Реферат на тему аксиомы

Обновлено: 05.07.2024

АКСИОМАТИЧЕСКИЙ МЕТОД –метод построения теорий, в соответствии с которым разрешается пользоваться в доказательствах лишь аксиомами и ранее выведенными из них утверждениями. Или же способ построения научной теории в виде системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путем логической дедукции получать утверждения (теоремы) данной теории.

К концу того же века Дж. Пеанодал аксиоматику натуральных чисел. Далее аксиоматический метод был использован для спасения теории множеств после нахождения парадоксов. При этом аксиоматический метод был обобщен и на логику. Гильберт сформулировал аксиомы и правила вывода классической логики высказываний,а П. Бернайс – логики предикатов. Ныне аксиоматическое задание является стандартным способом определения новых логик и новых алгебраических понятий. В последние десятилетия по мере развития моделей теорииаксиоматический метод стал в почти обязательном порядке дополняться теоретико-модельным.

При аксиоматическом построении какой-либо математической теории соблюдаются определенные правила:

- некоторые понятия теории выбираются в качестве основных и принимаются без определения

- каждому понятию теории, которое не содержится в списке основных, дается определение; в нем разъясняется смысл понятия с помощью основных и предшествующих данному понятий

- формулируются аксиомы – предложения, которые в данной теории принимаются без доказательства; в них раскрываются свойства основных понятий

- каждое предложение теории, которое не содержится в списке аксиом, должно быть доказано; такие предложения называют теоремами и доказывают их на основе аксиом и теорем, предшествующих рассматриваемой.

Если построение теории осуществляется аксиоматическим методом, а именно, по названным выше правилам, то говорят, что теория построена дедуктивно.

При аксиоматическом построении теории по существу все утверждения выводятся путем доказательства из аксиом. Поэтому к системе аксиом предъявляются особые требования. Прежде всего, она должна быть непротиворечивой и независимой.

Система аксиом называется непротиворечивой, если из нее нельзя логически вывести два взаимно исключающих друг друга предложения

Если система аксиом не обладает этим свойством, она не может быть пригодной для обоснования научной теории.

Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы.

При аксиоматическом построении одной и той же теории можно использовать разные системы аксиом. Но они должны быть равносильными. Кроме того, при выборе той или иной системы аксиом математики учитывают, насколько просто и наглядно могут быть получены доказательства теорем в дальнейшем. Но если выбор аксиом условен, то сама наука или отдельная теория не зависят от каких-либо условий, - они являются отражением реального мира.

Аксиоматическое построение системы натуральных чисел осуществляется по сформулированным правилам. Изучая этот материал, мы должны увидеть, как из основных понятий и аксиом можно вывести всю арифметику натуральных чисел. Конечно, его изложение в данном курсе будет не всегда строгим – некоторые доказательства мы опускаем в силу большой сложности, но каждый такой случай будем оговаривать.

Еще один пример аксиоматического построения теории – геометрия Евклида и геометрия Лобачевского.

Геометрия Лобачевского (гиперболическая геометрия) — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных прямых, которая заменяется её отрицанием.

Проблема полной аксиоматизации элементарной геометрии — одна из проблем геометрии, возникшая в Древней Греции в связи с критикой этой первой попытки построить полную систему аксиом так, чтобы все утверждения евклидовой геометрии следовали из этих аксиом чисто логическим выводом без наглядности чертежей.


  1. От всякой точки до всякой точки можно провести прямую.

  2. Ограниченную прямую можно непрерывно продолжать по прямой.

  3. Из всякого центра всяким раствором может быть описан круг.

  4. Все прямые углы равны между собой.

  5. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.

В 1899 году Гильберт предложил первую достаточно строгую аксиоматику евклидовой геометрии. Попытки улучшения евклидовой аксиоматики предпринимались до Гильберта, а именно, Пашем, Шуром, Пеано, Веронезе, однако подход Гильберта, при всей его консервативности в выборе понятий, оказался более успешным.

Истинное начало науки о геометрических фигурах и телах, конечно же, теряется в глубине тысячелетий. Начальное оформление первых геометрических представлений обычно связывают с древнейшими культурами Вавилона и Египта (3-2 тысячелетия до н.э.). С VII века до н.э. начинается период развития геометрии трудами греческих учёных. Пифагорейская школа в VI-V веках до н.э. продолжила геометрические исследования. Её основоположник Пифагор (560-470 или 580-500 г.г. до н.э.) в молодости около двадцати лет учился мудрости в Египте, ещё десяти - в Вавилоне. Несомненно, что в школе Пифагора геометрия сделала первые шаги от узкопрактических утилитарных задач, от геометрии измерения участков земли к обобщениям, абстракциям и рассуждениям.

Однако изложение геометрического материала, лишенное какой-либо основы, не закладывающее возможности обосновывать и доказывать рассматриваемые утверждения, никому не нужно. При таком изложении вся роль курса геометрии в общем развитии и математическом образовании учащихся резко уменьшается. Немногочисленные аксиомы, которые появляются в курсе геометрии — это традиционные аксиомы пространства… Читать ещё >

Аксиомы, теоремы, аксиоматический метод доказательства ( реферат , курсовая , диплом , контрольная )

Всякая теорема в геометрии доказывается с помощью логических рассуждений, получается как логическое следствие раннее известных предложений. Но доказать логически все предложения геометрии невозможно. Поэтому некоторые предложения геометрии, принимаемые без логического доказательства, называют аксиомами геометрии.

Таким образом, некоторые предложения геометрии принимаются без логического доказательства — аксиомы, а все другие ее предложения — теоремы — могут выводиться из этих аксиом как логические следствия. Каждая математическая теория начинается с формулировки таких предложений (аксиом), которые в этой теории считаются соблюдающимися с полной строгостью, хотя их происхождение не так просто увидеть.

  • -перечисляются без определений основные геометрические понятия;
  • их помощью даются определения всем остальным геометрическим понятиям;
  • -формулируются аксиомы;
  • -на основании аксиом и определений доказываются теоремы.

В течение последних десятилетий было несколько попыток построить курс школьной геометрии на базе немногочисленных аксиом, причем с достаточно высокой математической строгостью этого построения. Однако срабатывало много факторов, которые не позволяли добиться больших успехов. Прежде всего в условиях массовой школы и обучения учащихся в раннем возрасте просто невозможно хотя бы потому, что для такого изучения геометрии просто нет учебного времени. Раннее знакомство с аксиоматикой и аксиоматическим построением не дает своего эффекта даже для способных к математике учащихся.

Математики и методисты отмечают, что нет хорошей глобальной аксиоматики для обучения геометрии. Е. Тоцки выделяет три основных направления изучения геометрии.

Первое направление. Отбрасываем мнение о том, что к обучению геометрии в школе можно и нужно подходить как к глобально и дедуктивно организованной системе знаний. Геометрия становится источником превосходных тем для начала активной деятельности учеников на различном уровне.

Требования к проведению доказательств:

  • -прежде всего должно быть совершенно ясно, что дано и что требуется доказать;
  • -очень велика роль чертежа, причем чертежи сопровождают весь ход доказательства, в динамике, а не как обычно — на одном чертеже сразу все;
  • -главное — постоянно формировать потребность у учащихся в проведении доказательств, общая стратегия доказательства и любого его этапа должны быть смотивированы, обсуждены, самостоятельно осмыслены, только после этого есть смысл в проведении этих доказательств;

все основные этапы доказательства нумеруются, при этом, во-первых, их удобно видеть, а во-вторых, на них удобно ссылаться;

  • -очень важно, что в конце каждого пункта доказательства в скобках даны основания сделанных выводов — это либо определения, либо доказанные раннее теоремы, либо ссылки на предыдущие этапы доказательства.
  • 9. Аксиоматический метод построения школьного курса геометрии

Одним из основных методов построения школьного курса геометрии является аксиоматический метод (10, "https://referat.bookap.info").

Идея аксиоматического построения геометрии была предложена и реализована Евклидом. Она состоит в том, что если мы не можем определить, что представляет собой исследуемый объект, то следует определить его свойства. Выделить существенные признаки объекта и абстрагироваться от несущественных. Если эти признаки подобраны хорошо, то сам объект ими полностью определяется.

Наличие определенных правил (аксиом) должно подкрепляться соответствующими интуитивными представлениями. Аксиоматический метод построения геометрии не является трудным для понимания школьников. Аксиомы можно рассматривать как правила игры в геометрию. Если правила определены, то играть по ним легче, чем при отсутствии правил.

Одной из проблем построения курса геометрии для школы является выбор такой аксиоматики, которая была бы пригодна для первоначального изучения геометрии. Одним из основных принципов, на котором должна строиться аксиоматика школьного курса геометрии, пригодная для первоначального изучения геометрии, является принцип элементарности.

Рассмотрим аксиоматику геометрии, реализованную в учебнике геометрии И. М. Смирновой , В. А. Смирнова , отвечающую принципу элементарности.

К числу основных геометрических фигур в этой аксиоматике относятся точки, прямые и плоскости. Первые аксиомы относятся к понятию принадлежности. Следующие свойства, относящиеся к понятию равенства отрезков, принимаются за аксиомы. Далее дается аксиомы взаимного расположения точек на плоскости относительно данной прямой. После идут аксиомы, относящиеся к понятию равенства углов. Потом — теорема о вертикальных углах. Это — первая теорема и первое доказательство. В дальнейшем их будет много. Ученикам нужно постараться понять доказательство. Выученное доказательство не означает его понимания. Важны не сами слова, а их смысл. Один и тот же смысл может выражаться различными словами. Позже принимаются аксиомы о треугольниках, на основании которых доказываются признаки равенства треугольников и решаются задачи. То, что при выполнении необходимых условий две окружности пересекаются, ниоткуда не следует. Обычно этот факт опускается. В этом учебнике это принимается за аксиому.

Заметим, что до этого момента при изложении геометрии не использовалась аксиома параллельных. Все теоремы носили абсолютный характер, т. е. относились к абсолютной геометрии, не использующей аксиомы параллельных. Таким образом, аксиома параллельных вводится не сразу. Сначала излагается абсолютная геометрия, а только затем — геометрия, использующая аксиому параллельных.

Важность такого разделения геометрии обусловлена тем, что оно формирует правильную интуицию и дает возможность на ее основе в дальнейшем изучать различные неевклидовы геометрии: геометрию Лобачевского, проективную геометрию и др.

Завершает аксиомы планиметрии один из вариантов аксиомы непрерывности. К этому времени учащиеся уже имеют более полное представление о действительных числах.

Приведенная система аксиом является избыточной в том смысле, что некоторые последующие аксиомы перекрывают предыдущие.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Аксиома (др. - греч. ἀξίωμα — утверждение, положение), постулат — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других ее положений, которые, в свою очередь, называются теоремами.

Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами.

В современной науке вопрос об их истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории.

Аксиоматизация теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах, и не опираться на обычное конкретное значение этих объектов и их отношений.

Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и Евклидовой геометрии.

Набор аксиом называется непротиворечивым, если исходя из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание.

Примеры систем аксиом:

Сейчас аксиомы обосновываются не сами по себе, а в качестве необходимых базовых элементов теории. Критерии формирования набора аксиом в рамках конкретной теории часто являются прагматическими: краткость формулировки, удобство манипулирования, минимизация числа исходных понятий и т. п. Такой подход не гарантирует истинность принятых аксиом. Лишь подтверждение теории является одновременно и подтверждением набора её аксиом.

изучение аксиоматического метода и его применений в различных областях знаний.

· Выяснить, что такое аксиоматика.

· Рассмотреть применения аксиоматического метода в геометрии

· Научиться применять аксиоматический метод.

1. Введение. Что такое аксиоматика.

2. Аксиоматический метод - важнейший научный метод.

3. Аксиоматический метод в геометрии.

4. Исследовательская работа. Применение аксиоматического метода в шахматном турнире.

1. Введение. Что такое аксиоматика.

Аксиома-это некоторые утверждения о свойствах вещей, которые принимаются в качестве исходных положений, на основе которых далее доказываются теоремы и, вообще, строится вся теория.

Аксиоматика – система аксиом той или иной науки. Например, аксиоматика элементарной геометрии содержит около двух десятков аксиом. аксиоматика числового поля-9 аксиом. Наряду с ними важнейшую роль в современной математике играет аксиоматика группы, аксиоматика метрического и векторного пространств и др.

Советским математикам С. Н. Бернштейну и А. Н. Колмогорову принадлежит заслуга аксиоматического описания теории вероятностей. Десятки других направлений современной математики также развиваются на аксиоматической основе, т.е. на базе соответствующей системы аксиом.

2. Аксиоматический метод – важнейший научный метод

Аксиоматический метод - важный научный инструмент познания мира. Большинство правлений современной математики, теоретическая механика и ряд разделов современной физики строится на основе аксиоматического метода. В самой математике аксиоматический метод дает законченное, логически стройное построение научной теории. Не меньшее значение имеет и то, что математическая теория, построенная аксиоматически, находит многократные приложения и в естествознании.

Современная точка зрения на аксиоматическое построение какой-либо области знаний заключается в следующем:

1. Перечисляются первоначальные (неопределяемые) понятия;

2. Указывается список аксиом, в которых устанавливаются некоторые связи и взаимоотношения между первоначальными понятиями;

3. С помощью определений вводятся дальнейшие понятия;

4. Исходя из первоначальных фактов, содержащихся в аксиомах, выводятся, доказываются с помощью некоторой логической системы дальнейшие факты – теоремы.

Первоначальные понятия и аксиомы заимствованы из опыта. Поэтому очевидно, что все последующие факты , выводимые в аксиоматической теории, хотя их получают на основе аксиом чисто умозрительным, дедуктивным путем, имеют тесную связь с жизнью и могут быть применены в практической деятельности человека.

Важнейшим требованием к системе аксиом является ее непротиворечивость, которую можно понимать так: сколько бы мы ни выводили теорем из этих аксиом, среди них не будет двух теорем, противоречащих друг другу. Противоречивая аксиоматика не может служить основой построения содержательной теории.

Развив ту или иную аксиоматическую теорию, мы можем, не проводя повторных рассуждений, утверждать, что ее выводы имеют место в каждом случае, когда справедливы рассматриваемые аксиомы. Таким образом, аксиоматический метод позволяет целые аксиоматически развитые теории применять в различных областях знаний. В этом состоит сила аксиоматического метода.

3. Аксиоматический метод в геометрии

При изучении геометрии мы опирались на ряд аксиом. Напомним, что аксиомами называются те основные положения геометрии, которые принимаются в качестве исходных. Вместе с так называемыми основными понятиями они образуют фундамент для построения геометрии. Первые основные понятия, с которыми мы познакомились, были понятия точки и прямой. Определения основных понятий не даются, а их свойства выражаются в аксиомах. Используя основные понятия и аксиомы, мы даем определения новых понятий, формулируем и доказываем теоремы и таким образом изучаем свойства геометрических фигур.

Для примера рассмотрим аксиому параллельных прямых:

через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Утверждения, которые выводятся непосредственно из аксиом называются следствиями. Рассмотрим некоторые следствия из аксиомы параллельных прямых.

1. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

2. Если две прямые параллельны третьей прямой, то они параллельны.

4.Исследовательская работа. Применение аксиоматического метода в шахматном турнире.

Аксиома 1. Число игроков нечетно.

Аксиома 2. Каждый игрок участвует в четырех партиях .

Аксиома 3. В каждой партии участвуют два игрока .

Аксиома 4. Для каждых двух игроков имеется не более одной партии, в которой они оба участвуют.

Из этих аксиом можно вывести ряд теорем.

Теорема 1.Число игроков не меньше пяти .

Доказательство. Так как нуль- четное число, то по аксиоме 1 число игроков не равно нулю, т.е. существует хотя бы один игрок А. Этот игрок в силу аксиомы 2 участвует в четырех партиях, причем в каждой из этих партий, кроме А, участвует еще один игрок (аксиома 3). Пусть В,С,Д,Е - игроки, отличные от А, которые участвуют в этих партиях. По аксиоме 4 все игроки В,С,Д,Е различны (если бы, например, было В=С, то оказалось бы, что имеются две партии, в которых участвуют игрок А и игрок В=С).Итак, мы нашли уже пятерых игроков: А,В,С,Д,Е. Но тогда по аксиоме 1 число игроков не меньше пяти.

Теорема.2. Число всех выступлений игроков четно .

q- некоторая партия, введем новое понятие - (q,А)- выступление игрока.

Доказательство. Каждая партия дает два выступления игроков (q,А),(q,В),( по аксиоме 3), число всех выступлений 2n, где n число игроков (А 4). Следовательно, число всех выступлений игроков кратно 2, т.е. четно.

Теорема3.Число выигрышей в турнире не превышает число игроков.

Доказательство. Пусть п - число игроков, тогда 2п - число выступлений игроков (А), п - число сыгранных партий(А3). Рассмотрим два случая:

1. Во всех партиях были победитель и проигравший. Тогда число выигрышей будет равно числу партий, т.е. п.

2. Некоторые партии закончились вничью, пусть таких партий будет к. Тогда в оставшихся п - к партиях был выявлен победитель, т.е. число выигрышей не превышает число партий. Теорема доказана.

Прочитав литературу, я узнал, что такое аксиома, что такое аксиоматический метод и, как он применяется в геометрии. Изучив аксиоматический метод я применил его к исследованию шахматного турнира.

Энциклопедический словарь юного математика

/Сост. Э- 68 А.П. Савин.- М.: Педагогика, 1989.

Геометрия, 7-9: Учеб. Для общеобразоват. Учереждений /Л.С. Атанасян и др. Просвещение, 2004.

Читайте также: