующему магнитному полю.

Среди магнитных датчиков хорошо известны датчики Холла. В настоящее время они применяются в качестве дискретных элементов, но быстро расширяется применение элементов Холла в виде ИС, выполненных на кремниевой подложке. Подобные ИС наилучшим образом отвечают современным требованиям к датчикам. Магниторезистивные полупроводниковые элементы имеют давнюю историю развития. Сейчас снова оживились исследования и разработки магниторезистивных датчиков, в которых используется ферромагнетики. Недостатком этих датчиков является узкий динамический диапазон обнаруживаемых изменений магнитного поля. Однако высокая чувствительность, а также возможность создания многоэлементных датчиков в виде ИС путем напыления, т. е. технологичность их производства, составляют несомненные преимущества.

В то время как производственный мир становится все более автоматизированным, промышленные датчики играют все большую роль для увеличения продуктивности и безопасности.

В течение двух десятилетий во всех отраслях производства успешно применяются датчики и измерители пути: датчик положения, датчик перемещения. Являясь связующим звеном между электронной и механической частями приборов, датчик перемещения, датчик положения стал неотъемлемым элементом оборудования для автоматизации различных процессов.

Данная работа посвящена бесконтактным датчикам, а именно индуктивным, емкостным и оптическим датчикам. Каждый вид имеет свои сильные и слабые стороны, поэтому в зависимости от условий и требований по применению датчика, выбирают тот или иной тип. Мы расскажем, что такое бесконтактные датчики, поговорим об их преимуществах и примерах использования. В работе мы большое внимание уделили емкостному датчику. Рассмотрели устройства, созданные на основе него.

В настоящей исследовательской работе представлена информация, являющаяся результатом обработки данных о бесконтактных датчиках.

Цель работы: изучить устройства, принцип работы и особенности бесконтактных датчиков, явления, лежащие в основе их работы, применение, выявить их достоинства и недостатки.

Задачей научной работы является получение навыков по сбору и обработке научной и технической информации.

Основная часть.

1. Датчик, общие сведения.

Датчик, сенсор (от англ. sensor) — термин систем управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал.

В настоящее время различные датчики широко используются при построении систем автоматизированного управления.

Датчики являются элементом технических систем, предназначенных для измерения, сигнализации, регулирования, управления устройствами или процессами. Датчики преобразуют контролируемую величину (давление, температура, расход, концентрация, частота, скорость, перемещение, напряжение, электрический ток и т. п.) в сигнал (электрический, оптический, пневматический), удобный для измерения, передачи, преобразования, хранения и регистрации информации о состоянии объекта измерений.

Определения понятия датчик

Широко встречаются два основных значения:

· чувствительный элемент, преобразующий параметры среды в пригодный для технического использования сигнал, обычно электрический, хотя возможно и иной по природе, например — пневматический сигнал;

· законченное изделие на основе указанного выше элемента, включающее, в зависимости от потребности, устройства усиления сигнала, линеаризации, калибровки, аналого-цифрового преобразования и интерфейса для интеграции в системы управления. В этом случае чувствительный элемент датчика сам по себе может называться сенсором.

Эти значения соответствуют практике использования термина производителями датчиков. В первом случае датчик это небольшое, обычно монолитное устройство электронной техники, например, терморезистор, фотодиод и т. п., которое используется для создания более сложных электронных приборов. Во втором случае — это законченный по своей функциональности прибор, подключаемый по одному из известных интерфейсов к системе автоматического управления или регистрации. Например, фотодиоды в матрицах (фото) и др.

В зависимости от вида входной (измеряемой) величины различают:

датчики механических перемещений (линейных и угловых),

Различают три класса датчиков:

- аналоговые датчики, т. е. датчики, вырабатывающие аналоговый сигнал, пропорционально изменению входной величины;

- цифровые датчики, генерирующие последовательность импульсов или двоич­ное слово;

- бинарные (двоичные) датчики, которые вырабатывают сигнал только двух уровней: "включено/выключено" (иначе говоря, 0 или 1); получили широкое распространение благодаря своей простоте.

2. Датчики положения.

Датчик положения (датчик перемещения) — это устройство, предназначенное для определения местоположения объекта, который может находиться в твердой или жидкой форме, а также быть сыпучим веществом.

Датчики положения являются первичными источниками информации для систем автоматики, как на основе релейных или логических схем, так и на базе программируемых контроллеров. Надежность всей системы определяется надежностью элемента, наиболее подверженного воздействию дестабилизирующих факторов.

Датчик положения (датчик перемещения) бывает двух видов: бесконтактный (индуктивные датчики, магнитные, емкостные, ультразвуковые, оптические) и контактный. Основным представителем второго типа является энкодер — устройство, преобразующее угол поворота объекта в сигнал, позволяющий определить этот угол.

По типу выхода датчик положения (датчик перемещения) разделяется на аналоговый, цифровой и дискретный (выключатели).

Бесконтактные датчики, бесконтактные выключатели — это приборы промышленной автоматизации, предназначенные для контроля положения объектов.


Рис.2.1. Внешний вид бесконтактного датчика

Бесконтактный выключатель (далее ВБ) осуществляет коммутационную операцию при попадании объекта воздействия в зону чувствительности выключателя. Отсутствие механического контакта между воздействующим объектом и чувствительным элементом ВБ обеспечивает высокую надежность его работы


Рис.2.2. Бесконтактный выключатель

Упрощенно, функциональная схема бесконтактного выключателя состоит из трех блоков:

Рис.2.3. Функциональная схема бесконтактного выключателя

При приближении объекта воздействия к активной поверхности чувствительного элемента происходит срабатывание бесконтактного выключателя. При этом коммутационный элемент производит замыкание или размыкание (или выполняет обе указанные операции) в цепях постоянного тока до 400 мА и в цепях переменного тока до 250 мА.

Бесконтактные датчики положения классифицируются по принципу действия чувствительного элемента — индуктивный, оптический, емкостный и др.

Бесконтактные выключатели — это первичные приборы для автоматизации технологического процесса различных отраслей промышленности, таких как

· пищевая промышленность и пр.

Столь широкая область применения ВБ обусловлена большим количеством возможных технологических решений, реализуемых с их помощью:

· подсчёт количества объектов,

· контроль положения объекта,

· регистрация наличия или отсутствия объекта,

· отбор объектов по их габаритам, цвету и другим физическим свойствам,

· определение угла поворота

и многое другое.

2.1.1. Индуктивные датчики.

Индуктивный датчик — бесконтактный датчик предназначенный для бесконтактного получения информации о перемещениях рабочих органов машин, механизмов, роботов и т.п. и преобразования этой информации в электрический сигнал.

Индуктивный датчик распознает и соответственно реагирует на все токопроводящие предметы.

Индуктивные датчики широко используются для решения задач АСУ ТП. Выполняются с нормально разомкнутым или нормально замкнутым контактом.

Принцип действия основан на изменении параметров магнитного поля, создаваемого катушкой индуктивности внутри датчика.

Принцип действия бесконтактного конечного выключателя (ВК) основан на изменении амплитуды колебаний генератора при внесении в активную зону датчика металлического, магнитного, ферромагнитного или аморфного материала определенных размеров. При подаче питания на конечный выключатель в области его чувствительной поверхности образуется изменяющееся магнитное поле, наводящее во внесенном в зону материале вихревые токи, которые приводят к изменению амплитуды колебаний генератора. В результате вырабатывается аналоговый выходной сигнал, величина которого изменяется от расстояния между датчиком и контролируемым предметом. Триггер преобразует аналоговый сигнал в логический, устанавливая уровень переключения и величину гистерезиса

Структура

Индуктивные бесконтактные выключатели состоят из следующих основных узлов:

Рис.2.4. Устройства индуктивного выключателя

1.Генератор создает электромагнитное поле взаимодействия с объектом.

2. Триггер обеспечивает гистерезис при переключении и необходимую длительность фронтов сигнала управления.

3. Усилитель увеличивает амплитуду сигнала до необходимого значения.

4. Светодиодный индикатор показывает состояние выключателя, обеспечивает контроль работоспособности, оперативность настройки.

5. Компаунд обеспечивает необходимую степень защиты от проникновения твердых частиц и воды.

6. Корпус обеспечивает монтаж выключателя, защищает от механических воздействий. Выполняется из латуни или полиамида, комплектуется метизными изделиями.

Основные определения.

1. Активная зона

Активная зона бесконтактного индуктивного выключателя — та область перед его чувствительной поверхностью, где более всего сконцентрировано магнитное поле чувствительного элемента датчика. Диаметр этой поверхности приблизительно равен диаметру датчика.

Рис. 2.5. Активной зоны датчика

2.Номинальное расстояние срабатывания

Рис.2.6. Номинальное расстояние переключения

Номинальное расстояние переключения — теоретическая величина, не учитывающая разброс производственных параметров датчика, изменения температуры и напряжения питания.

Номинальное расстояние срабатывания (Sn) — основной параметр датчика, нормируемый для данного типоразмера при номинальном напряжении питания и температуре. Расстояние срабатывание увеличивается с ростом габаритов чувствительного элемента и, соответственно, с ростом габаритов датчика.

Согласно ГОСТ Р 50030.5.2-99 индуктивный датчик должен срабатывать в гарантированном интервале срабатывания, а именно в диапазоне от 0 (то есть от поверхности чувствительной головки датчика) до 81% от заявляемого Sn для стандартизированного стального объекта воздействия.

Интервал срабатывания датчиков объективно зависит от температуры окружающей среды.

Как правило, датчик устанавливается так, чтобы объект воздействия (подвижный элемент конструкции) двигался параллельно чувствительной поверхности устройства.

3.Рабочий зазор

Рабочий зазор — это любое расстояние, обеспечивающее надежную работу бесконтактного выключателя в допустимых пределах температуры и напряжения.

4.Поправочный коэффициент рабочего зазора

Поправочный коэффициент дает возможность определить рабочий зазор, который зависит от металла, из которого изготовлен объект воздействия.

Материал Коэффициент
Сталь 40 1,00
Чугун 0,93…1,05
Нержавеющая сталь 0,60…1,00
Алюминий 0,30…0,45
Латунь 0,35…0,50
Медь 0,25…0,45

Различаются датчики утапливаемого исполнения (допускающие установку заподлицо в металл) и неутапливаемого. Во втором случае датчики имеют большее расстояние срабатывания.

На рисунке отображена зависимость выходного сигнала от расстояния до диска.


Рис.2.7. Поперечный датчик приближения зависимость выходного сигнала от расстояния.

2.1.2. Емкостные датчики.

Емкocтный дaтчик, измерительный преобразователь неэлектрических величин (уровня жидкости, механические усилия, давления, влажности и др.) в значения электрической ёмкости. Конструктивно емкостный датчик представляет собой конденсатор электрический плоскопараллельный или цилиндрический.

Принцип действия емкостных бесконтактных выключателей

Емкостные датчики имеют чувствительный элемент в виде вынесенных к активной поверхности пластин конденсатора.

Принцип действия емкостных сенсоров основывается либо на изменении геометрии конденсатора (т.е. на изменении расстояния между пластинами), либо на изменении емкости за счет размещения между пластинами различных материалов: электропроводных или диэлектрических. Изменения емкости, как правило, преобразуются в переменный электрический сигнал.

Принцип действия основан на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и от диэлектрической проницаемости среды между ними.

С = e0 e S / d

где e0 - диэлектрическая постоянная; e - относительная диэлектрическая проницаемость среды между обкладками; S - активная площадь обкладок; d - расстояние между обкладками конденсатора.

Зависимости C (S ) и C (d) используют для преобразования механических перемещений в изменение емкости.

Приближение объекта из любого материала к активной поверхности ведет к изменению емкости конденсатора, параметров генератора и в конечном итоге к переключению коммутационного элемента.

Устройство и принципы работы емкостного датчика


Рис. 2.8. Устройство емкостного датчика

Емкocтный бecконтактный датчик функционирует следующим образом:

1. Генератор обеспечивает электрическое поле взаимодействия с объектом.
2. Демодулятор преобразует изменение амплитуды высокочастотных колебаний генератора в изменение постоянного напряжения.
3. Триггер обеспечивает необходимую крутизну фронта сигнала переключения и значение гистерезиса.
4. Усилитель увеличивает выходной сигнал до необходимого значения.
5. Светодиодный индикатор показывает состояние выключателя, обеспечивает работоспособности, оперативность настройки.
6. Компаунд обеспечивает необходимую степень защиты от проникновения твердых частиц и воды.
7. Корпус обеспечивает монтаж выключателя, защищает от механических воздействий. Выполняется из латуни или полиамида, комплектуется метизными изделиями.

Бесконтактные датчики положения механизмов

Бесконтактные датчики положения механизмов

В этой статье поговорим о датчиках положения механизмов. Вообще, принципиальная функция любого датчика — дать сигнал с наступлением какого-то конкретного события. То есть датчик при наступлении события срабатывания активируется, и подает сигнал, который может быть как аналоговым, так и дискретным, цифровым.

В качестве датчиков положения в течение многих десятилетий используются концевые выключатели. Они состоят из электрических контактов, которые механически размыкаются или замыкаются, когда какая-либо переменная (положение) достигает определенного значения. Концевые выключатели различных типов являются важной частью многих систем управления, надежность которых существенно зависит именно от них, т.к. такие датчики содержат подвижные механические элементы ресурс которых ограничен.

В настоящее время концевые выключатели активно вытесняются различными бесконтактными датчиками. Наиболее распространены бесконтактные датчики положения следующих типов: индуктивные, генераторные, магнитогерконовые и фотоэлектронные. Указанные датчики не имеют механического контакта с подвижным объектом, положение которого контролируется.

Бесконтактные датчики положения обеспечивают высокое быстродействие и большую частоту включений механизма. Определенным недостатком этих датчиков является зависимость, их точности от изменения напряжения питания и температуры. В зависимости от требований выходным аппаратом этих устройств может быть как бесконтактный логический элемент, так и электрическое реле.

В схемах точной остановки электроприводов бесконтактные датчики могут использоваться как для подачи команды на переход к пониженной частоте вращения, так и для окончательной остановки.

Типов датчиков сегодня на рынке множество, однако, в рамках данной статьи осветим тему непосредственно индуктивных датчиков положения , ибо в более чем 80% случаев, в качестве датчиков положения механизмов служат именно индуктивные датчики.

Срабатывание индуктивного датчика происходит в момент приближения металла в его зону срабатывания. По этой причине индуктивные датчики положения еще называют датчиками присутствия, датчиками приближения или просто индуктивными выключателями.

Принцип работы бесконтактного индуктивного датчика положения

Рассмотрим теперь принцип срабатывания индуктивного датчика. Как говорилось выше, когда металл достаточно сближается с зоной срабатывания, датчик активируется. Явление это заключается во взаимодействии включенной катушки индуктивности с приближающимся к ней металлом, который резко изменяет величину магнитного поля катушки, что и приводит к активации датчика, он срабатывает, на его выходе появляется соответствующий сигнал.

Устройство бесконтактного индуктивного датчика положения

Электронная часть устройства содержит схему управления, которая в свою очередь управляет реле либо транзисторным ключом. Она состоит из следующих частей:

Генератор, создающий электромагнитное поле, необходимое для взаимодействия с объектом.

Триггер Шмитта, обеспечивающий гистерезис, когда происходит переключение.

Усилитель для увеличения амплитуды сигнала, чтобы он достиг необходимого для срабатывания значения.

Светодиодный индикатор, информирующий о состоянии выключателя. Также с его помощью обеспечивается контроль работоспособности и настройка.

Компаунд для защиты от попадания вовнутрь твердых частиц и воды.

Корпус для обеспечения монтажа датчика и его защиты от различных механических воздействий. Изготавливается из латуни или полиамида и комплектуется крепежными изделиями.

Индуктивные датчики положения широко применяются в системах промышленной автоматизации, где необходимо время от времени или постоянно определять положение какой-нибудь части механизма. Датчик подает сигнал, который поступает на исполнительное устройство. В качестве исполнительного устройства может выступать пускатель, контроллер, реле, частотный преобразователь и т. п. Главное, чтобы параметры датчика соответствовали параметрам исполнительного устройства по напряжению и току.

Датчики в большинстве своем не являются силовыми устройствами, это главным образом сигнальные устройства, по этой причине сам датчик, как правило, ничего мощного не коммутирует, а только управляет, подает сигнал управления, выступает в качестве устройства инициирования того или иного действия, которое уже может быть связано с силовой коммутацией.

Современные индуктивные датчики положения чаще всего встречаются в двух вариантах исполнения пластикового или металлического корпуса: прямоугольной или цилиндрической формы. Диаметр датчика круглого сечения может быть от 4 до 30 мм, но чаще всего применяют диаметры 18 и 12 мм.

При монтаже датчика на оборудование, выставляют зазор между металлической пластиной и зоной срабатывания датчика, обычно это расстояние не превышает диаметра датчика, и как правило, оказывается в 2-3 раза меньше его диаметра.

Схема подключения индуктивного датчика положения

По способу подключения индуктивные датчики положения бывают двухпроводными, трехпроводными, четырехпроводными и пятипроводными.

Двухпроводные непосредственно коммутируют нагрузку, такую как катушка пускателя, то есть они работают подобно обычному выключателю. Двухпроводные датчики требовательны к сопротивлению нагрузки, поэтому не всегда подходят в качестве надежного инструмента, однако актуальности своей не теряют.

Нагрузка просто подключается последовательно с датчиком, если применяется постоянное напряжение, то важно соблюсти полярность, если переменное — полярность не важна, главное — коммутируемая мощность и ток.

Трехпроводные датчики имеют третий провод для питания самого датчика, и это наиболее популярное решение. Четырехпроводные и пятипроводные датчики имеют транзисторные либо релейные выходы для подключения нагрузки, а пятый провод позволяет выбрать режим работы датчика, исходное состояние выходов.

Поскольку выходы могут быть как релейными, так и транзисторными, то датчики, соответственно, подразделяются на три типа по устройству выходов: релейные, npn и pnp.

Датчики с релейным выходом

Датчик с релейным выходом имеет гальваническую развязку цепи питания от коммутируемой цепи. Коммутирует один провод, и напряжение в коммутируемой цепи не является особо критичным. Поскольку схема питания датчика гальванически развязана, это можно считать достоинством релейного датчика. Датчики данного типа, как правило, крупногабаритны.

Датчики с pnp-транзисторным выходом

Датчик имеет на выходе pnp-транзистор, который осуществляет коммутацию плюсового провода с нагрузкой. В коллекторную цепь выходного pnp-транзистора включается нагрузка, которая вторым своим проводом соединена постоянно с минусом.

Датчики с npn-транзисторным выходом

Датчик имеет на выходе npn-транзистор, который осуществляет коммутацию минусового провода с нагрузкой. В коллекторную цепь выходного npn-транзистора включается нагрузка, которая вторым своим проводом соединена постоянно с плюсовым проводом.

По исходному состоянию выходов, индуктивные датчики положения могут быть с нормально замкнутыми или с нормально разомкнутыми контактами. Исходное состояние обозначает, что это состояние в тот момент времени, когда датчик еще не сработал, то есть не активирован.

Если выходные контакты нормально замкнуты, то нагрузка подключена в неактивное время, если нормально разомкнуты, то пока датчик не сработает, нагрузка будет отключена, и на исполнительный прибор (например контактор) питание подано не будет. Обозначение нормально замкнутых контактов в англоязычном формате — N.C. (Normal Closed), нормально разомкнутых — N.O. (Normal Open).

Таким образом, датчики с транзисторными выходами бывают четырех разновидностей: два вида по проводимости (pnp или npn), и два вида по исходному состоянию выходов. Также может быть предусмотрена задержка включения или выключения.

Бесконтактный датчик

В зависимости от вида исполнительного устройства, которое подключается к датчику, а также от способа его запитки, логика работы датчика может быть положительной или отрицательной. Это связано с уровнем напряжения, которое активизирует вход устройства.

Если вход активируется при подключении минусового провода исполнительного устройства к земле, к минусу, то логика называется отрицательной, такое подключение свойственно датчикам с транзисторными выходами npn-типа.

Положительная логика соответствует подключению при активации плюсового провода исполнительного устройства к плюсу питания, такая логика свойственна датчикам, имеющим транзисторные выходы pnp-типа. Чаще всего встречается положительная логика работы индуктивных датчиков положения механизмов.

Старые наиболее часто используемые типы индуктивных датчиков положения

Индуктивные датчики положения ИКВ-22

Индуктивные датчики ИКВ-22. Работа этих датчиков основана на принципе изменения индуктивного сопротивления катушек со стальным сердечником при изменении воздушного зазора в магнитной цепи.

На стальной плите установлен магнитопровод с двумя катушками, закрытый пластмассовой крышкой. С нижней стороны к плите крепятся два конденсатора типа МБГП (один емкостью 15 мкФ, 200 В, второй —10 мкФ, 400 В). Конденсаторы закрыты крышкой. Подключение кабеля производится через сальниковый ввод. На механизме устанавливается магнитный шунт, размеры которого должны быть не менее: толщина 2 мм, ширина 80 мм, длина 140 мм. Воздушный зазор между магнитопроводом и шунтом равен 6±4 мм.

Выходное реле нормально включено и отключается в момент прохождений магнитного шунта над датчиком, когда из-за изменения индуктивного сопротивления катушки наступает резонанс токов и ток через обмотку реле падает. Данные реле: тип МКУ-48, 12 В переменного тока, ток втягивания не более 0,45 А, ток отпадания не менее 0,1 А. Напряжение питания цепи датчик — реле 24 В переменного тока.

Индуктивные датчики положения ИД-5

В металлургических цехах используют индуктивные датчики типа ИД-5, рассчитанные для работы при температуре окружающей среды до +80 °С и влажности до 100%. Допустимо присутствие токопроводящей пыли и окалины. В комплекте с датчиком применяют выходной полупроводниковый усилитель типа УИД-10. Выходная мощность усилителя (25 Вт) достаточна для включения широко распространенных реле РЭВ-800, контакторов КП21, МК-1 и т. д.

Воздушный зазор между датчиком и контролируемым ферромагнитным объектом может достигать 30 мм. Размеры датчика ИД-5 187х170х70 мм, напряжение питания 220 В± ±15%, 50 Гц.

Бесконтактные малогабаритные путевые переключатели БСП

На металлорежущих станках находят применение малогабаритные путевые переключатели БСП-2 (с бесконтактным выходом, на логический элемент) и БРП (с выходом на реле ПЭ-21, 24 В, 16 Ом).

Переключатель БСП-2 состоит из дифференциально-трансформаторного датчика и полупроводникового триггера. Магнитная система первой катушки датчика зашунтирована стальной пластиной, а вторая катушка шунтируется при перемещении над ее магнитной системой связанного с механизмом плоского якоря. Катушки включены встречно.

Если якорь находится над датчиком, индуктивные сопротивления катушек равны и выходной сигнал дифференциально-трансформаторного датчика равен нулю. При этом на выходе триггера появляется напряжение не менее 2,5 В, достаточное для срабатывания логического элемента.

При отсутствии якоря над датчиком на триггер подается напряжение, возвращающее его в исходное состояние. Выходной сигнал переключателя при этом равен нулю.

Принцип действия переключателя БРП во многом аналогичен БСП-2. Внутри корпуса смонтированы индуктивный датчик (по схеме дифференциального трансформатора), триггер и усилитель. Вторичные катушки, имеющие разное число витков, включены встречно. По мере перекрытия якорем магнитной системы датчика сигнал уменьшается, а после изменения его фазы переключается триггер и срабатывает внешнее выходное реле (ПЭ-21, 24 В, 16 Ом).

Якорь, закрепленный на механизме, имеет размеры 80х15х3 мм. Зазор между якорем и датчиком 4 мм. Точность выключателей в номинальном режиме составляет ±0,5 мм, дифференциал срабатывания — не более 5 мм. При. колебаниях напряжения питания и температуры погрешность переключателей БСП-2 и БРП может достигать ± (2,5-f-3,0) мм.

Высокочастотные индуктивные датчики ВКБ

Для автоматизации металлорежущих станков используют также высокоточные индуктивные датчики типа ВКБ с П-образным или плоским якорем. Полюсы встроенного трансформатора образуют разомкнутую электромагнитную систему. Рабочий воздушный зазор равен 0,1—0,15 мм.

Выходное напряжение с вторичной обмотки трансформатора подается на дифференциальную измерительную схему, а затем на транзисторный усилитель. Суммарная погрешность датчика при колебаниях температуры от 5 до 40 °С и напряжения от 85 до 110% номинального значения составляет ±(0,064-0,15) мм, дифференциал срабатывания не превышает 0,4 мм. Максимальная скорость движения механизма равна 10 м/мм. Размеры датчика 62х34х24 мм.. Напряжение питания 12 В.

Специальные типы станочных прецизионных индуктивных датчиков с дифференциальной схемой имеют погрешность менее ±0,01 мм. К таким датчикам относится путевой бесконтактный выключатель типа ВПБ12, состоящий из блока датчика электронного блока. В блок датчика входят индуктивный рабочий датчик, индуктивный компенсационный датчик и печатные платы. На механизме устанавливается: управляющий ферритовый элемент. Напряжение питания 12 В постоянного тока. Максимальное расстояние воздействия - не более 0,12 мм. На выходе датчика могут быть включено реле типа РПУ-0. Максимальный ток нагрузки выходного аппарата 0,16 А.

Генераторные датчики положения

Датчики этого типа отличаются компактностью и высокой точностью. Хорошо зарекомендовали себя генераторные датчики серий КВД-6М и КВД-25 (щелевые), КВП-8 и КВП-16 (плоскостные). Они пригодны для использования при повышенной концентрации влаги и пыли. В корпусе из ударопрочного полистирола размещены элементы транзисторной схемы датчика (генератор и триггер). Герметизация выполнена компаундом холодного отвердения. Интервал рабочих температур — от - 30 до +50 °С.

Датчики КВП-8 и КВП-16 срабатывают при прохождении мимо них металлической пластины на максимальном расстоянии соответственно 8 и 16 мм.

Бесконтактные датчики — это такие датчики, которые работают без физического и механического контакта. Они работают через электрическое и магнитное поле, а также широко используются и оптические датчики. В этой статье мы с вами разберем все три типа датчиков: оптические, емкостные и индуктивные, а также в конце проделаем опыт с индуктивным датчиком. Кстати, в народе бесконтактные датчики называют также и бесконтактными выключателями, так что не бойтесь, если увидите такое название ;-).

Оптический датчик

Итак, пару слов об оптических датчиках… Принцип срабатывания оптических датчиков показан на рисунке ниже

оптические бесконтактные датчики

Барьерный

Помните какие-нибудь кадры из фильмов, где главным героям приходилось пройти через оптические лучи и не задеть ни один из них? Если луч задевался какой-либо частью тела, срабатывала сигнализация.

Бесконтактные датчики

Очень большой популярностью в России пользуются оптические датчики перемещений фирмы СКБ ИС

В этих типах датчиков есть и источник света и фотоприемник. Они находятся прямо в корпусе этих датчиков. Каждый тип датчиков представляет из себя законченную конструкцию и используется в ряде станков, где нужна повышенная точность обработки, вплоть до 1 микрометра. В основном это станки с системой Числового Программного Управления (ЧПУ), которые работают по программе и требуют минимального вмешательства человека. Эти бесконтактные датчики построены по такому принципу

барьерные бесконтактные датчики

Плюсы:

  • дальность действия может достигать до 150 метров
  • высокая надежность и помехозащищенность

Минусы:

  • при больших расстояниях срабатывания требуется точная настройка фотоприемника на оптический луч.

Рефлекторный

Рефлекторный тип датчиков обозначается буквой R . В этих типах датчиков излучатель и приемник расположены в одном корпусе.

дифузионные бесконтактные датчики

Принцип действия можно увидеть на рисунке ниже

рефлекторные бесконтактные датчики

Свет от излучателя отражается от какого-либо светоотражателя (рефлектора) и попадает в приемник. Как только луч прерывается каким-либо объектом, то датчик срабатывает. Очень удобен этот датчик на конвейерных линиях при подсчете продукции.

Диффузионный

И последний тип оптических датчиков — диффузионные — обозначаются буквой D. Выглядеть могут по разному:

Принцип работы такой же, как и у рефлекторного, но здесь свет уже отражается от предметов. Такие датчики рассчитаны на маленькое расстояние срабатывания и неприхотливы в своей работе.

Бесконтактные датчики

Емкостные и индуктивные датчики

Оптика оптикой, но самые неприхотливые в своей работе и очень надежные считаются индуктивные и емкостные датчики. Примерно вот так они выглядят

емкостные и индуктивны бесконтактные датчики

Как работает индуктивный датчик

Как говорится, лучше один раз увидеть, чем сто раз услышать, поэтому проведем небольшой опыт с индуктивным датчиком.

Итак, у нас в гостях индуктивный датчик российского производства

индуктивный датчик

Читаем, что на нем написано

Бесконтактные датчики

Марка датчика ВБИ бла бла бла бла, S — расстояние срабатывания, здесь оно составляет 2 мм, У1 — исполнение для умеренного климата, IP — 67 — уровень защиты (короче уровень защиты здесь очень крутой), Ub — напряжение, при котором работает датчик, здесь напряжение может быть в диапазоне от 10 и до 30 Вольт, Iнагр — ток нагрузки, этот датчик может выдать в нагрузку силу тока до 200 миллиампер, думаю, это прилично.

На развороте бирки схема подключения этого датчика.

Бесконтактные датчики

Ну что, проверим работу датчика? Для этого цепляем нагрузку. Нагрузкой у нас будет светодиод, соединенный последовательно с резистором с номиналом в 1 кОм. Зачем нам резистор? Светодиод в момент включения начинает бешено жрать ток и сгорает. Для того чтобы это предотвратить, в цепь ставится последовательно со светодиодом резистор.

Бесконтактные датчики

На коричневый провод датчика подаем плюс от Блок питания, а на синий — минус. Напряжение я взял 15 Вольт.

Наступает момент истины… Подносим к рабочей зоне датчика металлический предмет, и датчик у нас тут же срабатывает, о чем говорит нам светодиод, встроенный в датчик, а также наш подопытный светодиод.

работа индуктивного датчика

На другие материалы, кроме металлов, датчик не реагирует. Баночка канифоли для него ничего не значит :-).

Бесконтактные датчики

Вместо светодиода может использоваться вход логической схемы, то есть датчик при срабатывании выдает сигнал логической единицы, которая может использоваться в цифровых устройствах.

Заключение

Где купить индуктивный датчик

В нашем радиомагазине индуктивные датчики стоят в 5 раз дороже, чем если бы их заказывать с Китая с Алиэкспресса.

Читайте также: