Реферат на тему батарея

Обновлено: 05.07.2024

Аккумуляторами называют химические источники тока, в которых в последствии обратимых химических реакций внутренняя энергия превращается в электрическую. Именно из-за обратимости данной реакции, аккумуляторы можно заряжать и разряжать. Аккумуляторы созданы для накопления электрического тока и нашли широкое применение в самых разных областях.

Содержание

Введение Ошибка! Закладка не определена.
Характеристики аккумуляторов 4
Различные виды аккумуляторов 6
Виды аккумуляторов и их применение 7
Вывод 23

Прикрепленные файлы: 1 файл

Аккумуляторами называют химические источники тока.docx

Введение

Аккумуляторами называют химические источники тока, в которых в последствии обратимых химических реакций внутренняя энергия превращается в электрическую. Именно из-за обратимости данной реакции, аккумуляторы можно заряжать и разряжать. Аккумуляторы созданы для накопления электрического тока и нашли широкое применение в самых разных областях. Без них трудно представить нашу жизнь, они везде окружают нас. Аккумуляторы предназначен ы для многократного использования и имеют достаточно большой срок службы. Простейший аккумулятор - это два электрода, которые сделаны из разных металлов и поглощены в раствор электролита (кислоты). Один из электродов называют катодом, а другой анодом.

Применение аккумуляторов в какой-либо области зависит не только от их видов, но и от емкости устройств. И у обычной батарейки, и у автоаккумулятора этот основной параметр рассчитывается в одинаковых единицах, ампер-часах. Так, емкость 800 мА*ч означает, что данная батарея за час отдает 800 мА электроэнергии. Еще один немаловажный параметр аккумуляторной батареи – число циклов перезарядки. Чем больше это число, тем дольше прослужит устройство.

В практике чаще всего применяют свинцовые и литиевые аккумуляторы. Свинцовый аккумулятор выполнен из двух свинцовых пластинок которые поглощены в серную кислоту. Аккумулятор имеют разное напряжение, например один блок (банка) свинцового аккумулятора дает напряжение 2 вольта, один блок литий-ионного аккумулятора - 3,7 вольт, щёлочный - 1,2 вольт. Создателем первого аккумулятора считают Алессандро Вольту (от его фамилии образовалось значение величины напряжения - вольт). Вольтов столб имел простую конструкцию - медные и циньковые кружки, а между ними кусок ватты смоченный в растворе воды и поваренной соли. Сегодня существует огромное количество разновидностей аккумуляторов тока.

В последние годы было изобретено еще два вида аккумуляторных батарей. В литиево-полимерном элементе вместо жидкого электролита используется полимерная пленка. Как правило, подобные батареи отличаются высокой плотностью заряда и очень небольшими размерами. Благодаря этим качествам подобные батареи используются в малогабаритных устройствах, например, в телефонах. Вторым новым видом стали аккумуляторы гелевые. Роль электролита в них играет силикагель. Эта желеобразная, чуть подсушенная прослойка между электролитами пронизана сотнями микроскопичесих трещин. Вещества, испаряемые электролитами, впитываются в гель и превращаются в жидкость. Таким образом, большая часть вредных испарений остается внутри аккумулятора.

Характеристики аккумуляторов

Среднее разрядное напряжение аккумуляторов находится в широком диапазоне от 1,25В у никель-кадмиевых аккумуляторов до 3,5В у литиевых аккумуляторов. С повышением скорости разряда емкость аккумуляторов уменьшается, причем в минимальной степени у Ni-Cd и Ni-MH аккумуляторов.

Емкость также снижается при понижении температуры. Наибольшее снижение емкости при низких температурах наблюдается у никель-железных аккумуляторов и минимальное снижение - у никель-кадмиевых со спеченными электродами и у свинцовых аккумуляторов.

Высокую удельную мощность можно получить от никель- кадмиевых аккумуляторов, свинцовых (стартерных и герметизированных), никель-цинковых и серебряно-цинковых аккумуляторов. Невысокую удельную мощность имеют никель-железные аккумуляторы.

Удельная массовая энергия минимальна у свинцовых аккумуляторов и максимальна у литиевых аккумуляторов. Наибольшую наработку имеют никель-водородные аккумуляторы, низким ресурсом характеризуются серебряно-цинковые и никель-цинковые аккумуляторы.

Следует отметить, что по мере циклирования уменьшаются емкость, напряжение и соответственно удельная энергия аккумуляторов, причем скорости понижения удельной энергии у разных аккумуляторов существенно различаются. В наименьшей степени снижаются емкость и энергия при циклировании Ni-Cd аккумуляторов.

Наработка зависит от многих причин и прежде всего от глубины разряда. Наиболее высокая скорость саморазряда отмечается у никель-водородных и никель-железных аккумуляторов, наименьшая - у серебряно-кадмиевых и серебряно-цинковых аккумуляторов. К наиболее дешевым принадлежат свинцовые аккумуляторы, к наиболее дорогим - никель-водородные, серебряно-кадмиевые и серебряно-цинковые аккумуляторы.


Влияние тока разряда на емкость отдаваемую аккумулятором:
1-никель-кадмиевые аккумуляторы со спеченным электродом и никель-металлгидридные аккумуляторы, 2-серебрянно-цинковые аккумуляторы, 3- никель-кадмиевые аккумуляторы с ламельным электродом, 4-никель-цинковые аккумуляторы, 5-литий-инные аккумуляторы, 6-свинцовые аккумуляторы, 7-никель-железные аккумуляторы.

Различные виды аккумуляторов:

Железно-воздушный аккумулятор

Железно-никелевый аккумулятор

Лантано-фторидный аккумулятор

Литиево-железно-сульфидный аккумулятор

Литиево-железно-фосфатный аккумулятор

Литиево-ионный аккумулятор

Литиево-полимерный аккумулятор

Литиево-фторный аккумулятор

Литиево-хлорный аккумулятор

Литиево-серный аккумулятор

Натриево-никелево-хлоридный аккумулятор

Натриево-серный аккумулятор

Никелево-кадмиевый аккумулятор

Никелево-металлогидридный аккумулятор

Никелево-цинковый аккумулятор

Свинцово-водородный аккумулятор

Свинцово-кислотный аккумулятор

Серебряно-кадмиевый аккумулятор

Серебряно-цинковый аккумулятор

Цинково-бромный аккумулятор

Цинково-воздушный аккумулятор

Цинково-хлорный аккумулятор

Никель-водородный аккумулятор

Виды аккумуляторов и их применение

Данный тип аккумуляторов, изобретен в 1859 году французским физиком Гастоном Планте. Основные области применения: стартерные батареи в автомобильном транспорте, аварийные источники электроэнергии.

Свинцовые аккумуляторы являются наиболее распространенными среди всех существующих в настоящее время химических источников тока. Их масштабное производство определяется как относительно низкой ценой, обусловленной сравнительной не дефицитностью исходных материалов, так и разработкой разных вариантов этих аккумуляторов, отвечающих требованиям широкого круга потребителей.

Реагентами в свинцовых аккумуляторах служат диоксид свинца (PbO2) и свинец (Pb), электролитом - раствор серной кислоты. Они также называются свинцово-кислотными аккумуляторами. Их разделяют на четыре основные группы; стартерные, стационарные, тяговые и портативные (герметизированные). Наиболее распространенные из свинцовых аккумуляторов - стартерные аккумуляторы, предназначены для запуска двигателей внутреннего сгорания и энергообеспечения устройств машин. В последние годы в основном используются аккумуляторы, не требующие ухода. К недостаткам относят невысокие удельную энергию и наработку, плохую сохранность заряда, выделение водорода.

Стационарные аккумуляторы используются в энергетике, на телефонных станциях, в телекоммуникационных системах, в качестве аварийного источника тока и т.д. Обычно они работают в режиме непрерывного подзаряда. Относятся к недорогим аккумуляторам.

Тяговые аккумуляторы предназначены для электроснабжения электрокаров, подъемников, шахтных электровозов, электромобилей и других машин. Действуют в режимах глубокого разряда, имеют большой ресурс и низкую стоимость.

Портативные (герметизированные) свинцовые аккумуляторы используются для питания приборов, инструмента, аварийного освещения. К их достоинствам относятся более низкая стоимость по сравнению со стоимостью других портативных аккумуляторов, широкий интервал рабочих температур. Недостатками кислотных аккумуляторов являются невозможность хранения в разряженном состоянии, трудность изготовления аккумуляторов малых размеров.

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в сернокислотной среде. Во время разряда происходит восстановление диоксида свинца на катоде и окисление свинца на аноде. При заряде протекают обратные реакции, к которым в конце заряда добавляется реакция электролиза воды, сопровождающаяся выделением кислорода на положительном электроде и водорода — на отрицательном.

Щелочные аккумуляторы - аккумуляторы, в которых в качестве электролита используют раствор щелочи в воде.
Главная особенность щелочных аккумуляторных батарей - способность постепенно отдавать накопленный заряд за достаточно длительный промежуток времени. Это свойство способствует обеспечению бесперебойного питания огромному количеству различных устройств.
Применяются данные аккумуляторы в качестве:

- основных источников электроэнергии на электрокарах и в мобильных устройствах (фотоаппараты, видеокамеры, телефоны, карманные и переносные фонари и т.д.);

- дополнительных источников энергии в трамваях и троллейбусах, тепловозах и электровозах;

- источников энергии для питания аварийных устройств, таких как аварийное освещение, охранно-пожарные сигнализации, источники бесперебойного питания персональных компьютеров и т. п.

Сегодня щелочные аккумуляторы применяются только на машинах, работа которых осуществляется в тяжелых условиях эксплуатации, или там, где необходима долговечность и надежность (строительная и сельскохозяйственная техника).

Наиболее распространены никель-железные и никель-кадмиевые щелочные аккумуляторы. Их широко применяют на тепловозах и пассажирских вагонах.

Данный тип аккумулятора выпускается в разных странах мира примерно с 1950 года. На сегодняшний день более 50% всех аккумуляторов для портативного оборудования являются никелево-кадмиевыми.

Реагентами в никель-кадмиевых аккумуляторах служат гидроксид никеля и кадмий, электролитом - раствор КОН, поэтому они именуются щелочными аккумуляторами. Существуют три основных вида никель-кадмиевых аккумуляторов: негерметичные с ламельными (ламельные аккумуляторы) и спеченными электродами (безламельные аккумуляторы) и герметичные. Наиболее дешевые ламельные никель-кадмиевые аккумуляторы характеризуются плоской разрядной кривой, высокими ресурсом и прочностью, но не низкой удельной энергией. Удельная энергия, скорость разряда Ni-Cd аккумуляторов со спеченными электродами выше, они работоспособны при низких температурах, но дороже, характеризуются эффектом памяти и способностью к тепловому разгону.

Применяются никель-кадмиевые аккумуляторы для питания шахтных электровозов, подъемников, стационарного оборудования, средств связи и электронных приборов, для запуска дизелей и авиационных двигателей и т.п.

Герметичные Ni-Cd аккумуляторы характеризуются горизонтальной разрядной кривой, высокими скоростями разряда и способностью действовать при низких температурах, но они дороже герметизированных свинцовых аккумуляторов и характеризуются эффектом памяти. Применялись для питания портативной аппаратуры (сотовых телефонов, магнитофонов, компьютеров и т.д.), бытовых приборов, игрушек и т.д. Недостатком никель-кадмиевых аккумуляторов является применение токсичного кадмия.

Вместо кадмия в этих аккумуляторах используется железо. Из-за выделения водорода с самого начала заряда аккумуляторы производят только в негерметичном варианте. Они дешевле никель-кадмиевых аккумуляторов, не содержат токсичный кадмий, имеют длинный срок службы и высокую механическую прочность. Однако они характеризуются высоким саморазрядом, низкой отдачей по энергии, практически неработоспособны при температуре ниже -10 °С. Выпускаются в призматическом виде и используются в основном как тяговые источники тока в шахтных электровозах, электрокарах и промышленных подъемниках.

Электрохимические преобразователи энергии: общие сведения и область применения. Физико-химические процессы в электрохимических генераторах (ЭХГ). Аккумулятор как прибор для накопления электрической энергии. Электроэнергетические установки на базе ЭХГ.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 01.06.2010
Размер файла 106,9 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Аккумуляторы

Первым кто открыл возможность получения тока иным, чем электризация трением, способом был итальянский ученный Луиджи Гальвани (1737-1798). Однажды он заметил, что лапка мёртвой лягушки пришла в движение при соприкосновении с её нервом стального скальпеля. Это открытие заставило Гальвани поставить ряд опытов для обнаружения причины возникновения электрического тока.

В основе принципа действия различных типов аккумуляторов лежит явление электролиза, где используется его важное свойство - обратимость. Электролиз - изменение химического состава раствора при прохождении через него электрического тока, обусловленное потерей или присоединением электронов ионами.

Аккумулятор - прибор для накопления электрической энергии с целью её дальнейшего использования.

Аккумулятор можно изготовить аналогично гальваническому элементу, использовав для этой цели две свинцовые пластины, погруженные в раствор содержащий одну часть серной кислоты на пять частей воды. Для зарядки аккумулятора соединяют последовательно два таких элемента и амперметр и пропускают через них ток.

Как только через аккумулятор начинает идти ток, возле катода возникают пузырьки водорода. На аноде, как следовало ожидать, освобождается кислород. Однако его выделением дело не ограничивается. Пластина анода постепенно приобретает темно-коричневый цвет вследствие образования на ее поверхности перекиси свинца (PbO2) за счет того, что некоторое количество кислорода соединяется химически с материалом пластины. При образовании PbO2 ток зарядки падает, указывая на возрастание сопротивления аккумулятора. Когда аккумулятор зарядится полностью, присоединяемый к нему вольтметр покажет напряжение несколько более 2 вольт.

В сущности, процесс зарядки состоит в том, что две одинаковые вначале пластины аккумулятора вследствие электролиза становятся разными; одна из них, по-прежнему остаётся свинцовой (-), а материал другой превращается в перекись свинца (+).

Химические реакции в аккумуляторе протекают следующим образом (в процессе зарядки реакции идут слева направо, при разрядке - в обратном направлении):

200 кДж/кг, но их долговечность мала. Повышение долговечности достигается в газодиффузионных никель-водородных АБ, в которых W*>250 кДж/кг. Еще более высокий показатель (W*>500 кДж/кг) имеют серно-натриевые АБ, но их ресурс составляет 100 - 200 циклов "заряд - разряд". Дальнейшее повышение W* теоретически до значений 103 кДж/кг возможно в литиевых АБ, но их недостаток - малый ресурс вследствие высокой коррозионной активности Li.

Запас энергии в химической АБ принято характеризовать зарядной емкостью (в Ач или Кл), необходимое значение которой зависит от мощности и времени работы потребителей электроэнергии. Химические АБ получили широкое распространение на транспорте, в системах электростартерного запуска авиационных и автомобильных двигателей, в судовых установках, на электромобилях, во внутризаводском электротранспорте, на электропогрузчиках и т.д.

В условиях КЛА всегда реализуется параллельная работа химической АБ с ФЭП. Последние производят подзарядку АБ в "дневные" часы. Для автономных установок, в том числе на КЛА, целесообразно также сочетание ФЭП с системой "электролизер - ЭХГ". Часть энергии ФЭП в "дневные" часы затрачивается на разложение воды, а в "ночные" часы полученные H2 и O2 обеспечивают работу ЭХГ.

2.3 Физико-химические процессы в ЭХГ

Как и в реакции горения (активируемого, например, зажиганием), стадии токообразующей электрохимической реакции также протекают одновременно, но локализованы в различных областях внутреннего пространства ТЭ..\ В качестве типового примера рассмотрим работу водород - кислородного ТЭ. Стехиометрическое уравнение суммарной реакции:

имеет такой же вид, как при горении. Поясним устройство и принцип действия ТЭ, в котором электрохимическая реакция происходит на стыках трех фаз состояния веществ: газообразной (восстановителя H2 и окислителя O2), жидкостной (щелочного электролита - раствора KOH) и твердой (пористых металлокерамических электродов). Схема ТЭ показана на рис. 1а. Электроды анод 1 и катод 2 выполнены из композитного материала (например, из графитовой керамики с платиновым катализатором). Электроды 1 и 2 отделены слоем электролита - раствора щелочи KOH, который не пропускает нейтральные молекулы или атомы газов водорода и кислорода. Ионизированные газы, например, ионы H+, могут дрейфовать сквозь электролит. Корпус ТЭ выполняется из титанового сплава 4, химически не взаимодействующего с KOH. Внешняя цепь ТЭ замкнута сопротивлением Rн нагрузки, которое подключено к металлическим наплавкам на электродах.

Газообразные компоненты химического топлива - отдающий свои электроны восстановитель H2 и присоединяющий электроны окислитель O2 - - непрерывно подводятся под избыточным давлением к порам анода и катода (рис. 1а) из резервуаров с запасом реагентов.

1. На поверхностях анода, смоченных р-ром KOH, в электролите растворяется газообразный водород и абсорбируется на стенках пор электрода. В растворе гидроксид калия находится в диссоциированном состоянии:

Водород в присутствии ионов OH- он легко отдает электроны (окисляется), образуя воду:

Рис . 1. Схемы водородно-кислородных топливных элементов:

а - с жидким электролитом (раствором КОН); б - с ионообменной мембраной

2. На поверхности катода аналогичные явления приводят к реакции восстановления кислорода, который в присутствии воды отбирает у этого электрода образовавшиеся свободные электроны:

В итоге этих первой и второй стадий "холодного горения" на аноде образуется избыток электронов, а в примыкающем растворе - недостаток ионов гидроксила OH-. На катоде же имеется недостаток электронов, а в окружающем его электролите - избыток ионов H+. Вследствие этого протекают следующие две стадии реакции.

3. По внешнему участку цепи от анода к катоду через сопротивление Rн проходят электроны 4e-, совершая полезную электрическую работу (направление тока I противоположно перемещению электронов).

4. В электролите происходит диффузия ионов 4OH- с катода на анод и посредством ионного тока замыкается электрическая цепь (согласно уравнению непрерывности полного тока div J = 0).

Если сложить реакции для первой и второй стадии, получится результирующее уравнение реакции , конечным продуктом которой является вода. Избыточное количество паров воды 2H2O удаляют из ТЭ, например, с помощью продувки с последующей сепарацией или выпариванием. Очищенная от паров электролита, вода может направляться для дальнейшей утилизации (рис. 1а).

Сбалансированный ход реакций на указанных стадиях у поверхностей электродов определяется равновесием давлений газовой и жидкостной фаз: pr = pэ + pк ;

здесь pr - внешнее давление газообразных реагентов ( водорода или кислорода ); pэ - гидростатическое давление электролита; pк =(? cos?)/d -

его капиллярное давление в порах электродов; ? - поверхностное натяжение (H/м); ? - угол смачиваемости; d - диаметр поры.

Наряду с KOH в ТЭ возможно использование кислотного электролита - раствора H2SO4.

Требующееся испарение воды из элементов с жидкостным электролитом, работающих при давлении 5Ч105 Па и более, определяет эксплуатацию ТЭ на среднетемпературном ( 373 - 523 К ) или высокотемпературном ( боле 523 К ) уровне, что обусловливает необходимость наличия в составе ЭХГ ряда технически сложных вспомогательных устройств. Для преодоления таких затруднений применительно к АЭУ разработаны водород - кислородные ТЭ с ионообменными мембранами (ИОМ) в виде квазитвердых веществ (гелей), разделяющих разнополярные электроды в ТЭ. Изготовляют ИОМ из фтороуглеродистого аналога тефлона. На полимерной сетке - матрице закреплены ионы, они могут обмениваться на другие ионы, присутствующие в межэлектронной среде. На практике для ТЭ применяют ИОМ с сульфатными катионами, например, По своим функциям ИОМ подобна электролиту, она способна противостоять воздействию нейтральных молекул и атомов H2 и O2. Схема ТЭ с ИОМ приведена на рис. 1б. Пористые керамические электроды 1 и 2 прижаты к мембране 3. Контактирующие с ИОМ поверхности анода и катода покрыты каталитическими слоями металла. Принцип работы ТЭ с ИОМ состоит в следующем.

На аноде подводимый газообразный водород ионизируется по реакции:

Ионы водорода под влиянием градиента их концентрации и соответствующего электрического поля перемещаются сквозь ИОМ к катоду, на котором протекает реакция:

Электроны 4e- через Rн поступают к катоду. Полученная вода (H2O)n под действием градиента ее концентрации возвращается к аноду. Две молекулы воды (2H2O), образующиеся в элементарном акте реакции, необходимо отводить из зоны реакции, например, дренажным устройством. При работе ТЭ гель в ИОМ набухает и находится, как указывалось, в квазитвердом состоянии.

Кроме ИОМ в ТЭ применяются также капилярные мембраны типа волокнистых материалов, пропитанных щелочным электролитом (например, асбест). Принцип действия ТЭ с капилярными мембранами такой же, как ТЭ с жидкостным электролитом. В отдельных установках возможно использование ЭХГ с ТЭ, работающими на других компонентах топлива, кроме H2 - O2. Итоговая электрохимическая реакция окисления восстановителя Red и восстановителя Ox имеет в общем случае вид

В ТЭ имеет место встречное движение разнополярных ионов внутри электролита и переход электронов от анода к катоду по сопротивлению Rн, замыкающему внешнюю цепь. При этом осуществляется прямое преобразование энергии химических связей Red и Ox в электрическую энергию. Конкретизацию общей формы записи токообразующих реакций рассмотрим примере окисления гидразина N2H4. Реакция окисления гидразина имеет место в ЭХГ малой мощности.

Анодное окисление гидразина:

Катодное восстановление кислорода:

Суммарное стехиометрическое уравнение реакции:

2.4 График зависимости U от I

Рис. 2: Характеристики водородно-кислородного ЭХГ:

а - общая форма характеристики и зависимость полезной мощности от тока;

б - аналоги внешней характеристики - зависимости напряжения от плотности тока для ТЭ различного исполнения (1-с раствором электролита; 2-с капилярной мембраной; 3-с ИОМ при Т=355 К; 4-с ИОМ при Т=313 К).

2.5 Внешняя характеристика U=f(I)

Отклонение от состояния равновесия при работе ТЭ практически приводит к уменьшению напряжения и снижению КПД по сравнению с их термодинамическими значениями вследствие изменения потенциала катода и анода при прохождении тока в цепи ТЭ. Совокупность этих явлений называют поляризацией. При совершении работы выхода (активации) из металла электрода в раствор электролита электрон преодолевает потенциальный барьер, образованный двойным слоем разноименных зарядов. На границе "электрод - электролит" наблюдается различие концентраций ионизированных реагентов. Электролит и электроды имеют собственное внутреннее сопротивление. Упрощенно, совместное влияние перечисленных эффектов можно учесть с помощью падения напряжения на нелинейном внутреннем сопротивлении ТЭ Rвн. При этом уравнение внешней характеристики приближенно записывается в виде

где Eн - ЭДС при нагрузке, учитывающая активационную и концентрационную поляризацию; сопротивление электролита Rэл практически равно Rвн и учитывает "омическую" поляризацию.

Общая форма внешней характеристики ЭХГ показана на рис. 2а. Большая крутизна | dU / dI | при малых и повышенных значениях тока обусловлена соответственно поляризацией активации электродов (участок 1) и приграничной поляризацией концентрации (участок 3). Линейный участок 2 с относительно малой крутизной | dU / dI | отражает влияние в основном "омической" поляризации. На рис. 2б. приведены аналоги внешних характеристик U = U(J) для конкретных ТЭ. Геометрическая плотность тока J (на единицу кажущейся поверхности электрода) может при кратковременных режимах достигать 0.1 - 0.2 А/см2.

Электрическая схема ЭХГ, построенная по матричному принципу, дана на рис. 3а; (Iэ, Uэ - ток и напряжение ТЭ). Упрощенная схема замещения ТЭ представлена на рис. 3б. если при T = const рассматривать ТЭ как линейный элемент с постоянными эквивалентными параметрами

где Rн, Lн - сопротивление и индуктивность нагрузки; Lэ,т - индуктивность электродов и токоотводов, то процесс разряда ТЭ описывается уравнением:

Здесь установившийся ток нагрузки;

эквивалентная постоянная времени.

2.6 Электроэнергетические установки на базе электрохимических генераторов

ЭХГ в целом кроме батареи ТЭ и вспомогательного оборудования включает ряд блоков, снабженных взаимными прямыми и обратными связями для обеспечения функционирования в заданном режиме. Можно классифицировать ЭХГ как техническую систему, состоящую из соответствующих подсистем. Укрупненная схема ЭХГ в качестве главной подсистемы содержит батарею топливных элементов БТЭ, а также подсистемы: хранения горючего ПХГ и окислителя ПХО; обработки горючего ПОГ и окислителя ПОО; подачи горючего ППГ и окислителя ППО. Наряду с ними имеются подсистемы отводов продуктов реакции ПОПР, теплоотвода ПТО и подсистема контроля и автоматики ПКА, которая соединена двусторонними связями с подсистемами подачи и отвода. К подсистеме потребления и регулирования электроэнергии ППРЭ подключена БТЭ.

Применительно к водород - кислородному ЭХГ в ПХГ, ПХО осуществляется криогенное хранение сжиженных компонентов топлива, в ПОГ, ПОО производится нагрев H2 и O2 , которые в газообразном состоянии подводятся к ППГ, ППО. Эти подсистемы производят дозированную подачу реагентов при заданных параметрах (давлении, температуре) в БТЭ, где происходит реакция электрохимического окисления. Удаление паров воды в ЭХГ выполняет ПОПР. Для ЭХГ, применяемых на КЛА, важное значение имеет ПТО, содержащая холодильник - излучатель, к которому тепло доставляется с помощью циркуляционных устройств с жидкостным теплоносителем.

Для КЛА многоразового использования "Спейс Шаттл" фирма "Дженерал Электрик" (США) выполнила ЭХГ с водород - кислородными ТЭ, имеющими позолоченные электроды с платиновыми катализаторами. Электроды разделены ИОМ, во избежание высушивания которых организован отвод тепла от анода, что создает движущий градиент концентрации для возвращения H2O к аноду. Отвод воды - продукта реакции - реализован с помощью автоматически действующей схемы с микропористым сепаратором и волокнистыми фитилями, выступающими из сборки ТЭ.

Две секции БТЭ, имеющие по 38 ТЭ, соединены параллельно и генерируют электрическую мощность 5 кВт. Батарея размещена в цилиндрическом контейнере диаметром 0,33 м и габаритной длиной 0,94 м. Удельная масса БТЭ без заправки равна 11 кг/кВт. Эксперименты показали, что сборка ТЭ способна работать более 5000 ч без деградации ИОМ при температуре до 455 К.

На КЛА многоразового использования "Буран" установлены четыре ЭХГ мощностью по 10 кВт ( суммарная мощность 40 кВт ) серии "Фотон" на водород - кислородном топливе H2 - О2. Напряжение одного генератора, состоящего из 128 топливных элементов, составляет 29,2 В ( схема генератора содержит четыре параллельные ветви, в каждой из которых включено последовательно по 32 элемента). Масса ЭХГ составляет 145 кг, масса его блока автоматики - 15 кг ( удельная масса 14,5 кг/кВт, а с учетом блока автоматики - 16 кг/кВт ). Ресурс ЭХГ равен 2000 ч, его КПД 62%

Для длительной эксплуатации в АЭУ перспективны установки, в которых ЭХГ работает совместно с регенератором компонентов топлива, разлагающим воду на водород и кислород. Электролиз воды требует подведения извне энергии для разрыва валентной химической связи

Н - О - Н. При мощностях менее 1 кВт целесообразно интегральное исполнение ЭХГ и электролизера воды (ЭВ). При более высоких электрических мощностях ЭХГ и электролизер воды в раздельном исполнении имеют лучшие технико-экономические показатели, чем у интегрального устройства. В зависимости от вида подводимой к регенератору Р энергии принципиально возможны различные способы разложения воды. Высоким КПД отличается электролиз при пропускании через Н2О электрического тока: отношение теплоты сгорания полученного топлива к энергозатратам на выделение Н2 и О2 достигает 70 - 80%. В особенности электролиз эффективен для АЭУ на КЛА при использовании Солнца в качестве источника первичной энергии с последующим ее преобразованием в ФЭП.

Разложение воды на Н2 и О2 можно реализовать непосредственно в ТЭ при пропускании тока в обратном направлении по отношению к току генераторного режима, используя принцип обратимости ТЭ, который выполняет роль электролизной ячейки. При таком способе регенерации компонентов топлива ресурс регенеративного ТЭ ограничен объемом резервуаров для хранения Н2 и О2. Известны регенеративные ТЭ, в которых полученные газы Н2 и О2 хранятся в пористых или губчатых устройствах внутри ТЭ. Данный тип ТЭ по принципу действия формально аналогичен химической АБ, причем электрическая емкость регенеративного ТЭ определяется количеством адсорбированных газов. Как и ТЭ, возможно выполнение электролизной ячейки с электролитом, ИОМ или капиллярной мембраной. Прикладываемое к электролизной ячейке при электролизе напряжение на 30 - 80% должно превосходить напряжение, генерируемое ТЭ, поскольку поляризационные эффекты в электролизной ячейке проявляются сильнее, чем в ТЭ.

Регенеративная электроэнергетическая установка (РЭУ) космической долговременной технологической базы включает восемь идентичных модулей данного типа, средняя энергетическая мощность каждого из которых составляет 12,5 кВт. Газовые баллоны рассчитаны на запас реагентов . кг, рабочее давление в баллонах поддерживается в диапазоне Па. За один цикл разрядного режима расходуется 3.03 кг реагентов (условная степень разрядки 33%). Регулятор постоянного тока, компенсирующий падение напряжения на выходе ЭХГ, позволяет вдвое повысить ресурс ТЭ, который может доходить до 10 лет.

Первым кто открыл возможность получения тока иным, чем электризация трением, способом был итальянский ученный Луиджи Гальвани (1737-1798). Однажды он заметил, что лапка мёртвой лягушки пришла в движение при соприкосновении с её нервом стального скальпеля. Это открытие заставило Гальвани поставить ряд опытов для обнаружения причины возникновения электрического тока.

В основе принципа действия различных типов аккумуляторов лежит явление электролиза , где используется его важное свойство – обратимость. Электролиз – изменение химического состава раствора при прохождении через него электрического тока, обусловленное потерей или присоединением электронов ионами.

Аккумулятор – прибор для накопления электрической энергии с целью её дальнейшего использования.

Аккумулятор можно изготовить аналогично гальваническому элементу, использовав для этой цели две свинцовые пластины, погруженные в раствор содержащий одну часть серной кислоты на пять частей воды. Для зарядки аккумулятора соединяют последовательно два таких элемента и амперметр и пропускают через них ток.

Как только через аккумулятор начинает идти ток, возле катода возникают пузырьки водорода. На аноде, как следовало ожидать, освобождается кислород. Однако его выделением дело не ограничивается. Пластина анода постепенно приобретает темно-коричневый цвет вследствие образования на ее поверхности перекиси свинца (PbO2 )за счет того, что некоторое количество кислорода соединяется химически с материалом пластины. При образовании PbO2 ток зарядки падает, указывая на возрастание сопротивления аккумулятора. Когда аккумулятор зарядится полностью, присоединяемый к нему вольтметр покажет напряжение несколько более 2 вольт.

В сущности, процесс зарядки состоит в том, что две одинаковые вначале пластины аккумулятора вследствие электролиза становятся разными; одна из них, по-прежнему остаётся свинцовой (-), а материал другой превращается в перекись свинца (+).

Химические реакции в аккумуляторе протекают следующим образом (в процессе зарядки реакции идут слева направо, при разрядке – в обратном направлении):

При производстве промышленных аккумуляторов положительные пластины покрывают очень толстым слоем перекиси свинца. Отрицательные пластины делают из пористого губчатого свинца.

Напряжение обычной аккумуляторной батареи, состоящей из трех последовательно соединенных аккумуляторов, составляет немногим больше 6 вольт. Коэффициент полезного действия аккумуляторной батареи – около 75%. Цифра указывающая долю запасенной в аккумуляторе электроэнергии проставляется на батарее. Она выражается в ампер-часах . Например 120 ампер-часов. Значит при полной зарядке аккумулятор сможет давать ток в 1 ампер в течение 120 часов, или ток в 2 ампера в течение 60 часов.

Благодаря внутреннему низкому сопротивлению аккумуляторов можно получать очень сильные токи.

Батарею постоянно следует поддерживать в заряженном состоянии частой подзарядкой, даже если она не находится в работе. Зажимы батареи необходимо содержать в чистоте и смазывать вазелином для предотвращения коррозии. Ни в коем случае нельзя допускать замерзания батарей.

Основное применение аккумуляторные батареи имеют для запуска двигателей автомобилей и других машин. Так же их можно использовать как временные источники электроэнергии в отдаленных от населенных пунктов местах. При этом не следует забывать, что аккумуляторы нужно поддерживать в заряженном состоянии (энергия солнца например). В автомобилях будущего аккумуляторы планируется использовать для питания экологически чистых электромоторов.

1. Л.Эллиот, У.Уилкокс, Физика, Москва 1963, ГИФМЛ, стр. 495

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа № 20

"Вся правда о батарейке"

выполнила: Струкова Валерия

ученица 1 "д" класса

учитель начальных классов

Сегодня я бы хотела рассказать вам о батарейке. Да, да, именно об этом маленьком, но таком необходимом нам устройстве.

(слайд 3) Сегодня моя цель: рассказать вам о том, как опасна батарейка, и что делать, чтобы уменьшить вред, наносимый природе и нам.

(слайд 4) Объект моего исследования - пальчиковая батарейка.

(слайд 5) В моем класса 28 человек. И у каждого в доме нашлись предметы и игрушки, работающие на батарейках. Ведь это так удобно! Не надо путаться в проводах. (слайд 6 ) Батарейки стали неотъемлемой частью нашей жизни. Они дают игрушкам и другим полезным вещам независимость и самостоятельность, и это так приятно!

(слайд 7 ) Считается, что примитивными батарейками пользовались еще арабы во времена до нашей эры. В результате раскопок под Багдадом археологи нашли глиняные кувшины, в которых находились железные стержни в медной оболочке. Протестировав находки в лаборатории, ученые пришли к выводу, что кувшины были наполнены кислотной жидкостью, скорее всего, вином или уксусом.

(слайд 8 ) Однако, современные батарейки придумали более 200лет назад в Италии благодаря Алессандро Вольте . В соленую воду он поместил два разных металла и от одного до другого по проводу потек электрический ток. Столько лет прошло, а принцип работы батарейки не изменился.

(слайд 9 ) Как же работает батарейка?

Батарейка содержит в себе химические вещества-реагенты, в состав которых входят два разных металла. В батарейке есть два электрода – положительный (анод) и отрицательный (катод). Между ними – жидкость-электролит: раствор, который хорошо проводит электрический ток и участвует в химической реакции. Когда металлы начинают взаимодействовать через этот раствор, возникает движение заряженных частиц из анода к катоду – и вырабатывается электрическая энергия.

Если вы хоть раз держали батарейку в руках. То обращали внимание на вот такой значок. Он означает, что батарейку нельзя выбрасывать в мусорное ведро, как обычный мусор. Это не случайно!

(слайд11) Как мы выяснили, все современные батарейки вырабатывают электричество за счет химических реакций. Такие вещества, как свинец, ртуть, кадмий, магний, никель, кислоты и щелочи, которые входят в состав батареек, даже в небольших количествах могут причинить вред здоровью человека.

(слайд 12) После выбрасывания батарейки их металлическое покрытие разрушается, и тяжелые металлы попадают в почву и грунтовые воды. Из грунтовых вод эти металлы могут попасть в реки и озера, используемые для питьевого водоснабжения .

(слайд 13) Один из самых опасных металлов, ртуть, может попасть в организм человека как непосредственно из воды, так и при употреблении в пищу продуктов, приготовленных из отравленных растений или животных , поскольку этот металл имеет свойство накапливаться в тканях живых организмов. Он поражает головной мозг и нервную систему человека.

Свинец накапливается в легких и парализует работу спинного мозга.

Кадмий поражает легкие, печень и кости человека.

(слайд 14,15) Нервные расстройства, ухудшение зрения, слуха, нарушения двигательного аппарата, заболевания дыхательной системы, нарушения кальциевого обмена в организме и, самое страшное – рак!
И это только малая доля всего!

Логичный и вполне понятный вопрос. Большинство из нас, узнав почему нельзя выкидывать батарейки, задается вопросом: если они так опасны, то куда выбрасывать батарейки, чтобы они не причиняли столько вреда? Ответ на этот вопрос категоричен — батарейки нельзя выбрасывать! Кроме того, батарейки нельзя сжигать и бросать в водоемы, а также закапывать в землю. Как утилизировать батарейки в таком случае?

(слайд 17) Этот вопрос сегодня мучает не только обывателей, но и производителей и ученых. Дело в том, что утилизация батареек обходится крайне дорого, поэтому заводов по утилизации в мире пока существует всего несколько. А в России только один завод в Челябинске.

(слайд 18) Впрочем, это не мешает борцам за здоровую экологию создавать пункты утилизации батареек уже сегодня. Часть использованных батареек все же перерабатывается в экологически чистый мусор, все остальные же — надежно хранятся в специальных условиях, в ожидании своего часа.

(слайд 19) На сегодня в России существует несколько крупных компаний по переработке батареек, они представлены во многих городах страны. Да, может, не в каждой деревне имеются баки для использованных аккумуляторов, но они есть, с каждым днем их становится все больше. Многие жители Москвы и других городов знают, куда сдать использованные батарейки, делают это, конечно, не все, но прогресс достаточно неплохой.

( слайд 21) Мы провели опрос учеников первых классов. Было опрошено 130 человек. Из них :

(слайд 23) В ходе нашего исследования было выяснено

Батарейки наносят непоправимый вред здоровью человека и окружающей среде, если их неправильно утилизировать.

Многие люди догадываются о том, насколько опасны батарейки, и о том, куда и как правильно их выбрасывать, но ничего с этим не делают.

Необходимо рассказывать о вреде батареек в школах и на предприятиях. Делать доступными пункты сбора отработанных батареек. Или использовать более экономичный вариант – батарейки-аккумуляторы. Они заменяют собой 400 обычных батареек.

( слайд 24 ) И в заключении хочется внести маленькое предложение. В целях продвижения идеи сохранения экологии, создать в школе пункт по сбору батареек.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Открытие аккумулирующего эффекта относится к числу важнейших и значительнейших изобретений в области электротехники.

Еще в 1802 году Г. Риттер открыл, что две медные пластины, опущенные в кислоту и соединенные с гальванической батареей, заряжаются и их потом можно в течение короткого времени использовать как постоянный источник тока. Это явление позже изучалось многими другими учеными.

В 1854 году немецкий военный врач Вильгельм Зинстеден наблюдал следующий эффект: при пропускании тока через свинцовые электроды, погруженные в разведенную серную кислоту, положительный электрод покрывался двуокисью свинца PbO2, в то время как отрицательный электрод не подвергался никаким изменениям. Если такой элемент замыкали потом накоротко, прекратив пропускание через него тока от постоянного источника, то в нем появлялся постоянный ток, который обнаруживался до тех пор, пока вся двуокись свинца не растворялась в кислоте. Таким образом, Зинстеден вплотную приблизился к созданию аккумулятора, однако он не сделал никаких практических выводов из своего наблюдения.

Только пять лет спустя, в 1859 году, французский инженер Гастон Планте случайно сделал то же самое открытие и построил первый в истории свинцовый аккумулятор. Этим было положено начало аккумуляторной техники.

Аккумулятор Планте состоял из двух одинаковых свинцовых пластин, навитых на деревянный цилиндр. Друг от друга они отделялись тканевой прокладкой. Устроенный таким образом прибор помещали в сосуд с подкисленной водой и соединяли с электрической батареей. Спустя несколько часов, отключив батарею, можно было снимать с аккумулятора достаточно сильный ток, который сохранял в течение некоторого времени свое постоянное значение.

Существенным недостатком аккумулятора Планте была его небольшая емкость - он слишком быстро разряжался. Вскоре Планте заметил, что емкость можно увеличить специальной подготовкой поверхности свинцовых пластин, которые должны быть по возможности более пористыми. Чтобы добиться этого, Планте разряжал заряженный аккумулятор, а затем опять пропускал через него ток, но в противоположном направлении. Этот процесс формовки пластин повторялся многократно в течение приблизительно 500 часов и имел целью увеличить на обеих пластинах слой окиси свинца.

До тех пор, пока не была изобретена динамо-машина, аккумуляторы представляли для электротехников мало интереса, но когда появилась возможность легко и быстро заряжать их с помощью генератора, аккумуляторы получили широчайшее распространение.

В 1882 году Камилл Фор значительно усовершенствовал технику изготовления аккумуляторных пластин. В аккумуляторе Фора формирование пластин происходило гораздо быстрее. Суть усовершенствования Фора заключалась в том, что он придумал покрывать каждую пластину суриком или другим окислом свинца. При заряжении слой этого вещества на одной из пластин превращался в перекись, тогда как на другой пластине вследствие реакции получалась низкая степень окисла. Во время этих процессов на обеих пластинах образовывался слой окислов с пористым строением, что способствовало скоплению выделяющихся газов на электродах.

В начале XX века усовершенствованием аккумулятора занялся Томас Эдисон, который хотел сделать его более приспособленным для нужд транспорта. В результате были созданы железно-никелевые аккумуляторы с электролитом в виде едкого калия, т.н. щелочные аккумуляторы. В 1903 году начинается производство новых портативных аккумуляторов, которые получили широкое распространение в транспорте, на электростанциях и в небольших судах.

Сначала корпуса аккумуляторов были деревянными, потом эбонитовыми. Аккумуляторные батареи формировались из нескольких элементов, каждый из которых имел рабочее напряжение около 2,2 вольт. Для шестивольтовых аккумуляторов в одном корпусе последовательно соединялись три элемента, для 12-вольтовых - шесть, для 24-вольтовых - двенадцать.

Для легковых автомобилей 6-вольтовая электросистема была общепринятой почти полвека, и только в 50-х годах произошел массовый переход на 12 вольт. Эбонитовые корпуса батарей с торчащими наружу или залитыми мастикой перемычками между элементами постепенно уступили место более легким и прочным полипропиленовым. Пионером в применении синтетических материалов для корпусов аккумуляторов выступила в 1941 году австрийская фирма Baren, а полипропилен начала использовать американская фирма Johnson Controls в середине 60-х. В конструкции свинцово-кислотных аккумуляторов произошли и другие изменения, повлиявшие на их параметры и срок службы.

Проблемы хранения свинцово-кислотных аккумуляторов

Степень активности газовыделения при сохранении аккумуляторов зависит от выбранных способов их сохранения или консервации, которые влияют, в свою очередь, на работоспособность аккумуляторов при их дальнейшей эксплуатации.

Установлено [1], что в процессе сохранения, особенно при положительных температурах, залитых свинцово-кислотных аккумуляторов наблюдается саморазряд аккумуляторов и коррозия токоотводов, в основном, положительного электрода и интенсивное выделение в атмосферу О2 и Н2. Это приводит к утрате емкости аккумулятора, а следовательно, и к сокращению срока его службы.

Автором на основе наблюдений за долгосрочным сохранением свинцовых кислотных аккумуляторов систематизированы практические рекомендации, которые содействуют как снижению уровня газовыделения, так и обеспечению последующей работоспособности. [2].

Новые аккумуляторы бывают: незаряженные, с электролитом, сухозаряженные.

Незаряженные аккумуляторы - большая редкость. При маркировке незаряженные аккумуляторы имеют букву "Н". Такие батареи собирают в блок, не подвергая пластины формовке, т.е. заряду в специализированных ваннах. Сохраняться они могут без особого вреда для себя пять-шесть и более лет. Обязательным в таких случаях является плотное завинчивание пробок, должна быть обеспечена герметичность внутреннего объема аккумулятора.

Аккумуляторы новые с залитым электролитом можно ставить на автомобиль и сразу ехать, но для продолжения работоспособности аккумулятора рекомендуется провести для него контрольно-тренировочный цикл: сначала разрядить током, равным 0,1 емкости, до напряжения 10,4 В при плотности электролита 1,24 г/см3, а потом зарядить обычным способом.

Самое полезное - приобрести залитый аккумулятор. Как правило, он заряжается по всем правилам в заводских условиях. Электролит в нем чистый, проверенный. Перед отправкой с завода солидный производитель еще в заводских условиях каждую батарею пропускает через так называемую камеру "ПИТОК". Для этой цели пригодную для эксплуатации батарею замыкают накоротко на 200 мс. Ток при этом достигает большой величины - до 800 А. Но нужно отметить, что ГОСТ 959-91 такой проверки не предусматривает. Однако собранный с недоработками аккумулятор (например, с плохо пропаянными контактами перемычек) из заводского цеха после таких испытаний не выйдет. Понятно, что аккумуляторы многих зарубежных фирм не выдержат таких испытаний, так как эти аккумуляторы, как правило, имеют тонкие пластины (тоньше 1 мм). Толстые пластины (сечением 1,4 мм и более) способны выдерживать существенные перегрузки: пуск двигателя зимой или выезд на стартере из болота или лужи не нанесет особого вреда такому аккумулятору.

Следует помнить, что хранение залитого электролитом, не заряженного аккумулятора более 1 года без работы является "глубокой старостью", а два года хранения без работы - "верная смерть". Это означает, что с электролитом, доведенным до нормы, сохранять аккумулятор можно только в заряженном состоянии для устранения пагубного влияния сульфатации. Сульфатация электродов ускоряется при долгосрочном сохранении без подзарядки.

Для предотвращения этого обязательным условием нормального хранения кислотных аккумуляторов с электролитом является их систематическая подзарядка. Эта подзарядка производится один раз в месяц: для небольших аккумуляторов током 10-часового режима, для больших аккумуляторов (Q>30 Ач) током, соответствующим второй ступени зарядной кривой, до появления признаков окончания заряда на протяжении 2 часов. На долгосрочное хранение с электролитом можно ставить аккумуляторы, которые дают не менее 90% номинальной емкости.

Заряженные батареи с электролитом нужно сохранять в прохладном помещении при температуре не более 0°С. Это замедляет саморазряд, газовыделение и коррозию пластин за время их бездействия.

Максимальный срок сохранения батарей с электролитом, которые не дают отрицательного влияния на емкость и срок службы аккумуляторов с электролитом, составляет: при температуре не выше 0°С - до 1,5 лет, при температуре не менее 20°С - до 9 месяцев.

Минимальная температура должна быть не более 30°С. Батареи, поставленные на сохранение при температуре, которая составляет 0°С и ниже, можно проверять не чаще 1 раза в месяц, при этом необходимо контролировать плотность электролита и его температуру.

Сухозаряженные аккумуляторы отличаются от остальных тем, что их пластины перед сборкой заряжают (формируют), потом промывают и сушат горячим воздухом с температурой от 60 до 180°С при скорости потока воздуха от 2 до 6 м/с.

Сухозаряженные аккумуляторы можно хранить в сухом закрытом помещении при t=5…30°С с плотно завинченными глухими пробками на протяжении 1 года без вреда, 2 года - терпимо, а больше - не рекомендуется. Следует обратить внимание на особенности подготовки сухозаряженных аккумуляторов к заряду после длительного хранения. Для этого аккумуляторы заливают электролитом, плотность которого на 0,02 г/см3 меньше эксплуатационной. Не ранее чем через 20 мин и не позже чем через 2 ч после заливки электролита нужно провести контроль его плотности. Если плотность электролита уменьшится не более чем на 0,03 г/см3 от плотности заливаемого электролита, то батарею можно сдавать в эксплуатацию без заряда, если плотность электролита уменьшится более чем на 0,03 г/см3, то для батареи нужно провести первичный заряд.

Список литературы

1. Барковский В.И. и др. Влияние годичного хранения на параметры необслуживаемых свинцово-кислотных акумуляторов//Электротехника. - 1988. - №8. - С.6-9.

2. Марфін М.І., Железняк І.Б., Іноземцев А.В. Зниження рівня газовиділення хімічних джерел струму. Міжнародна науково-практична конференція "Екологічні проблеми довкілля та шляхи їх вирішення". ПДПУ ім. В.Г. Короленка. - Полтава, 2002. - С.36-37.

Читайте также: